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Abstract: Lithium–sulfur (Li-S) batteries are considered one of the most promising energy storage
systems due to their high theoretical capacity, high theoretical capacity density, and low cost. How-
ever, challenges such as poor conductivity of sulfur (S) elements in active materials, the “shuttle
effect” caused by lithium polysulfide, and the growth of lithium dendrites impede the commercial
development of Li-S batteries. As a crucial component of the battery, the separator plays a vital
role in mitigating the shuttle effect caused by polysulfide. Traditional polypropylene, polyethylene,
and polyimide separators are constrained by their inherent limitations, rendering them unsuitable
for direct application in lithium–sulfur batteries. Therefore, there is an urgent need for the devel-
opment of novel separators. This review summarizes the applications of different separator prepa-
ration methods and separator modification methods in lithium–sulfur batteries and analyzes their
electrochemical performance.

Keywords: lithium–sulfur batteries; shuttle effect; separator; separator modification

1. Introduction

With the rising demand for electric vehicles and portable electronic devices, it is
important to research and develop energy storage systems with high energy density, low
cost, and extended service life [1]. Traditional lithium batteries are widely used due to
their high working voltage, long cycle life, and good stability [2]. However, the high
production cost, theoretical specific capacity, and low energy density of the electrode
material make it difficult for traditional lithium batteries to meet the increasing market
scale [3]. Lithium-sulfur (Li-S) batteries are regarded as one of the energy storage systems
with great potential due to its low production cost, high theoretical specific capacity and
energy density, abundant S elements in nature, and low toxicity [4]. They are also facing
great challenges, such as the poor conductivity of S elements, the volume expansion of the
cathode material, and the shuttle effect caused by lithium polysulfide in the commercial
development of Li-S [5,6]. Solving the above problems is crucial for the commercialization
of lithium-sulfur batteries.

Li-S batteries are composed of an anode, a cathode, an electrolyte, and a separator,
as shown in Figure 1, which represents a schematic diagram of a typical Li-S battery, in
which the separator plays a key role in solving the shuttle effect of lithium polysulfide [7,8].
The shuttle effect occurs because lithium polysulfide is easily soluble in the electrolyte
and moves between the cathode and the anode, resulting in irreversible volume loss [9].
Therefore, studying a separator with excellent performance is very important in order to
solve the shuttle effect.
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Figure 1. Lithium–sulfur battery model separator. 

As shown in Figure 2a, the gray color in the histogram represents the number of pub-
lications (A), corresponding to the left axis. The orange histogram represents Publication 
B, and the quantity corresponds to the right axis. The number of publications on Li-S sep-
arators has increased year by year, and this shows that Li-S separators have been a re-
search hotspot in this field. 

At present, commercial Li-S separators mainly consist of PP and PE separators [10], 
which are widely used in Li-S due to their good chemical stability and good mechanical 
strength. However, this type of separator has a weak ability to inhibit the shuttle effect of 
polysulfides, poor affinity with electrolytes, and low porosity, resulting in poor battery 
performance, so this type of olefin separator is not well used in Li-S [11]. 

To suppress the shuttle effect in Li-S, it is necessary to study a new type of separator 
with good performance or to modify the original commercial separator. Figure 2b shows 
the main development history of lithium–sulfur batteries. In recent years, there has been 
a proliferation of comprehensive reviews on lithium–sulfur battery separators. However, 
these reviews tend to be confined to specific fabrication techniques such as electrospin-
ning, deposition methods, or filtration processes. In contrast, this study not only encom-
passes an overview of conventional methods for fabricating lithium–sulfur battery sepa-
rators and their applications in lithium–sulfur batteries, but also extends its scope to in-
clude composite fabrication processes and their potential applications in lithium–sulfur 
batteries. This paper reviews the lithium–sulfur battery separators prepared by different 
preparation or modification methods in recent years, which inhibit the shuttle effect of 
polysulfides and improve the electrochemical performance. Finally, future research direc-
tions involving lithium–sulfur batteries are analyzed, and the prospect of building high-
performance lithium–sulfur batteries is introduced. 

Figure 1. Lithium–sulfur battery model separator.

As shown in Figure 2a, the gray color in the histogram represents the number of publi-
cations (A), corresponding to the left axis. The orange histogram represents Publication
B, and the quantity corresponds to the right axis. The number of publications on Li-S
separators has increased year by year, and this shows that Li-S separators have been a
research hotspot in this field.

At present, commercial Li-S separators mainly consist of PP and PE separators [10],
which are widely used in Li-S due to their good chemical stability and good mechanical
strength. However, this type of separator has a weak ability to inhibit the shuttle effect
of polysulfides, poor affinity with electrolytes, and low porosity, resulting in poor battery
performance, so this type of olefin separator is not well used in Li-S [11].

To suppress the shuttle effect in Li-S, it is necessary to study a new type of separator
with good performance or to modify the original commercial separator. Figure 2b shows
the main development history of lithium–sulfur batteries. In recent years, there has been
a proliferation of comprehensive reviews on lithium–sulfur battery separators. However,
these reviews tend to be confined to specific fabrication techniques such as electrospinning,
deposition methods, or filtration processes. In contrast, this study not only encompasses
an overview of conventional methods for fabricating lithium–sulfur battery separators
and their applications in lithium–sulfur batteries, but also extends its scope to include
composite fabrication processes and their potential applications in lithium–sulfur batteries.
This paper reviews the lithium–sulfur battery separators prepared by different preparation
or modification methods in recent years, which inhibit the shuttle effect of polysulfides
and improve the electrochemical performance. Finally, future research directions involving
lithium–sulfur batteries are analyzed, and the prospect of building high-performance
lithium–sulfur batteries is introduced.
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Figure 2. Lithium–sulfur battery development history: (a) Publications A and B in the past decade 
by searching for “lithium–sulfur battery separator” and “lithium–sulfur battery” as “keywords” on 
the Google Scholar website. (b) The development history of lithium–sulfur batteries: (a) sulfur cath-
ode concept; (b) THF and toluene solvent; (c) LiClO4 salt; (d) DOL-based electrolyte; (e) DOL and 
DME solvents; (f) conductive polyaniline used as sulfur carrier; (g) LiNO3 additive; (h) mesoporous 
carbon/sulfur composites; (i) silicon nanowire anode; (j) small molecule sulfur cathode; (k) sulfur 
powder mixed with porous silica; (l) cathode nanoparticle structure; (m) semi-solid electrolyte; (n) 
nano carbon fiber network; (o) sulfur/carbon nanotube composite [12–16]. Reproduced with permis-
sion from the Particle & Particle Systems Characterization and Journal of Materials Chemistry A and 
Nano Research and Energy and Royal Society Of Chemistry. 

2. The Working Principle and Problems of Li-S 
2.1. Working Mechanism of Li-S 

The electrochemical reactions that occur in Li-S are different from traditional lithium 
batteries [17], and the redox reaction during the charging and discharging of Li-S involves 
the conversion between different valence ions of the S atom, making it more complex than 
traditional lithium-ion batteries [18,19]. Lithium–sulfur batteries generally consist of a 

Figure 2. Lithium–sulfur battery development history: (a) Publications A and B in the past decade
by searching for “lithium–sulfur battery separator” and “lithium–sulfur battery” as “keywords”
on the Google Scholar website. (b) The development history of lithium–sulfur batteries: (a) sulfur
cathode concept; (b) THF and toluene solvent; (c) LiClO4 salt; (d) DOL-based electrolyte; (e) DOL and
DME solvents; (f) conductive polyaniline used as sulfur carrier; (g) LiNO3 additive; (h) mesoporous
carbon/sulfur composites; (i) silicon nanowire anode; (j) small molecule sulfur cathode; (k) sulfur
powder mixed with porous silica; (l) cathode nanoparticle structure; (m) semi-solid electrolyte;
(n) nano carbon fiber network; (o) sulfur/carbon nanotube composite [12–16]. Reproduced with
permission from the Particle & Particle Systems Characterization and Journal of Materials Chemistry
A and Nano Research and Energy and Royal Society Of Chemistry.

