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Abstract: Iron deficiency leads to ferropenic anemia in humans. This study aimed to encapsulate iron-
rich ovine and bovine erythrocytes using tara gum and native potato starch as matrices. Solutions
containing 20% erythrocytes and different proportions of encapsulants (5, 10, and 20%) were used,
followed by spray drying at 120 and 140 ◦C. Iron content in erythrocytes ranged between 2.24 and
2.52 mg of Fe/g; microcapsules ranged from 1.54 to 2.02 mg of Fe/g. Yields varied from 50.55 to
63.40%, and temperature and encapsulant proportion affected moisture and water activity. Various
red hues, sizes, and shapes were observed in the microcapsules. SEM-EDS analysis revealed the
surface presence of iron in microcapsules with openings on their exterior, along with a negative zeta
potential. Thermal and infrared analyses confirmed core encapsulation within the matrices. Iron
release varied between 92.30 and 93.13% at 120 min. Finally, the most effective treatments were those
with higher encapsulant percentages and dried at elevated temperatures, which could enable their
utilization in functional food fortification to combat anemia in developing countries.

Keywords: native potato starch; tara gum; microencapsulation; erythrocytes; iron released; spray drying

1. Introduction

In recent years, new biopolymers have been studied for their use in encapsulating dif-
ferent bioactive compounds beneficial to human health [1,2]. The development of research
on mixtures of matrices and cores is essential to understand their interactions using modern
physical, chemical, and structural techniques [3,4]. The spray drying microencapsulation is
used to stabilize various phytochemicals that are applied in the food and pharmaceutical
industry [5,6]. The wall materials present in the microcapsules provide additional health
benefits due to their protein and fiber content [7,8].
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Iron is an essential micronutrient in several vital functions, such as oxygen transport,
cell proliferation, immunity, deoxyribonucleic acid synthesis, and energy production. Heme
iron is obtained from meat, offal, and blood containing myoglobin and hemoglobin. In
contrast, non-heme iron is ferric (Fe+3) or ferrous (Fe+2) salt in cereals, dairy products,
legumes, and other vegetables [9,10]. Iron deficiency causes anemia, mainly in children,
due to the low consumption of foods containing this mineral. Heme iron is the most easily
bioavailable form in the human organism, with between 15 and 40% absorption; current
studies indicate that blood is one of the primary sources of iron [11,12].

Iron deficiency anemia is a global public health problem, and various iron fortifica-
tion and supplementation strategies have been developed to improve its bioavailability
and absorption [13]. Iron encapsulation is a promising technique that protects iron from
oxidation and degradation reactions during food processing and incorporation. Iron can
be explicitly released in the intestine through microencapsulation, improving absorption.
Various materials have been used as encapsulants, including starches, maltodextrins, chi-
tosan, and alginate [14]. Multiple encapsulation methods are applied in the food industry,
such as emulsification, ionic gelation, extrusion, spray drying, and lyophilization [15–19].
In addition, novel chemical encapsulation techniques have been developed, such as inter-
facial polymerization, molecular co-crystallization, and inclusion in cyclodextrins [20,21].
Polymeric systems containing inorganic Mg and CaCO3 substances that promote biodegra-
dation, biocompatibility, and bioactivity are also being developed. The controlled incorpo-
ration of these inorganic substances into the polymers modifies the mechanical, thermal,
and biological properties that could also be used for iron [22,23].

Different drawbacks were identified in fortifying foods with iron, such as adverse
changes in sensory characteristics, gastrointestinal discomfort, and using non-heme iron in
higher proportions. These problems have been improved by using encapsulation technol-
ogy, a micro-packaging process in which a wide variety of iron compounds are protected
with different polymeric matrices producing microcapsules and nanocapsules via different
methodologies, among which spray drying stands out. In this way, different forms of
encapsulated iron have been obtained and tested for their effectiveness in vitro and in vivo,
with promising results in reducing iron deficiency anemia [9,24,25]. This paper presents
an innovative methodology for obtaining iron-loaded microcapsules from sheep and cat-
tle erythrocytes using native potato starch and tara gum as polymeric matrices. These
microcapsules offer a promising application in controlled iron release, which could have
significant implications for developing treatments for anemia and other related diseases.

The development of controlled release systems for bioactive compounds has become
highly relevant in medicine and nutrition. Iron is essential for proper body function, and its
deficiency can lead to serious health problems. Encapsulating iron in microcapsules could
improve its bioavailability and enable sustained release in the body, avoiding toxicity issues
associated with high doses. In this study, the use of native potato starch and tara gum as
polymeric matrices to encapsulate iron from sheep and cattle erythrocytes was explored,
aiming to obtain microcapsules capable of releasing the mineral in a controlled manner.