2. The Working Principle and Problems of Li-S
2.1. Working Mechanism of Li-S

The electrochemical reactions that occur in Li-S are different from traditional lithium
batteries [17], and the redox reaction during the charging and discharging of Li-S involves
the conversion between different valence ions of the S atom, making it more complex
than traditional lithium-ion batteries [18,19]. Lithium–sulfur batteries generally consist
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of a lithium metal negative electrode, an organic liquid electrolyte, and a sulfur–carbon
composite positive electrode [20]. Taking a positive electrode material such as sulfur
elemental as an example, during discharge, the lithium metal of the anode is oxidized to
generate electrons and lithium ions, and the lithium ions diffuse to the cathode through
the electrolyte. At the same time, the electrons move to the sulfur element of the cathode
through the external circuit, the sulfur element is reduced to S2−, and S2− and Li+ generate
Li2S at the cathode [21]. During the discharge process, when the sulfur element in the
cathode reacts completely with the lithium ion, the total equation of the electrochemical
reaction is as follows:

S8 + 16Li+ + 16e− ↔ 8Li2S (1)

As shown in Figure 3a, the spatial structure of elemental sulfur is formed by eight
sulfur atoms connected by covalent bonding, so there are multiple cleavage and bonding
sites of S-S bonds in sulfur elements, resulting in more complex redox reactions in the
charging and discharging process of Li-S [20,22]. At present, there are many studies on the
S conversion of lithium–sulfur battery charging and discharging process [22,23]. According
to the measurement of the electrolyte mass spectrometry (LC/MS) of different charges and
discharges, the reduction reaction of elemental sulfur is carried out in multiple steps, and
there are a variety of different intermediate products, such as Li2S8, Li2S6, Li2S4, Li2S2,
Li2S2, and Li2S [24].

When discharging, the electrochemical reaction is as formulated (2)–(6) [17]:

S8 + 2e− + 2Li+ → Li2S8 (2)

3Li2S8 + 2e− + 2Li+ → 4Li2S6 (3)

2Li2S6 + 2e− + 2Li+ → 3Li2S4 (4)

Li2S4 + 2e− + 2Li+ → 2Li2S2 (5)

Li2S2 + 2e− + 2Li+ → 2Li2S (6)

As can be seen in Figure 3b, it can be seen from the discharge curve of the Li-S that
there are two discharge platforms in the discharge process [25]. The high discharge platform
is between 2.3~2.4 V; at this time, the S8 product is a variety of soluble long-chain lithium
polysulfide Li2Sx (4 ≤ x ≤ 8) [26]. The low discharge platform is between 1.8~2.1 V; at
this time, the corresponding long-chain lithium polysulfide Li2Sx (4 ≤ x ≤ 8) is further
reduced to short-chain lithium polysulfide Li2Sx (1 ≤ x ≤ 4) [27] (Wu et al. [28]). According
to experimental calculations, the utilization rate of the active material of the high discharge
platform is only 25%, and the theoretical capacity of the process is 418 mAh g−1. The active
material utilization rate of the low discharge platform is 75%, and the theoretical capacity
of the process is 1254 mAh g−1. At the low discharge platform, due to the growth of
lithium dendrites and phase transition processes, the reaction kinetics of this process slow
down, and the actual discharge-specific capacity of the battery is lower than the theoretical
capacity, so the actual specific capacity of the Li-S is lower than the theoretical specific
capacity throughout the entire discharge process [29–32].

When charging, there is only one noticeable platform of about 2.4 V [33]. Electrochem-
ical reactions can be described by Formulas (7) and (8):

2S2−
4 − 2e− → S2−

8 /S8 (7)

S2−
8 /S2−

6 − 2e−= S8 (8)



Polymers 2023, 15, 3955 5 of 31
Polymers 2023, 15, 3955 5 of 32 
 

 

 
Figure 3. (a) Schematic diagram of the spatial structure of elemental sulfur. (b) Red is the discharge 
curve of lithium-sulfur battery, showing the sulfur electrode utilization. 

2.2. The Existing Problems of Li-S 
2.2.1. Cathode 

Because sulfur resources are abundant, non-toxic, and non-polluting; the theoretical 
specific capacity is 1675 mAh g−1; and they have low prices and other advantages, sulfur 
was selected as the cathode material in Li-S batteries [34–36]. However, problems such as 
low conductivity, volume expansion during electrochemical reactions, and shuttle effect 
lead to low coulombic efficiency, and the actual specific capacity is much lower than the 
theoretical specific capacity, in addition to poor cycle stability [37], as shown in Figure 4. 
Among these, the shuttle effect [38,39] is the most important factor for the short cycle life 
and low specific capacity of Li-S. The solution to these problems is crucial for the commer-
cialization of Li-S. Wang et al. [40] synthesized sulfur particles coated with PEG surfac-
tants and wrapped them in carbon-black-decorated graphene oxide flakes in a simple as-
sembly process. The graphene–sulfur composite showed a relatively stable specific capac-
ity of about 600 mAh g−1 and attenuation of less than 15% in 100 cycles. Yang et al. [36] 
used boron-doped porous carbon material as the host material of the S cathode. B-doped 
carbon material exhibits higher conductivity than pure porous carbon. At 0.25 C, the S/B 
doped carbon cathode can provide a higher initial capacity of 1300 mAh g−1 compared to 
the cathode based on pure porous carbon. The cycle stability and rate capability are also 
improved. 

2.2.2. Separator 
As a vital part of Li-S, separators play a great role in the performance of Li-S [41]. 

During the charging and discharging process of lithium–sulfur batteries, the separator 
does not directly participate in the electrochemical reaction of mutual conversion between 
polysulfides [42]. However, the wettability, thermal stability, mechanical properties, po-
rosity, liquid absorption rate, and other properties of the separator affect the specific ca-
pacity and cycle life of the Li-S, as shown in Figure 4. As a separator for Li-S, it is not only 
necessary to maintain the advantages of wettability, thermal stability, mechanical proper-
ties, porosity, and liquid absorption rate [43], but also to effectively suppress the shuttle 
effect [44]. 

With the development of clean energy, traditional separators such as polypropylene, 
polyethylene, and polyimide are widely employed in lithium-ion batteries. However, due 

Figure 3. (a) Schematic diagram of the spatial structure of elemental sulfur. (b) Red is the discharge
curve of lithium-sulfur battery, showing the sulfur electrode utilization [28]. Reproduced with
permission from American Chemical Society.