2. Materials and Methods
2.1. Materials

The blood of sheep (Ovis orientalis aries) and cattle (Bos taurus) was collected at the
Municipal Slaughterhouse in San Jerónimo, province of Andahuaylas, Peru, which the
National Agrarian Health Service authorizes. The blood extraction was carried out under
entirely safe and aseptic conditions. Local farmers from the district of Ocobamba, province
of Chincheros, Peru, kindly provided the tara. The native potato of the yanapalta variety
was acquired at the central market of the district of Andahuaylas and was in optimal
conditions for consumption. The research involving the use of animals was approved by
the Ethics Committee of the National University José María Arguedas through Resolution
N◦ 232-2020-CO-UNAJMA dated 22 September 2020. Sheep and cattle blood was selected
because these animals are abundant in the study area, and their blood is an iron-rich
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by-product that is not used during the processing of these animals. In the case of the native
potato, the yanapalta variety was chosen because of its good yields in the field and as it is
an excellent source of native starch. As for the tara, it was chosen because it is a rich source
of gum that is found in abundance on the study site.

The reagents used were hydrochloric acid reagent grade (Spectrum Chemical Mfg. Corp.,
Bathurst, NB, Canada), nitric acid reagent grade (Spectrum Chemical Mfg. Corp.,
Bathurst, NB, Canada), and absolute ethanol (Scharlau, Sentmenat, Spain).

2.2. Native Potato Starch

Around 5 kg of native potatoes from yanapalta variety were used. These were crushed
using a Bosch blender (Stuttgart, Germany). Following this, several rinses were carried
out with distilled water to isolate the starch by allowing it to settle. The acquired starch
was then dried at 50 ◦C using a FED 115 BINDER forced convection oven. Subsequently, it
was finely ground into powder using an agate mortar. Next, the starch underwent sieving
with an analytical vibrating sieve AS 200 (Retsch, Haan, Germany) with a 45 µm mesh
size. The resultant starch was collected in airtight containers and stored at 20 ◦C for future
use [10,26,27].

2.3. Tara Gum

The germ was isolated from tara seeds, and 30 g of the germs were mixed with 800 mL
of distilled water. The mixture was then stirred for 12 h at 80 degrees Celsius. Afterward,
the solution was filtered through a 150 µm nylon mesh screen. It was combined with
96% ethanol at a 1:1 ratio to purify and cause the gum to precipitate. Following this, the
resulting gum was diluted with distilled water until it reached a viscosity of 30 cP using a
viscometer (DV-E Brookfield Engineering Laboratories, Inc., Middleboro, MA, USA). The
extract was spray-dried using a mini spray dryer B-290 from BÜCHI Labortechnik AG,
operating at an inlet temperature of 100 ◦C and an airflow rate of 650 L per minute [10].

2.4. Spray-Dried Erythrocytes

Sodium citrate was utilized as a blood anticoagulant (at a concentration of 3 g/L)
to collect blood samples from sheep and cattle. The obtained blood was centrifugated
at 3000 revolutions per minute for 10 min (CR4000R Centurion, Pocklington, UK). This
process aimed to separate the cellular components from the rest. The resultant pellet was
rinsed twice with a saline solution containing 0.15 M NaCl. After completing the washing
procedures, the viscosity of the solution was adjusted to reach 30 cP (DV-E Engineering
Laboratories, Inc.). Next, the material was subjected to drying using a B-290 mini spray
dryer from BÜCHI Labortechnik AG, operating at an inlet temperature of 120 ◦C and an
airflow rate of 650 L/h. The resulting atomized material was collected within low-density
polyethylene bags and subsequently stored in a desiccator at 20 ◦C until it was ready for
subsequent utilization [10].

2.5. Erythrocyte Microparticles

For the microencapsulation process, native potato starch and tara gum at a 4:1 ratio
were used as the outer layer materials. These components were prepared at varying con-
centrations of 5%, 10%, and 20% by weight/volume (w/v). The solution for encapsulation
was prepared a day in advance. As far as erythrocytes were concerned, they were made
at a constant concentration of 20% (w/v). Both solutions were mixed at a 1:1 ratio and
blended thoroughly using an ultraturrax device (Daihan, model HG15D, Wonju, Republic
of Korea), operating at 7000 revolutions per minute for 5 min. The actual encapsulation
was carried out using a B-290 mini spray (BÜCHI Labortechnik AG, Flawil, Switzerland).
This process occurred at inlet temperatures of 120 ◦C and 140 ◦C and an airflow rate of
650 L/h. Following this, the encapsulated materials were collected and carefully placed
into low-density bags and stored within a desiccator at a temperature of 20 ◦C [10].
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The experimental flow diagram is shown in Figure 1, in which the abbreviations T1O,
T2O, T3O, T4O, T5O, and T6O are presented to refer to the ovine erythrocyte microencap-
sulation treatments, and the abbreviations T1V, T2V, T3V, T4V, T5V, and T6V for the bovine
erythrocyte microencapsulation treatments.
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2.6. Iron Content

A total of 200 mg of the sample underwent treatment with 3 mL of HCl and 9 mL
HNO3. The resulting mixture was then adjusted to a final volume of 50 mL using ultrapure
water. The prepared solutions were then subjected to microwave digestion by utilizing
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a microwave digester (SCP Science, Miniwave, QC, Canada). An axial mode inductively
coupled plasma optical emission spectrometer ICP-OES 9820 138 (Shimadzu, Kyoto, Japan)
was employed to measure the iron content. Argon gas was maintained at a flow rate of
10 L/min during the measurements and readings were taken at a specific wavelength of
239.562 nm [10].

2.7. Yield, Moisture, Water Activity, and Bulk Density

The yield was calculated by considering the mass of the obtained spray-dried powder
and the initial mass (wall material and core) according to the following relationship [28]:

Y (%) =
mi
m f

× 100 (1)

where Y (%) represents the encapsulation yield, mi is the initial mass (g), and mf is the
final mass of the spray-dried powder (g).

Moisture content was determined following the AOAC 950.10 oven drying
method [29]. The water activity was assessed using a water activity meter (Rotronic,
Bassersdorf, Switzerland) [30]. Bulk density was calculated by dividing the mass of the
microcapsules by the volume measured using a graduated 10 mL cylinder [28].

2.8. Color Analysis

Lightness L* and chroma a* and b* color attributes were ascertained using a bench-
top colorimeter (CR-5, Konica Minolta, Tokyo, Japan). The degree of color change was
computed using the subsequent equation [31]:

∆E∗
ab =

√
∆L∗2 + ∆a∗2 + ∆b∗2 (2)

where ∆E∗
ab is the color variation and ∆L∗, ∆a∗, and ∆b∗ are the differences between L*, a*,

and, b* initials and finals.

2.9. Amylose and Amylopectin Content

The potato amylose standard (Sigma Aldrich, St. Louis, MO, USA) was used in
concentrations of 0.1 to 1.0 mg/mL for the calibration curve. For amylose extraction, 20 mg
of sample was taken and 0.2 mL of 95% ethanol (Scharlau, Senmanat, Spain) and 1.8 mL of
1 M NaOH (Sigma Aldrich, Darmstadt, Germany) were added and allowed to stand for 24 h
at room temperature. Subsequently, the volume was adjusted to 20 mL with ultrapure water
and homogenized in a vortex at 2000 RPM for minutes. For the colorimetric reaction, 0.5 mL
of the extracted solution, 1 mL of 1M acetic acid (Sigma Aldrich, St. Louis, MO, USA),
and 0.2 mL of lugol solution were taken, and the volume was made up to 10 mL with
ultrapure water. The solution was shaken and allowed to react for 20 min, protected
from light. Absorbance readings were carried out at a wavelength of 620 nm using a UV
spectrophotometer (CR-5, Konica Minolta, Tokyo, Japan) [32,33].

2.10. Total Organic Carbon

A total of 0.05 g of encapsulated samples was positioned within ceramic containers to
be analyzed utilizing a total organic carbon analyze TOC-L CSN-SSM 5000A (Shimadzu,
Kyoto, Japan) [34,35].

2.11. SEM-EDS Analysis

The structure of erythrocytes and microcapsules was examined using a scanning
electron microscope (SEM Thermo Fisher, Waltham, MA, USA) under low vacuum con-
ditions, employing an acceleration voltage of 25 kV. Furthermore, an energy-dispersive
X-ray spectroscopy (EDS) detector was utilized to perform surface chemical analysis of the
samples [36].
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2.12. Particle Size and ζ Potential Analysis

For particle size determination, a laser diffraction instrument, Mastersizer 3000 (Malvern
Instruments, Worcestershire, UK) was employed. The samples were dissolved in isopropyl
alcohol, subjected to sonication for 60 s, and measured at 600 nm. As for determining
the ζ potential, 25 mg of erythrocytes and microcapsules were homogenized in 50 mL
of ultra-pure water. The analysis was conducted using a dynamic light scattering (DLS)
instrument, Zetasizer ZSU3100 (Malvern Instruments, Worcestershire, UK) [36].

2.13. FTIR Analysis

Fourier transform infrared spectroscopy (FTIR) was used to analyze and identify
functional groups in erythrocytes and microcapsules. Pellets were prepared by combining
2 mg of the sample with 200 mg of KBr. The mixture was then pressed at a force of
10 tons to create the pellets for analysis. The FTIR measurements were conducted using the
transmission module of the Nicolet IS50 FTIR (ThermoFisher, Waltham, MA, USA). The
spectral range covered wavelengths from 4000 to 400 cm−1. Readings were taken with a
scan repetition of 32 and a resolution of 8 cm−1 [37].

2.14. Thermal Analysis

For the thermal stability analysis using Thermogravimetric Analysis (TGA), and 10 mg
of erythrocytes and microcapsules were utilized. The measurements were conducted using
a TGA 550 thermal analyzer (TA Instrument, New Castle, DE, USA) with a heating rate of
10 ◦C/min. Furthermore, a Differential Scanning Calorimeter (DSC2500, TA Instruments,
New Castle, DE, USA) was utilized for analysis. In this process, 2 mg of microcapsules
were employed. The temperature range covered was from 0 to 250 ◦C, employing a heating
rate of 10 ◦C per minute. The analysis was conducted under a nitrogen atmosphere [37].