2.2. The Existing Problems of Li-S
2.2.1. Cathode

Because sulfur resources are abundant, non-toxic, and non-polluting; the theoreti-
cal specific capacity is 1675 mAh g−1; and they have low prices and other advantages,
sulfur was selected as the cathode material in Li-S batteries [34–36]. However, problems
such as low conductivity, volume expansion during electrochemical reactions, and shuttle
effect lead to low coulombic efficiency, and the actual specific capacity is much lower
than the theoretical specific capacity, in addition to poor cycle stability [37], as shown in
Figure 4. Among these, the shuttle effect [38,39] is the most important factor for the short
cycle life and low specific capacity of Li-S. The solution to these problems is crucial for
the commercialization of Li-S. Wang et al. [40] synthesized sulfur particles coated with
PEG surfactants and wrapped them in carbon-black-decorated graphene oxide flakes in
a simple assembly process. The graphene–sulfur composite showed a relatively stable
specific capacity of about 600 mAh g−1 and attenuation of less than 15% in 100 cycles. Yang
et al. [36] used boron-doped porous carbon material as the host material of the S cathode.
B-doped carbon material exhibits higher conductivity than pure porous carbon. At
0.25 C, the S/B doped carbon cathode can provide a higher initial capacity of 1300 mAh
g−1 compared to the cathode based on pure porous carbon. The cycle stability and rate
capability are also improved.

2.2.2. Separator

As a vital part of Li-S, separators play a great role in the performance of Li-S [41].
During the charging and discharging process of lithium–sulfur batteries, the separator does
not directly participate in the electrochemical reaction of mutual conversion between poly-
sulfides [42]. However, the wettability, thermal stability, mechanical properties, porosity,
liquid absorption rate, and other properties of the separator affect the specific capacity and
cycle life of the Li-S, as shown in Figure 4. As a separator for Li-S, it is not only necessary
to maintain the advantages of wettability, thermal stability, mechanical properties, porosity,
and liquid absorption rate [43], but also to effectively suppress the shuttle effect [44].

With the development of clean energy, traditional separators such as polypropylene,
polyethylene, and polyimide are widely employed in lithium-ion batteries. However, due
to the distinct operational mechanisms of lithium-ion batteries and lithium–sulfur batteries,
these traditional separators present certain challenges when applied in lithium–sulfur
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battery systems. Primarily, the major issue lies in the inability of traditional separators to
impede the shuttle effect of polysulfides. Owing to the relatively large pores in conventional
separators, polysulfides can readily permeate, leading to diminished battery capacity
and low Coulombic efficiency. Secondarily, traditional polypropylene and polyethylene
separators exhibit inadequate resistance to high temperatures, posing safety risks under
elevated operating temperatures. Polyimide separators suffer from suboptimal mechanical
properties, rendering them susceptible to lithium dendrite penetration and associated
safety concerns.

2.2.3. Anode

The weight density is low, and the theoretical specific capacity is 3860 mAh g−1

higher [45]. Due to its low reduction potential [46,47] and other advantages, lithium metal
was chosen as the electrode material for Li-S. Metallic lithium is used as an anode in
Li-S [48] due to the growth of lithium dendrites [40,49–51]. Lithium dendrites easily pierce
the separator, resulting in potential safety hazards in the circuit. Lithium metal itself has
strong activity and can easily have side reactions with electrolytes, resulting in low battery
cycle life and other problems that limit the commercial development of Li-S, as shown in
Figure 4. At present, in response to the existing problems of anode lithium metal, a large
number of researchers focus on electrolyte additives and lithium anode surface to form a
protective film (artificial SEI film) [52–54] and explore several aspects of other materials
that can replace metal lithium anodes. To inhibit the growth of lithium dendrites on the
anodes of Li-S, Guo et al. [55] used VC-LiNO as an electrolyte additive and an efficiency of
lithium plating/stripping up to 100%, resulting in a uniform and stable SEI separator with
high ionic conductivity (Li et al. [56]). The artificial Li3PO4 SEI layer was prepared, which
effectively inhibited the growth of lithium dendrites and had good chemical stability (Jan
et al. [57]). Si-C and hard carbon anodes were prepared, which improved the cycle stability
of the battery. The Coulombic efficiency of more than one thousand cycles was higher than
99%, and the attenuation of each cycle capacity was only 0.08%.

2.2.4. Electrolyte

Electrolytes, as a pivotal constituent bridging the positive and negative electrodes,
wield substantial influence on the transport of lithium ions, thereby exerting a direct impact
on the performance of lithium–sulfur batteries. Electrolytes can be classified into two
categories: liquid electrolytes and solid electrolytes.

Presently, liquid electrolytes find extensive application in lithium–sulfur batteries,
primarily owing to their facile synthesis, high ionic conductivity, and favorable chemi-
cal stability. Nevertheless, liquid electrolytes are not without their challenges. Firstly,
at the positive electrode, liquid electrolytes tend to dissolve polysulfides, which subse-
quently diffuse through the electrolyte to the negative electrode, leading to diminished
Coulombic efficiency and corrosion of the lithium negative electrode. Secondly, liquid
electrolytes typically comprise flammable organic solvents, thus posing safety concerns
when exposed to elevated temperatures. In response to these issues associated with liquid
electrolytes, a substantial body of researchers is actively engaged in addressing these chal-
lenges. This includes the modification of electrolyte composition, the exploration of novel
multi-component solvents, and the incorporation of functional additives [58].

The application of solid-state electrolytes effectively mitigates the “shuttle effect”
caused by the dissolution of polysulfides while also eliminating flammable organic solvents,
thereby significantly enhancing the safety of lithium–sulfur batteries. However, current
lithium–sulfur batteries employing solid-state electrolytes still face challenges such as low
ionic conductivity and high interfacial impedance, which impede the further advancement
of solid-state electrolyte technology. To address these issues, ongoing research efforts
are predominantly focused on the development of novel functional materials and the
exploration of inorganic fillers as strategies to tackle these challenges.
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2.2.5. Binders

Binders, constituting an integral part of the sulfur cathode in lithium–sulfur batteries,
serve the crucial function of ensuring effective electrochemical contact among the conduc-
tive agent, sulfur, and current collector. Moreover, they mitigate volumetric variations of
active materials during cycling. Binders play a pivotal role in lithium–sulfur batteries, and
the commonly utilized types encompass polymeric, bio-based, and inorganic binders. Chal-
lenges regarding binders encompass inadequate mechanical properties and the detachment
of electrode materials during cycling, consequently leading to a diminished cycling lifespan
and reduced stability of the battery. In the future, bio-based binders exhibiting natural,
renewable, and superior adhesive properties hold substantial promise for advancement,
thus augmenting lithium–sulfur batteries [59].

2.2.6. Current Collector

Aluminum foil has found widespread application as a current collector for sulfur
cathodes. However, at elevated temperatures, aluminum and sulfur can undergo reactions,
which may pose safety concerns. Presently, the use of carbon-coated aluminum foil is
employed to mitigate direct contact between sulfur and aluminum foil, thereby enhancing
the safety of lithium–sulfur batteries. The presence of carbon coatings effectively improves
the adhesion between the active materials and the current collector, while simultaneously
enhancing electrical conductivity [60].
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3. Methods

With the development of science and technology, separator technology has also been
continuously developed and updated, and the methods of preparing polymer separators
have also been diversified. Different preparation methods can be selected according to
the material properties and separator application direction. The battery separator film is
closely related to the energy density, stability, and cycle life of the battery [62]. A battery
separator composed of nanofibers has the advantages of a large specific area and high
porosity [63], which has attracted close attention. There are many methods of separators, but
electrospinning [64], vacuum filtration [65], wet spinning [66], the coating method [67,68],
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the in situ growth method [69], and atomic layer deposition [70] are more commonly used
to prepare separators.