2.15. Iron Release

To conduct the in vitro release determination, uniform solutions were prepared by
mixing 0.05 g of microcapsules with 500 mL of a 0.1 N HCl solution. These prepared
samples were then subjected to a water bath with an agitation system (WTB 50, Memmert,
Schwabach, Germany) at a temperature of 37 ◦C. Extractions were carried out at specific
intervals: 0, 30, 60, 90, and 120 min. After extraction, the samples were analyzed on an
Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) model 9820 138
(Shimadzu, Tokyo, Japan). The resulting data were quantified in mg of Fe/g of sample and
calculated using the provided relationship [10]:

%L =
FeT
Feo

× 100 (3)

where %L is the percentage of release, FeT is the iron content at time t (mg/g), and Feo is
the initial iron content (mg/g).

2.16. Statistical Analysis

Data analysis was performed using the Origin Pro 2022 software (OriginLab Corpora-
tion, Northampton, MA, USA). The analysis involved the analysis of variance (ANOVA)
along with Tukey’s multiple range test, employing a significance level of 5%.

3. Results and Discussions
3.1. Instrumental Characterization of Matrices and Cores
3.1.1. SEM-EDS Analysis, Particle Size, ζ Potential, Color, and Iron Content

In Figure 2a, the characterization of native potato starch from the yanapalta variety
is shown, where elliptical shapes of granules were observed with a size of approximately
32.30 µm, with a negative ζ potential, white color, and a predominant presence of carbon
and oxygen on its surface, these results were similar to those reported for starch from native
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potatoes of the peruanita variety [36]. Regarding specifically the SEM-EDS analysis, the
results were similar to the starches obtained from native potatoes grown in Cusco, Peru,
which presented smooth surfaces and ellipsoidal shapes that also contained mainly carbon,
oxygen, and traces of calcium, with particle sizes between 12 and 72 µm [38]. The above
parameters are essential in the chemical and techno-functional properties of starch [39].
Amylose (42.97%) and amylopectin (57.03%) were also characterized, which is consistent
with native potatoes of the huamantanga and qeccorani varieties [40]. The ratio of amylose
to amylopectin influences the functional properties of starches [41].
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of spray-dried bovine erythrocytes.

In Figure 2b, spray-dried tara gum is characterized by spherical particles obtained with
an average size of 3.12 µm, negative ζ potential, white color, and a predominant presence of
carbon and hydrogen on its surface. In this context, recent investigations support the notion
that spray drying enables the production of spherical and uniformly sized particles [37].
The negative zeta potential could be attributed to carboxyl and hydroxyl functional groups
on the particle surface, which are crucial in stabilizing colloidal dispersions [10]. The white
color of the microparticles could be attributed to their size and morphology, influencing
the dispersion of visible light; the predominant presence of carbon and hydrogen on
the surface is likely associated with the chemical structure of tara gum, which is rich in
polysaccharides [10,36].
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On the other hand, Figure 2c,d depict the instrumental characterization of ovine and
bovine erythrocytes, respectively, obtained through spray drying. Spherical shapes with
central indentations were observed, with a size of approximately 4 µm, positive ζ potential,
reddish color, and a predominant presence of carbon, oxygen, and nitrogen on their
surface. Notably, the iron content of ovine and bovine erythrocytes was 2.52 and 2.24 mg
of Fe/g, respectively. These values also agreed with the surface percentage characterization
performed by SEM-EDS. Similar results were reported in guinea pig blood erythrocytes
(3.30 mg of Fe/g) [10] and commercial bovine erythrocytes (2.49 mg of Fe/g) [42].

3.1.2. Thermal Analysis

In Figure 3a, the thermal analysis of native potato starch from the yanapalta variety
and spray-dried tara gum is presented. Both materials exhibited similar thermal behaviors,
and two main events were observed. The first event occurred at a temperature of 43.81 ◦C,
marking the initiation of hydrogen bond breaking and consequent water loss, which
continued until its evaporation at around 100 ◦C. Additionally, other volatile components
were lost during this process. The second event, observed at 289.62 ◦C, involved the
elimination of organic compounds such as carbohydrates, proteins, lipids, and fiber, which
continue degrading until reaching a temperature of 600 ◦C.
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Figure 3b shows the DSC analysis for both wall materials. For the yanapalta potato
starch, a glass transition temperature of 138.26 ◦C was found, while for the spray-dried
tara gum, the value was 157.70 ◦C. Both values are used as references to confirm the
encapsulation of the cores within the wall materials. The results in both materials are
consistent with the current literature, as primarily two events were observed related to
the thermal degradation of biomolecules, such as carbohydrates and complex organic
compounds [10,36]. DSC analysis offers valuable insights into phase transitions and
changes in the molecular structure of materials. The glass transition is a crucial feature
that can impact polymeric materials’ functional and encapsulation properties, holding
significance for their potential applications [37,43].

On the other hand, Figure 3c,d depict the thermal analysis of spray-dried ovine
and bovine erythrocytes, respectively. Two events were also observed at temperatures
of 42.13 and 312.48 ◦C. In the first case, water loss is initiated, while in the second case,
biopolymers are eliminated, ultimately resulting in the formation of ashes. The glass
transition temperature was determined to be 153.38 ◦C for ovine erythrocytes and 164.54 ◦C
for bovine erythrocytes. In summary, the results above provide a deeper understanding of
the physical properties and their thermal behavior, holding significance for their application
in various scientific and technological fields.

3.2. Characterization of the Microcapsules
3.2.1. Physical and Chemical Properties

Table 1 presents the physical and chemical properties of microcapsules obtained
from ovine and bovine erythrocytes in native potato starch and tara gum matrices. The
iron content varied between 1.54 and 2.02 mg of Fe/g, with similar contents observed in
microcapsules of guinea pig blood erythrocytes in native potato starch and tara gum (1.32 to
2.05 mg of Fe/g) [10] and higher contents than those of commercial bovine erythrocytes
microcapsules in maltodextrin (0.77 mg of Fe/g) [42]. Iron content in the microcapsules is
critical [14], particularly in food fortification [13]. Iron is essential for human health, as it
plays a fundamental role in oxygen transport, DNA synthesis, and immune function [44].
The encapsulation of iron within microcapsules can confer advantages in terms of stability
and bioavailability [10,42].

The percentage of total organic carbon ranged from 12.80% to 14.88%, with higher
proportions of the matrices used corresponding to greater TOC contents, as carbon atoms
constitute an essential part of the structure of biomolecules such as carbohydrates, proteins,
lipids, and fibers [35,45,46]. The percentage quantification of TOC contents confirms
the successful encapsulation of the cores within the matrices, which are rich in various
biopolymers [1,14,47,48].

The encapsulation efficiency ranged from 52.94% to 85.88%, while the yield fluctuated
between 50.55% and 63.40%. Encapsulation yields were similar to those reported for guinea
pig erythrocyte microcapsules (47.84% and 58.73%) [10] and ferrous sulfate microcapsules
(47.93% and 56.26%) [49]. On the other hand, the values exceeded those obtained in
commercial bovine erythrocyte microcapsules (39% and 47%) [42].

The properties studied, which are related to the shelf-life preservation of spray-dried
powders, were moisture content, ranging between 4.31% and 7.49%, and water activity,
oscillating between 0.36 and 0.43. Maintaining moisture content below 5% is recommended
for adequately preserving dry products, and in the case of water activity, values lower
than 0.6 are advised [50–54]. This way, the various reaction mechanisms that lead to food
deterioration are controlled. It was also observed that moisture content and water activity
decrease with increased temperature and a higher proportion of encapsulants [55,56].

Likewise, variations in luminosity were observed between 52.61 and 62.59, values
that increase as the proportion of matrices is increased. Regarding the color coordinate a*,
values ranging between 7.00 and 11.57 were identified, and it was noted that the powders
take on redder hues as the quantity of encapsulants is reduced. On the other hand, the color
coordinate b* exhibited variation in the range of 18.09 to 20.55. Additionally, significant



Polymers 2023, 15, 3985 10 of 19

differences were observed regarding the initial color, as evidenced by ∆E*ab values ranging
from 5.25 to 17.84. This is attributed to non-enzymatic browning and the caramelization of
carbohydrates at high temperatures [10,42].

Particle size was measured in isopropyl alcohol and using the laser diffraction tech-
nique. The values obtained ranged between 4.26 and 7.59 µm, higher than those reported
for microcapsules of guinea pig erythrocytes solubilized in water and measured via the
dynamic light scattering technique (817.1 and 1672.2 nm) [10]. This is attributed to the type
of dispersant and the method used, with the laser diffraction technique being the most
appropriate for measuring microcapsules obtained through spray drying [36,37]. On the
other hand, the ζ potential presented negative values ranging from −0.11 to −3.51 mV,
indicating a tendency to aggregate and precipitate due to the presence and nature of the
erythrocytes used [10].

Table 1. Physical and chemical properties of microcapsules.

Microcapsules O T1O T2O T3O T4O T5O T6O

Properties x ± SD * x ± SD * x ± SD * x ± SD * x ± SD * x ± SD *

Iron (mg/g) 1.99 ± 0.01 a 1.67 ± 0.01 b 1.34 ± 0.01 c 2.02 ± 0.01 d 1.87 ± 0.02 e 1.76 ± 0.02 f
TOC (%) 13.98 ± 0.01 a 14.50 ± 0.01 b 14.63 ± 0.05 b 13.78 ± 0.01 a 14.50 ± 0.03 b 14.56 ± 0.04 b
EE (%) 80.24 ± 0.21 a 66.03 ± 0.44 b 52.94 ± 0.11 c 78.72 ± 0.10 d 74.22 ± 0.73 e 69.86 ± 0.73 f

Yield (%) 53.69 ± 1.14 ab 50.55 ± 1.92 a 50.98 ± 1.91 a 56.99 ± 0.31 b 55.60 ± 0.57 ab 54.04 ± 1.46 ab
Moisture (%) 6.07 ± 0.02 a 5.07 ± 0.06 bc 4.52 ± 0.24 cd 5.27 ± 0.22 b 4.64 ± 0.12 cd 4.31 ± 0.08 e