3.1. Electrospinning

Electrospinning is a novel technique for preparing nanofiber separators, the principle
of which is as follows:: under the action of a high-voltage electrostatic field, the polymer
forms a Taylor cone when it flows out of the needle, and a continuously charged jet is ejected
and deposited on the collector as nonwoven nanofibers [71]. The nanofibers prepared by
electrospinning can reach the nanometer diameter [64,72], and the prepared nanofiber
separator has the advantages of high porosity, large specific surface area, and small pore
size [73]. As shown in Figure 5, electrospinning technology has prepared a variety of
nanostructured fibers. The electrospinning method has received great attention in the field
of battery separators in recent years.
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3.2. Vacuum Filtration

The vacuum filtration method is a new method for preparing separators using the
interfacial composite method, which has the advantages of convenient operation, a simple
process, and no specific process equipment. Its working principle is that the film-forming
material is uniformly dispersed in the solvent, and then under vacuum filtration condi-
tions, the film-forming material is deposited on the substrate due to the flow function of
solvent molecules. The disadvantage is that due to the limitations of process conditions,
the structure of the produced nanofibers is uncontrollable and unsuitable for large-scale
mass production [74].

3.3. Wet Spinning

The nanofiber non-woven separator prepared by the wet laying method has high
porosity and good affinity with electrolytes [75]. The principle is that different polymer
fibers are used to separate matrix fibers and adhesive fibers, which are continuously
randomly laid on the screen belt after mixing in a water-soluble suspension, sent to a
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ventilation drying box to heat and soften the bonded fibers, and then calendered by a
heating drum to obtain a non-woven film [62]. The disadvantages are that the structure
and properties of the nanofibers prepared by this method are limited by the type and
composition of the polymer in the suspension, and the operation is more complicated [76].

3.4. Coating Method

The coating method is one of the most commonly used modification methods. A layer
of modified material is coated on one side of the separator by means of physical methods,
and polysulfides are adsorbed by the modified material to improve the shortcomings of the
separator. Because the coating method is simple to operate, relatively low in cost, can be
used for large-area separator modification, and is suitable for industrial production, the
coating method is widely used in the modification of lithium–sulfur battery separators.
However, the coating method has problems such as difficulty in accurately controlling the
thickness of the separator. The viscosity of the material has an impact on the coating effect,
and some polymer materials are not suitable for the preparation of the coating method.

3.5. In Situ Growth Method

The in situ growth method is a relatively novel method of separator modification. Com-
pared with other modification methods, this method can effectively generate a lightweight
barrier on one side of the separator and avoid excessive thickness of the separator; in
addition, the in situ growth method can achieve efficient use of materials, thereby reducing
costs. However, the current in situ growth method is still in the experimental research stage.
In addition, the modification process is relatively complicated, and it is difficult to achieve
mass production.

3.6. Atomic Layer Deposition (ALD)

Atomic layer deposition is a method in which substances can be plated on the surface
of the substrate, layer by layer, in the form of a single-atom film. It has similarities to
chemical vapor deposition [77]. Its working principle is a method in which a gas precursor
pulse alternately enters the reactor and chemically adsorbs and reacts on the deposition
matrix to form a deposition film. A typical ALD cycle consists of two self-limiting semi-
reactions [78], and it is this reaction property that allows the separator’s thickness to be
precisely controlled. However, the atomic layer deposition method has disadvantages such
as high requirements for reaction conditions, a complicated production process, expensive
equipment, and a slow deposition rate.

4. Application of Separators in Lithium–Sulfur Batteries

As is evident from the preceding discussion, the separator plays a crucial role in
influencing the electrochemical performance of lithium–sulfur batteries. In the subsequent
section, we will delve into the utilization of separators fabricated through various methods
within the context of lithium–sulfur batteries. The interlayer, being an integral component
of the separator, typically resides between the positive electrode and the separator. Its
exceptional attributes, such as the heightened surface area and excellent electronic conduc-
tivity, facilitate the diffusion of lithium ions and the conduction of electrons. Moreover,
we will expound upon the application of interlayers prepared via different techniques in
lithium–sulfur batteries.

4.1. Electrospinning
4.1.1. Separator

In Li-S, the separator is required to suppress the shuttle effect, good electrolyte wetta-
bility, and good ionic conductivity [79]. Nanofiber separators prepared using the electro-
spinning technique exhibit extremely fine fibers, with exceptionally high specific surface
areas. Additionally, these separators possess a notably high level of porosity, a feature inher-
ent to their unique fabrication process. Owing to their elevated specific surface areas and
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porosity, such separators can provide a greater quantity of electrolytes during the charge
and discharge processes of lithium–sulfur batteries. This augmentation of reaction sites
enhances electrochemical reactions. In recent years, numerous researchers have achieved
significant advancements by incorporating modified materials onto the fiber surface, aim-
ing to adsorb polysulfides and mitigate the shuttle effect, thereby improving the cyclic
lifespan and practical specific capacity of the batteries (Guo et al. [80]). A PAN film doped
with Al2O3 particles was prepared using the electrospinning method and studied as a
separator for Li-S. Figure 6 shows the preparation process of the separator and the excellent
electrochemical performance of the lithium–sulfur battery using the separator. It can be
seen from the figure that Al2O3 particles attached to the PAN nanofibers, and the separator
exhibited strong chemical interaction, which blocked polysulfides from passing through
the separator and inhibited the shuttle effect. The PAN/Al2O3 separator was thermally
stable at 200 ◦C. The lithium–sulfur battery with this separator exhibited low resistivity
(RSEI = 14.25 Ω, RCT = 7.32 Ω). Under a 200 mAg constant current charge and discharge,
the remaining capacity after 100 cycles was 639 mAh/g (compared with pure PAN and PP
separator batteries, which achieved only 380 mAh/g and 233 mAh/g), and the Coulombic
efficiency was 99.76%.
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SEM image shows Al2O3 distributed on the fiber. (d) EIS curve. (e) Cycle curve. (f) Charge−discharge
curve [80]. Reproduced with permission from the Electrochimica Acta.

In comparison to traditional PP separator separators, electrospun nanofiber separa-
tors have garnered considerable attention due to their exceptional specific surface areas
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and extensive porosity. They exhibit unparalleled advantages in terms of electrolyte ab-
sorption and ion transport, positioning them as a focal point in research for potential
battery separators.

4.1.2. Interlayer

A highly conductive electrospun nanofiber interlayer is introduced between the posi-
tive electrode and the separator to effectively improve the performance of lithium–sulfur
batteries. Electrospun carbon nanofibers, owing to their excellent electrical conductivity,
serve to reduce internal resistance within batteries, thus enhancing the rates of electron
and ion transport. Additionally, carbon nanofibers exhibit Van Der Waals interactions
with polysulfides, facilitating their adsorption. Guo et al. [81]. utilized electrospinning
technology to prepare a Ti4O7/C nanofiber (TCNF) interlayer. The incorporation of carbon
nanofibers in this interlayer offered several advantages, including a large specific surface
area and high electrical conductivity, which significantly enhanced the conversion and
electron transfer of polysulfides. Additionally, Ti4O7 formed strong chemical bonds with
polysulfides, effectively mitigating their shuttle effect. Figure 7 illustrates the separator
preparation process and demonstrates the exceptional electrochemical performance of the
lithium–sulfur battery utilizing this separator. TEM and SEM images reveal the random
distribution of Ti4O7 particles on the fiber’s surface, leading to substantial inhibition of
polysulfide shuttling and a notable improvement in the electrochemical performance of
lithium–sulfur batteries. At a discharge rate of 0.2 C, the initial specific capacity reached an
impressive 1304 mAh g−1, with the capacity maintained at 945 mAh g−1 after 100 cycles.
During high-rate cycling tests at 5 C, the initial specific capacity was 610 mAh g−1, and
even after 300 cycles, the capacity remained at approximately 400 mAh g−1, with a minimal
capacity decay of only 0.11% per cycle. Furthermore, in the impedance diagram, the TCNFs
interlayer exhibited the lowest AC impedance, measuring only 40 Ω (that of the comparison
sample was 138 Ω).
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Introducing an electrospun nanofiber interlayer with high electrical conductivity and
surface area between the positive electrode and separator serves not only to enhance the
conductivity of the integrated electrode, but also to significantly suppress the migration of
polysulfides towards the negative electrode side. As shown in Table 1, the application of
electrospinning separators and interlayers in lithium–sulfur batteries is demonstrated.

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries.

Main
Materials

Initial Capacity
(mAh g−1)

Capacity Remaining
(mAh g−1) Decay Rate SEM

Figure Reference

Separator

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26%

Polymers 2023, 15, 3955 13 of 32 
 

 

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries. 

 Main Materials 
Initial Capacity 

(mAh g−1) 
Capacity Remaining 

(mAh g−1) 
Decay 
Rate 

SEM 
Figure Reference 

Separator 

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26% 

 

[82] 

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05% 

 

[83] 

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) --- 

 

[84] 

PMIA 1222.25 745.7 (0.5 C, 800 cycles) --- 

 

[85] 

Interlayer 

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059% 

 

[86] 

TCNF 1279 
798 (2.5 A g−1, 1000 cy-

cles) 
0.057% 

 

[87] 

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) --- 

 

[88] 

4.2. Vacuum Filtration 
4.2.1. Separator 

According to Yigeng et al. [89], They modified the PP separator through suction fil-
tration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant ad-
sorption sites and contributed to the solidification of polysulfides. The process of polysul-
fide solidification entails immobilizing polysulfide species onto the cathode material or 
the cathode-proximate regions of the separator. This strategic immobilization serves as an 
effective countermeasure against the undesirable migration of polysulfides towards the 

[82]

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05%

Polymers 2023, 15, 3955 13 of 32 
 

 

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries. 

 Main Materials 
Initial Capacity 

(mAh g−1) 
Capacity Remaining 

(mAh g−1) 
Decay 
Rate 

SEM 
Figure Reference 

Separator 

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26% 

 

[82] 

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05% 

 

[83] 

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) --- 

 

[84] 

PMIA 1222.25 745.7 (0.5 C, 800 cycles) --- 

 

[85] 

Interlayer 

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059% 

 

[86] 

TCNF 1279 
798 (2.5 A g−1, 1000 cy-

cles) 
0.057% 

 

[87] 

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) --- 

 

[88] 

4.2. Vacuum Filtration 
4.2.1. Separator 

According to Yigeng et al. [89], They modified the PP separator through suction fil-
tration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant ad-
sorption sites and contributed to the solidification of polysulfides. The process of polysul-
fide solidification entails immobilizing polysulfide species onto the cathode material or 
the cathode-proximate regions of the separator. This strategic immobilization serves as an 
effective countermeasure against the undesirable migration of polysulfides towards the 

[83]

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) ---

Polymers 2023, 15, 3955 13 of 32 
 

 

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries. 

 Main Materials 
Initial Capacity 

(mAh g−1) 
Capacity Remaining 

(mAh g−1) 
Decay 
Rate 

SEM 
Figure Reference 

Separator 

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26% 

 

[82] 

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05% 

 

[83] 

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) --- 

 

[84] 

PMIA 1222.25 745.7 (0.5 C, 800 cycles) --- 

 

[85] 

Interlayer 

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059% 

 

[86] 

TCNF 1279 
798 (2.5 A g−1, 1000 cy-

cles) 
0.057% 

 

[87] 

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) --- 

 

[88] 

4.2. Vacuum Filtration 
4.2.1. Separator 

According to Yigeng et al. [89], They modified the PP separator through suction fil-
tration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant ad-
sorption sites and contributed to the solidification of polysulfides. The process of polysul-
fide solidification entails immobilizing polysulfide species onto the cathode material or 
the cathode-proximate regions of the separator. This strategic immobilization serves as an 
effective countermeasure against the undesirable migration of polysulfides towards the 

[84]

PMIA 1222.25 745.7 (0.5 C, 800 cycles) ---

Polymers 2023, 15, 3955 13 of 32 
 

 

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries. 

 Main Materials 
Initial Capacity 

(mAh g−1) 
Capacity Remaining 

(mAh g−1) 
Decay 
Rate 

SEM 
Figure Reference 

Separator 

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26% 

 

[82] 

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05% 

 

[83] 

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) --- 

 

[84] 

PMIA 1222.25 745.7 (0.5 C, 800 cycles) --- 

 

[85] 

Interlayer 

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059% 

 

[86] 

TCNF 1279 
798 (2.5 A g−1, 1000 cy-

cles) 
0.057% 

 

[87] 

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) --- 

 

[88] 

4.2. Vacuum Filtration 
4.2.1. Separator 

According to Yigeng et al. [89], They modified the PP separator through suction fil-
tration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant ad-
sorption sites and contributed to the solidification of polysulfides. The process of polysul-
fide solidification entails immobilizing polysulfide species onto the cathode material or 
the cathode-proximate regions of the separator. This strategic immobilization serves as an 
effective countermeasure against the undesirable migration of polysulfides towards the 

[85]

Interlayer

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059%

Polymers 2023, 15, 3955 13 of 32 
 

 

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries. 

 Main Materials 
Initial Capacity 

(mAh g−1) 
Capacity Remaining 

(mAh g−1) 
Decay 
Rate 

SEM 
Figure Reference 

Separator 

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26% 

 

[82] 

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05% 

 

[83] 

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) --- 

 

[84] 

PMIA 1222.25 745.7 (0.5 C, 800 cycles) --- 

 

[85] 

Interlayer 

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059% 

 

[86] 

TCNF 1279 
798 (2.5 A g−1, 1000 cy-

cles) 
0.057% 

 

[87] 

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) --- 

 

[88] 

4.2. Vacuum Filtration 
4.2.1. Separator 

According to Yigeng et al. [89], They modified the PP separator through suction fil-
tration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant ad-
sorption sites and contributed to the solidification of polysulfides. The process of polysul-
fide solidification entails immobilizing polysulfide species onto the cathode material or 
the cathode-proximate regions of the separator. This strategic immobilization serves as an 
effective countermeasure against the undesirable migration of polysulfides towards the 

[86]

TCNF 1279 798 (2.5 A g−1, 1000
cycles)

0.057%

Polymers 2023, 15, 3955 13 of 32 
 

 

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries. 

 Main Materials 
Initial Capacity 

(mAh g−1) 
Capacity Remaining 

(mAh g−1) 
Decay 
Rate 

SEM 
Figure Reference 

Separator 

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26% 

 

[82] 

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05% 

 

[83] 

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) --- 

 

[84] 

PMIA 1222.25 745.7 (0.5 C, 800 cycles) --- 

 

[85] 

Interlayer 

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059% 

 

[86] 

TCNF 1279 
798 (2.5 A g−1, 1000 cy-

cles) 
0.057% 

 

[87] 

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) --- 

 

[88] 

4.2. Vacuum Filtration 
4.2.1. Separator 

According to Yigeng et al. [89], They modified the PP separator through suction fil-
tration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant ad-
sorption sites and contributed to the solidification of polysulfides. The process of polysul-
fide solidification entails immobilizing polysulfide species onto the cathode material or 
the cathode-proximate regions of the separator. This strategic immobilization serves as an 
effective countermeasure against the undesirable migration of polysulfides towards the 

[87]

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) ---

Polymers 2023, 15, 3955 13 of 32 
 

 

Table 1. Applications of electrospun separators and interlayers in lithium–sulfur batteries. 