Aw 0.43 ± 0.003 a 0.41 ± 0.004 b 0.38 ± 0.004 c 0.41 ± 0.001 b 0.40 ± 0.004 d 0.38 ± 0.002 c
L* 54.06 ± 0.02 a 55.05 ± 0.03 b 59.16 ± 0.11 c 55.95 ± 0.28 d 58.11 ± 0.22 e 60.05 ± 0.37 f
a* 11.34 ± 0.05 a 11.57 ± 0.01 a 9.63 ± 0.06 b 10.62 ± 0.18 c 10.06 ± 0.09 d 8.81 ± 0.17 e
b* 19.09 ± 0.07 a 20.55 ± 0.08 b 20.06 ± 0.06 c 18.59 ± 0.18 d 20.26 ± 0.07 bc 19.46 ± 0.17 e

∆E*ab 11.41 ± 0.30 a 12.68 ± 0.31 b 16.86 ± 0.18 c 13.30 ± 0.31 b 15.82 ± 0.25 d 17.84 ± 0.67 e
Particle size

(µm) 4.26 0.13 a 6.23 ± 0.05 b 6.73 ± 0.07 c 5.46 ± 0.06 d 5.60 ± 0.12 e 6.28 ± 0.10 f

ζ potential (mV) −0.11 ± 0.16 a −0.98 ± 0.23 b −2.76 ± 0.91 c −2.90 ± 0.70 d −3.43 ± 0.47 e −3.51 ± 0.73 f

Microcapsules V T1V T2V T3V T4V T5V T6V

Iron (mg/g) 1.88 ± 0.01 a 1.73 ± 0.01 b 1.54 ± 0.02 c 1.93 ± 0.02 d 1.77 ± 0.01 e 1.56 ± 0.01 f
TOC (%) 13.07 ± 0.02 a 13.39 ± 0.14 ab 13.97 ± 0.04 ab 12.80 ± 0.13 a 13.65 ± 0.02 ab 14.88 ± 0.09 b
EE (%) 83.95 ± 0.22 a 78.90 ± 0.14 b 69.54 ± 0.15 c 85.88 ± 0.12 d 77.12 ± 0.10 e 68.43 ± 0.82 f

Yield (%) 60.37 ± 1.11 a 55.38 ± 1.46 b 54.93 ± 0.50 b 63.40 ± 0.50 a 62.38 ± 1.40 a 61.88 ± 0.81 a
Moisture (%) 7.49 ± 0.01 a 7.27 ± 0.08 ab 7.19 ± 0.08 b 6.22 ± 0.02 c 5.80 ± 0.07 d 5.59 ± 0.01 d

Aw 0.43 ± 0.003 a 0.43 ± 0.002 a 0.40 ± 0.003 b 0.42 ± 0.002 a 0.42 ± 0.001 c 0.36 ± 0.001 d
L* 52.61 ± 0.08 a 55.99 ± 0.14 b 61.61 ± 0.05 c 54.66 ± 0.01 d 58.20 ± 0.26 e 62.59 ± 0.08 f
a* 11.32 ± 0.08 a 9.87 ± 0.07 b 7.17 ± 0.01 c 10.51 ± 0.02 d 9.05 ± 0.11 e 7.00 ± 0.05 c
b* 19.51 ± 0.07 a 19.91 ± 0.08 b 18.34 ± 0.04 c 19.54 ± 0.02 a 19.49 ± 0.10 a 18.09 ± 0.02 d

∆E*ab 5.25 ± 0.33 a 8.78 ± 0.29 b 15.17 ± 0.23 c 7.39 ± 0.24 d 11.17 ± 0.47 e 16.17 ± 0.31 f
Particle size

(µm) 5.52 ± 0.03 a 5.54 ± 0.02 b 7.34 ± 0.21 c 5.97 ± 0.11 d 6.92 ± 0.09 e 7.59 ± 0.15 f

ζ potential (mV) −0.30 ± 0.38 a −0.40 ± 0.05 b −1.46 ± 0.61 c −0.51 ± 0.12 d −1.10 ± 0.06 e −1.89 ± 0.16 f

Where x is the arithmetic mean and SD is the standard deviation. * Different letters indicate significant difference
per row evaluated through at 5% significance, for n = 3.

Figure 4 shows the principal component analysis (PCA) of the studied properties,
wherein it can be observed that microcapsules T1O, T2O, T4O, T50, T1V, T2V, T4V, and T5V
(in violet color) are associated with properties such as iron content, encapsulation efficiency,
encapsulation yield, humidity, water activity, and color parameters a* and b*. These
correlations suggest a potential interdependence among these properties, which could
influence the overall performance of the microcapsules. On the other hand, microcapsules
T3V and T6V (in orange color) are more linked to luminosity and particle size, indicating
that these microcapsules might possess unique optical and structural characteristics that
could influence their behavior, particularly in contexts involving light dispersion. In
contrast, microcapsules T3O and T6O (in green color) are more related to color variations
and total organic carbon.