 Main Materials 
Initial Capacity 

(mAh g−1) 
Capacity Remaining 

(mAh g−1) 
Decay 
Rate 

SEM 
Figure Reference 

Separator 

PVDF/PSSLi 955 466 (0.5 C, 200 cycles) 0.26% 

 

[82] 

PVDF/MOF 1324.2 551 (2 C, 700 cycles) 0.05% 

 

[83] 

PI/MC 1602.3 905.5 (0.2 C, 100 cycles) --- 

 

[84] 

PMIA 1222.25 745.7 (0.5 C, 800 cycles) --- 

 

[85] 

Interlayer 

TMN@CNF 947 390 (2 C, 1000 cycles) 0.059% 

 

[86] 

TCNF 1279 
798 (2.5 A g−1, 1000 cy-

cles) 
0.057% 

 

[87] 

CoSe@NC 1317 804.7 (0.1 C, 100 cycles) --- 

 

[88] 

4.2. Vacuum Filtration 
4.2.1. Separator 

According to Yigeng et al. [89], They modified the PP separator through suction fil-
tration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant ad-
sorption sites and contributed to the solidification of polysulfides. The process of polysul-
fide solidification entails immobilizing polysulfide species onto the cathode material or 
the cathode-proximate regions of the separator. This strategic immobilization serves as an 
effective countermeasure against the undesirable migration of polysulfides towards the 

[88]



Polymers 2023, 15, 3955 13 of 31

4.2. Vacuum Filtration
4.2.1. Separator

According to Yigeng et al. [89], They modified the PP separator through suction
filtration, a depositing a layer of g-C3N4 composite on one side of it. It had abundant
adsorption sites and contributed to the solidification of polysulfides. The process of
polysulfide solidification entails immobilizing polysulfide species onto the cathode material
or the cathode-proximate regions of the separator. This strategic immobilization serves as
an effective countermeasure against the undesirable migration of polysulfides towards the
anode, thereby mitigating capacity fade and consequentially augmenting the performance
characteristics of lithium–sulfur batteries. As shown in Figure 8, the schematic diagram
of the suction filter system is shown, and SEM revealed that the PP separator has large
pores, that polysulfides are easy to pass through, and that the modified g-C3N4 separator
could not see the large pores of PP. Through electrochemical impedance analysis (EIS), after
cycling, it was seen that the modified g-C3N4 separator had a small impedance. When
the discharge current was restored to 0.2 C, the reversible capacity could be restored to
830 mAh g−1, indicating that the electrochemical stability of the separator after modification
had been significantly enhanced. It can be seen from the cycle performance chart that at
0.2 C, the initial discharge-specific capacity was 990 mAh g−1; after 200 cycles, the discharge-
specific capacity was 829 mAh g−1, and the capacity retention rate was 83.7%.
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The vacuum filtration method provides the advantages of high porosity, consistency,
controllability, and cost-effectiveness for the preparation of lithium–sulfur battery separators.

4.2.2. Interlayer

Feng et al. [90] prepared a 2D NiCo MOF/CNT as the middle layer of a lithium–
sulfur battery and filtered it onto PP through vacuum filtration. As shown in Figure 9,
the thickness of 2D NiCo MOF/CNT was only a few nanometers, and the CNT built
a conductive network to enhance electronic conductivity while serving as a physical
barrier to prevent polysulfide migration. The 2D NiCo MOF/CNT improved the catalytic
performance due to abundant and accessible active sites. The lithium–sulfur battery using
2D NiCo MOF/CNT interlayer had an initial discharge-specific capacity of 1132.7 mAh g−1

at 0.5 C, and it maintained 709.1 mAh/g-1 after 300 cycles, showing good cycle stability
and rate performance.
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Whether for the preparation of separators or interlayers, using vacuum filtration
provides the advantages of high porosity, consistency, controllability, and cost-effectiveness.
Shown in Table 2 is the application of the separator and interlayer prepared by the vacuum
filtration method in lithium–sulfur batteries.
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Table 2. Applications of vacuum filtration separators and interlayers in lithium–sulfur batteries.

Main Materials Initial Capacity
(mAh g−1)

Capacity Remaining
(mAh g−1) Decay Rate SEM

Figure Reference
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per cycle). Zhang et al. [103]. prepared the PMB-SNWs interlayer through a wet process.
The interlayer was applied in lithium–sulfur batteries and exhibited good electrochemical
performance. At 2 C, the initial discharge-specific capacity was 877 mAh g−1; it maintained
782 mAh g−1 after 850 cycles, and the decay rate per cycle was as low as 0.013%.

4.4. Coating Method
4.4.1. Separator

Polar metal oxide titanium dioxide (TiO2) exhibits a strong chemical interaction with
polysulfides, making it widely applicable in the field of lithium–sulfur batteries. This is
attributed to the ability of oxygen atoms on the surface of TiO2 to form chemical bonds with
sulfur atoms present in polysulfides, facilitating the effective adsorption of polysulfides.
Additionally, the high electronegativity of the TiO2 surface enables it to counteract the
shuttle effect of polysulfides through a charge repulsion mechanism. Gao et al. [57] coated
the PP separator with a layer of titanium dioxide, modified multi-walled carbon nanotube
composites (TiO2@SCNT/PP separator), and applied the separator to Li-S, and the data
showed that the performance of the separator and the pre-modification period greatly
improved. In Figure 10, the battery’s schematic diagram and the SEM images illustrate the
separator preparation process for blocking polysulfides. The SCNTs are intertwined to form
a conductive framework that enhances electron transport. TiO2 particles are embedded in
SCNT, and have a strong chemical adsorption effect which can inhibit the shuttle effect. By
comparing the color changes of polysulfides, it was also shown that the PP separator coated
with TiO2@SCNT composites had a good adsorption effect on polysulfides. Electrochemical
performance is an important measure of the battery, and this separator was assembled
in the battery. The data show that the performance was best when the coating thickness
was 200, denoted as TiO2@SCNT-200/PP, at 0.5 C. The initial discharge specific capacity
of the composite separator was 1103.9 mAh g−1 (compared to PP separator 218.5 mAh
g−1); after 200 cycles, the capacity ratio was 848.0 mAh g−1 (compared to PP separator is
172.2 mAh g−1); and after 900 cycles, it maintained 446.8 mAh g−1. The capacity decay per
cycle was only 0.066%. The electrochemical performance was greatly improved compared
to the PP separator.

4.4.2. Interlayer

Wang et al. [104] prepared the NC-Co interlayer using a coating method. The inter-
mediate layer effectively inhibited the shuttling of polysulfides. As shown in Figure 11, at
1 C, the first discharge-specific capacity of the lithium–sulfur battery using the interlayer
was 1216.9 mAh g−1, and it maintained 660.3 mAh g−1 after 250 cycles. The Coulombic
efficiency remained above 99% during the cycle. After 100 cycles, the surface SEM of
the negative lithium metal showed that the lithium negative electrode with the interlayer
had few surface cracks, while the lithium metal without the interlayer had obvious cracks,
indicating that the use of the interlayer can significantly inhibit the corrosion of the negative
metal lithium.

The coating method can provide structural uniformity, controllability, multiple material
options, and cost-effectiveness. These characteristics are very beneficial for the preparation
of lithium–sulfur battery separators and interlayers. Shown in Table 3 is the application of
separators and interlayers prepared using the coating method in lithium–sulfur batteries.
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Table 3. Applications of separators and interlayers prepared using the coating method in lithium–
sulfur batteries.

Main Materials Initial Capacity
(mAh g−1)

Capacity Remaining
(mAh g−1) Decay Rate SEM

Figure Reference

Separator

Al2O3/PP 967 593.4 (0.5 C, 50 cycles) 0.13%

Polymers 2023, 15, 3955 19 of 32 
 

 

Table 3. Applications of separators and interlayers prepared using the coating method in lithium–
sulfur batteries. 

 Main Materials Initial Capacity 
(mAh g−1) 

Capacity Remaining 
(mAh g−1) 

Decay 
Rate 

SEM 
Figure Reference 

Separator 

Al2O3/PP 967 593.4 (0.5 C, 50 cycles) 0.13% 

 

[105] 

Zr-MOF@CNT/PP 1157 545 (1 C, 500 cycles) 0.067% 

 

[106] 

ZIF-67/PP 1341 761 (0.2 C, 300 cycles) 0.14% 

 

[107] 

RP/PP 1287 729.6 (1 C, 500 cycles) 0.109% 

 

[108] 

Interlayer 

CFF 1346.9 1076.6 (0.1 C, 100 cycles) --- 

 

[109] 

OMNC 994.4 587.6 (0.5 C, 100 cycles) --- 

 

[110] 

4.5. In Situ Growth Method 
4.5.1. Separator 

Lu et al. [111] modified a PP separator via in situ growth. On the side of the PP sep-
arator, a layer of polar hydrated sulfate CoSO4·4H2O material (CS/PP separator) was 
grown in situ, and the cobalt sulfate hydrate had strong polarity and catalytic properties, 
which can effectively adsorb polysulfides. As shown in Figure 12, in the preparation flow 
chart, it can be seen by scanning electron microscopy that the surface of the separator was 
attached to a layer similar to the shape of a sea urchin, the single sea urchin was assembled 
from the nanoneedles of several microns, and the separator exhibited good mechanical 
stability. The data show that when the material reaction time was 6 h, the separator 

[105]

Zr-MOF@CNT/PP 1157 545 (1 C, 500 cycles) 0.067%

Polymers 2023, 15, 3955 19 of 32 
 

 

Table 3. Applications of separators and interlayers prepared using the coating method in lithium–
sulfur batteries. 

 Main Materials Initial Capacity 
(mAh g−1) 

Capacity Remaining 
(mAh g−1) 

Decay 
Rate 

SEM 
Figure Reference 

Separator 

Al2O3/PP 967 593.4 (0.5 C, 50 cycles) 0.13% 

 

[105] 

Zr-MOF@CNT/PP 1157 545 (1 C, 500 cycles) 0.067% 

 

[106] 

ZIF-67/PP 1341 761 (0.2 C, 300 cycles) 0.14% 

 

[107] 

RP/PP 1287 729.6 (1 C, 500 cycles) 0.109% 

 

[108] 

Interlayer 

CFF 1346.9 1076.6 (0.1 C, 100 cycles) --- 

 

[109] 

OMNC 994.4 587.6 (0.5 C, 100 cycles) --- 

 

[110] 

4.5. In Situ Growth Method 
4.5.1. Separator 

Lu et al. [111] modified a PP separator via in situ growth. On the side of the PP sep-
arator, a layer of polar hydrated sulfate CoSO4·4H2O material (CS/PP separator) was 
grown in situ, and the cobalt sulfate hydrate had strong polarity and catalytic properties, 
which can effectively adsorb polysulfides. As shown in Figure 12, in the preparation flow 
chart, it can be seen by scanning electron microscopy that the surface of the separator was 
attached to a layer similar to the shape of a sea urchin, the single sea urchin was assembled 
from the nanoneedles of several microns, and the separator exhibited good mechanical 
stability. The data show that when the material reaction time was 6 h, the separator 

[106]

ZIF-67/PP 1341 761 (0.2 C, 300 cycles) 0.14%

Polymers 2023, 15, 3955 19 of 32 
 

 

Table 3. Applications of separators and interlayers prepared using the coating method in lithium–
sulfur batteries. 

 Main Materials Initial Capacity 
(mAh g−1) 

Capacity Remaining 
(mAh g−1) 

Decay 
Rate 

SEM 
Figure Reference 

Separator 

Al2O3/PP 967 593.4 (0.5 C, 50 cycles) 0.13% 

 

[105] 

Zr-MOF@CNT/PP 1157 545 (1 C, 500 cycles) 0.067% 

 

[106] 

ZIF-67/PP 1341 761 (0.2 C, 300 cycles) 0.14% 

 

[107] 

RP/PP 1287 729.6 (1 C, 500 cycles) 0.109% 

 

[108] 

Interlayer 

CFF 1346.9 1076.6 (0.1 C, 100 cycles) --- 

 

[109] 

OMNC 994.4 587.6 (0.5 C, 100 cycles) --- 

 

[110] 

4.5. In Situ Growth Method 
4.5.1. Separator 

Lu et al. [111] modified a PP separator via in situ growth. On the side of the PP sep-
arator, a layer of polar hydrated sulfate CoSO4·4H2O material (CS/PP separator) was 
grown in situ, and the cobalt sulfate hydrate had strong polarity and catalytic properties, 
which can effectively adsorb polysulfides. As shown in Figure 12, in the preparation flow 
chart, it can be seen by scanning electron microscopy that the surface of the separator was 
attached to a layer similar to the shape of a sea urchin, the single sea urchin was assembled 
from the nanoneedles of several microns, and the separator exhibited good mechanical 
stability. The data show that when the material reaction time was 6 h, the separator 

[107]

RP/PP 1287 729.6 (1 C, 500 cycles) 0.109%

Polymers 2023, 15, 3955 19 of 32 
 

 

Table 3. Applications of separators and interlayers prepared using the coating method in lithium–
sulfur batteries. 

 Main Materials Initial Capacity 
(mAh g−1) 

Capacity Remaining 
(mAh g−1) 

Decay 
Rate 

SEM 
Figure Reference 

Separator 

Al2O3/PP 967 593.4 (0.5 C, 50 cycles) 0.13% 

 

[105] 

Zr-MOF@CNT/PP 1157 545 (1 C, 500 cycles) 0.067% 

 

[106] 

ZIF-67/PP 1341 761 (0.2 C, 300 cycles) 0.14% 

 

[107] 

RP/PP 1287 729.6 (1 C, 500 cycles) 0.109% 

 

[108] 

Interlayer 

CFF 1346.9 1076.6 (0.1 C, 100 cycles) --- 

 

[109] 

OMNC 994.4 587.6 (0.5 C, 100 cycles) --- 

 

[110] 

4.5. In Situ Growth Method 
4.5.1. Separator 

Lu et al. [111] modified a PP separator via in situ growth. On the side of the PP sep-
arator, a layer of polar hydrated sulfate CoSO4·4H2O material (CS/PP separator) was 
grown in situ, and the cobalt sulfate hydrate had strong polarity and catalytic properties, 
which can effectively adsorb polysulfides. As shown in Figure 12, in the preparation flow 
chart, it can be seen by scanning electron microscopy that the surface of the separator was 
attached to a layer similar to the shape of a sea urchin, the single sea urchin was assembled 
from the nanoneedles of several microns, and the separator exhibited good mechanical 
stability. The data show that when the material reaction time was 6 h, the separator 

[108]

Interlayer

CFF 1346.9 1076.6 (0.1 C, 100 cycles) ---

Polymers 2023, 15, 3955 19 of 32 
 

 

Table 3. Applications of separators and interlayers prepared using the coating method in lithium–
sulfur batteries. 