The PCA analysis establishes relationships among complex variables, providing a
comprehensive overview of interactions between diverse properties [34]. This methodology
facilitates the identification of significant trends, thereby potentially aiding the design and
optimization of microcapsules with specific properties [10]. PCA is a valuable tool in
studying microcapsules, with potential applications within the food and pharmaceutical
industries [36].
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3.2.2. SEM-EDS Analysis

Figure 5 displays the SEM images of the microcapsules, revealing the formation of
irregular microparticles with diverse sizes and shapes, distinctive of the spray drying
process [48,57–62]. These microparticles exhibited varying dimensions and larger surface
openings when a 140 ◦C inlet air temperature was employed. This variability appears to be
influenced by feed characteristics and parameters governing the spray drying process. It is
plausible that this response is linked to solvent evaporation during the drying procedure,
which could have led to the contraction and loss of microcapsule sphericity [63]. The
temperature increase led to a faster drying rate and the subsequent emergence of pores in
the microcapsules [36]. Conversely, lower temperatures resulted in the creation of more
uniform particles. However, the presence of amorphous structures in the encapsulated
material is attributed to using tara gum as an encapsulating agent [10].

The results suggest that the larger size of some particles could be due to interactions
between the core and matrix during microencapsulation since incorporating the core within
the microcapsules may have modified the surface roughness. Iron in the microcapsules
may have promoted surface collapse instead of total core retention within them [10,64].

Previous studies report on the formation of large cracks on the microparticle surface,
attributing this phenomenon to the collapse of the polymeric gel network during spray
drying [65]. Likewise, irradiation with electron beams by SEM can cause surface rupture of
the microcapsules [66].
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Figure 5. SEM analysis. Where T1O, T2O, T3O, T4O, T5O and T6O are the ovine erythrocyte
microcapsules and T1V, T2V, T3V, T4V, T5V and T6V are the bovine erythrocyte microcapsules.

Surface chemical analysis of the microcapsules corroborated the existence of iron
in the microcapsules, observing that an increase in the inlet temperature increased the
amount of surface iron in the encapsulates, which varied between 0.1% and 0.3% (Table 2).
Furthermore, it was verified that this temperature increase was associated with a larger
particle size, potentially facilitating the encapsulation of a greater iron quantity. These
findings align with the data obtained through ICP OES in this research.

On the other hand, carbon, oxygen, and nitrogen were observed, which could be
attributed to biopolymers such as carbohydrates and proteins in the matrices and cores.
The presence of these elements is consistent with previous observations of spray-dried
erythrocyte microparticles [10,42]. The presence of sodium and chlorine was also observed
due to the erythrocyte extraction being carried out in a saline solution. In addition, the
presence of other chemical elements found in native potato starch, tara gum, and spray-
dried erythrocytes was detected [10].
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Table 2. Surface chemical analysis of microcapsules via EDS.

Element
Weight%

T1O T2O T3O T4O T5O T6O T1V T2V T3V T4V T5V T6V

C 46.1% 43.3% 39.8% 43.5% 41.2% 39.7% 41.6% 39.8% 41.7% 39.3% 39.1% 41.7%
O 25.8% 33.8% 37.7% 33.5% 35.7% 38.6% 24.1% 33.4% 35.1% 25.8% 37.0% 34.4%
N 12.3% 10.1% 9.8% 10.1% 9.1% 8.6% 7.7% 7.5% 5.8% 7.6% 7.8% 6.1%

Na 8.3% 7.0% 6.4% 6.2% 7.0% 6.7% 15.3% 9.6% 8.8% 14.5% 7.8% 9.4%
Cl 6.7% 4.9% 5.4% 6.0% 6.1% 5.3% 10.4% 8.9% 7.8% 11.9% 7.5% 7.3%
S 0.5% 0.6% 0.6% 0.3% 0.4% 0.7% 0.4% 0.3% 0.3% 0.4% 0.3% 0.4%

Fe 0.1% 0.1% 0.1% 0.2% 0.2% 0.2% 0.2% 0.2% 0.2% 0.3% 0.3% 0.3%
P 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
K 0.1% 0.1% 0.1% 0.1% 0.2% 0.1% 0.2% 0.2% 0.2% 0.1% 0.1% 0.3%

3.2.3. FTIR Analysis

The analysis was conducted to verify the successful microencapsulation of iron-rich
cores within the utilized matrices. To achieve this, an approved methodology for acquiring
and interpreting infrared spectra was followed [67]. Figure 6 displays the characteristic
spectra of the examined materials: in the case of native potato starch, tara gum, and erythro-
cytes, intense bands within the range of 3308–3394 cm−1 were identified, corresponding to
the stretching vibrations of the hydroxyl group. Wavenumbers with similar intensities were
detected in all microcapsules (3320 cm−1). Furthermore, a prominent vibrational stretching
band at 1079 cm−1 was observed in tara gum, indicative of a portion of the carboxylic acid
structure. This same band was also evident in all microcapsules (1085 cm−1) [68,69].

Likewise, additional spectral bands present in erythrocytes were also found in the
microcapsules. For instance, the wavenumber around 2960 cm−1, present in all micro-
capsules (2958 cm−1), corresponds to characteristic C-H stretching vibrations. Moreover,
spectral bands at 1536 and 1655 cm−1 were identified in erythrocytes, and these bands
were also observed in the encapsulated particles, with wavenumbers ranging from 1537 to
1656 cm−1, confirming the presence of amide functional groups I and II [42,49,70]. Bands
around 622 cm−1 correspond to the pyranose ring of tara gum, a feature in all microcap-
sules [69,71,72].
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The preceding results allow us to infer that the encapsulation process was successfully
conducted, as the outcomes closely resembled those reported by other researchers [42,49].
Additionally, an increase in temperature from 120 ◦C to 140 ◦C induced alterations in the
functional groups’ intensities [10,73].
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3.2.4. Thermal Analysis

The TG and DTA curves in Figure 7a,c were similar in all microcapsules. A first event
was observed between 30.51 ◦C and 43.02 ◦C, resulting in approximately 30% mass loss.
This mass loss can be attributed to the initiation of hydrogen bond breaking in water, which
continues until temperatures close to 100 ◦C [37,74]. A second event occurred between
266.43 ◦C and 304.81 ◦C, with a mass loss of around 90%. This pronounced degradation
rate around 300 ◦C can be attributed to the thermal decomposition of carbohydrates. After
reaching this temperature, the thermal depolymerization of biopolymers persists until
complete volatilization [37,74]. According to the obtained results, it can be appreciated that
the microcapsules exhibit excellent thermal stability, attributed to the use of native potato
starch and tara gum as coating materials [10].
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Figure 7. Thermal analysis: (a) DT and DTA curves in ovine erythrocyte microcapsules, (b) DSC
curves in ovine erythrocyte microcapsules, (c) DT and DTA curves in bovine erythrocyte microcap-
sules, and (d) DSC curves in bovine erythrocyte microcapsules. Where T1O, T2O, T3O, T4O, T5O and
T6O are the ovine erythrocyte microcapsules and T1V, T2V, T3V, T4V, T5V and T6V are the bovine
erythrocyte microcapsules.

The DSC thermograms of the microcapsules are presented in Figure 7b,d, where
endothermic peaks were identified at glass transition temperatures ranging from 135.44 ◦C
to 156.72 ◦C. These temperatures are similar to the glass transition temperatures of native
potato starch (138.26 ◦C) and tara gum (157.70 ◦C). The glass transition temperatures of the
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microcapsules were close to those of the used matrices. On the other hand, it is essential
to mention that glass transition temperatures lower than those of the matrices would
confirm the encapsulation of iron-rich erythrocyte cores [37]. These cores formed inclusive
complexes with the employed encapsulants [43].

3.3. Iron Release

Figure 8a,b display the iron release profile from microcapsules derived from ovine and
bovine erythrocytes. The outcomes indicate that, at 120 min, the spray-dried treatments T4O
and T4V at 140 ◦C exhibited the highest iron release values, reaching 93.13% and 92.31%,
respectively. It was demonstrated that an increase in the air temperature and a decrease in
the encapsulating quantity result in a more pronounced iron release over time. Likewise,
the other treatments also displayed considerable levels of iron release. This release is
essential in bioavailability in the small intestine, as only 1 to 2 mg of iron are absorbed in
this human body region, which is crucial for reducing the risk of anemia [13]. Thus, based
on the developed in vitro iron release, the most prominent treatments would be T4O and
T4V. The findings obtained in this study presented similarities with the results reported
in studies involving iron encapsulation in matrices such as native potato starch and tara
gum [10], potato starch and maltodextrin [75], chitosan and eudragit [76], eudraguard [77],
and dextrin [78].
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4. Conclusions

This study encapsulated a significant amount of heme iron extracted from ovine and
bovine erythrocytes at 20% (w/v). A blend of tara gum and native potato starch was
employed as a coating material at 5%, 10%, and 20% (w/v) concentrations. Encapsulation
was achieved through spray drying in an aqueous environment at 120 ◦C and 140 ◦C.
Consequently, elevated iron levels were achieved in erythrocytes and microcapsules, cou-
pled with substantial in vitro bioavailability for treatments T4O and T4V and suitable
physicochemical properties.

The particles exhibited micrometric dimensions and tended to aggregate in colloidal
solutions. SEM-EDS analysis confirmed the presence of iron on the surface of the micro-
capsules. In contrast, FTIR analysis assessed the incorporation of the iron core into the
polymeric matrix, substantiated by detecting functional groups within the microcapsules.
Thermal analysis was also conducted, confirming the encapsulation of the cores within the
matrices. In summary, the inlet temperature and the amount of coating material influenced
the studied properties. Lastly, the matrix combination proved novel, and these findings
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pave the way for utilizing cost-effective raw materials in food fortification and combatting
iron-deficiency anemia in developing nations.
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