 Main Materials Initial Capacity 
(mAh g−1) 

Capacity Remaining 
(mAh g−1) 

Decay 
Rate 

SEM 
Figure Reference 

Separator 

Al2O3/PP 967 593.4 (0.5 C, 50 cycles) 0.13% 

 

[105] 

Zr-MOF@CNT/PP 1157 545 (1 C, 500 cycles) 0.067% 

 

[106] 

ZIF-67/PP 1341 761 (0.2 C, 300 cycles) 0.14% 

 

[107] 

RP/PP 1287 729.6 (1 C, 500 cycles) 0.109% 

 

[108] 

Interlayer 

CFF 1346.9 1076.6 (0.1 C, 100 cycles) --- 

 

[109] 

OMNC 994.4 587.6 (0.5 C, 100 cycles) --- 

 

[110] 

4.5. In Situ Growth Method 
4.5.1. Separator 

Lu et al. [111] modified a PP separator via in situ growth. On the side of the PP sep-
arator, a layer of polar hydrated sulfate CoSO4·4H2O material (CS/PP separator) was 
grown in situ, and the cobalt sulfate hydrate had strong polarity and catalytic properties, 
which can effectively adsorb polysulfides. As shown in Figure 12, in the preparation flow 
chart, it can be seen by scanning electron microscopy that the surface of the separator was 
attached to a layer similar to the shape of a sea urchin, the single sea urchin was assembled 
from the nanoneedles of several microns, and the separator exhibited good mechanical 
stability. The data show that when the material reaction time was 6 h, the separator 

[109]

OMNC 994.4 587.6 (0.5 C, 100 cycles) ---

Polymers 2023, 15, 3955 19 of 32 
 

 

Table 3. Applications of separators and interlayers prepared using the coating method in lithium–
sulfur batteries. 

 Main Materials Initial Capacity 
(mAh g−1) 

Capacity Remaining 
(mAh g−1) 

Decay 
Rate 

SEM 
Figure Reference 

Separator 

Al2O3/PP 967 593.4 (0.5 C, 50 cycles) 0.13% 

 

[105] 

Zr-MOF@CNT/PP 1157 545 (1 C, 500 cycles) 0.067% 

 

[106] 

ZIF-67/PP 1341 761 (0.2 C, 300 cycles) 0.14% 

 

[107] 

RP/PP 1287 729.6 (1 C, 500 cycles) 0.109% 

 

[108] 

Interlayer 

CFF 1346.9 1076.6 (0.1 C, 100 cycles) --- 

 

[109] 

OMNC 994.4 587.6 (0.5 C, 100 cycles) --- 

 

[110] 

4.5. In Situ Growth Method 
4.5.1. Separator 

Lu et al. [111] modified a PP separator via in situ growth. On the side of the PP sep-
arator, a layer of polar hydrated sulfate CoSO4·4H2O material (CS/PP separator) was 
grown in situ, and the cobalt sulfate hydrate had strong polarity and catalytic properties, 
which can effectively adsorb polysulfides. As shown in Figure 12, in the preparation flow 
chart, it can be seen by scanning electron microscopy that the surface of the separator was 
attached to a layer similar to the shape of a sea urchin, the single sea urchin was assembled 
from the nanoneedles of several microns, and the separator exhibited good mechanical 
stability. The data show that when the material reaction time was 6 h, the separator 

[110]

4.5. In Situ Growth Method
4.5.1. Separator

Lu et al. [111] modified a PP separator via in situ growth. On the side of the PP
separator, a layer of polar hydrated sulfate CoSO4·4H2O material (CS/PP separator) was
grown in situ, and the cobalt sulfate hydrate had strong polarity and catalytic properties,
which can effectively adsorb polysulfides. As shown in Figure 12, in the preparation flow
chart, it can be seen by scanning electron microscopy that the surface of the separator was
attached to a layer similar to the shape of a sea urchin, the single sea urchin was assembled
from the nanoneedles of several microns, and the separator exhibited good mechanical
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stability. The data show that when the material reaction time was 6 h, the separator showed
the best performance, which was denoted as CS/PP-6. At 1 C, the initial specific capacity
of the modified separator reached as high as 807.7 mAh g−1. After 500 cycles, it still
maintained 504.6 mAh g−1 (compared to 208.7 mAh g−1 for the PP separator), and the
Coulombic efficiency reached as high as 97%. When the discharge current was restored
to 0.1 C, the reversible capacity was 1308.6 mAh g−1, indicating that the lithium–sulfur
battery using the separator had good reversibility and good electrochemical performance.
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batteries: (a) preparation flow chart, (b) scanning electron microscopy diagram, (c) charge and
discharge curve, and (d) cycle curve [111]. Reproduced with permission from the Journal of Alloys
and Compounds.

4.5.2. Interlayer

Li et al. [112] prepared the ZIF/CNFs interlayer via the situ growth method. As
shown in Figure 13, the interlayer had an obvious effect of inhibiting polysulfide shuttling.
According to SEM and TEM images, ZIF-64 particles were distributed on the fiber, and
due to the special binding site of ZIF-64, it inhibited the shuttling of polysulfides during
circulation. At 1 C, it exhibited a high discharge-specific capacity of 1334 mAh/g, which
remained at 569 mAh/g after 300 cycles.

The in-situ growth method has high controllability and nanoscale pore structure in the
preparation of lithium–sulfur battery separators and interlayers, which can significantly
improve battery performance. As shown in Table 4, the application of separators and
interlayers prepared by the situ growth method in lithium–sulfur batteries.
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Figure 13. Application of Interlayer Prepared by Original Growth Method in Lithium–sulfur Batteries:
(a) SEM image of ZIF/CNFs, (b) TEM image of ZIF/CNFs, (c) Rate performance, (d) After 300 cycles
at 0.5C [112]. Reproduced with permission from the Journal of Energy Chemistry.

Table 4. Applications of the situ growth method separators and interlayers in lithium–sulfur batteries.

Main Materials Initial Capacity
(mAh g−1)

Capacity Remaining
(mAh g−1) Decay Rate SEM

Figure Reference

Separator

TA-Co/PP 1182 549.9 (2 C, 500 cycles) 0.065%
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Table 4. Cont.

Main Materials Initial Capacity
(mAh g−1)

Capacity Remaining
(mAh g−1) Decay Rate SEM

Figure Reference

Interlayer

MIL-101/CNT 816 628 (1 C, 500 cycles) 0.046%
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4.6. Atomic Layer Deposition
4.6.1. Separator

At present, owing to the distinctive attributes of the Atomic Layer Deposition (ALD)
fabrication process, there is a scarcity of literature that directly employs ALD for the
modification of polypropylene (PP) separators. Usually, people use methods such as
cooperating with other preparation processes (coating, suction filtration, etc.) to modify
the separator. Details are shown in Section 4.7.1.

4.6.2. Interlayer

Lin et al. [70]. prepared the CNT@SACo interlayer by atomic layer deposition and
applied it to lithium–sulfur batteries. Figure 14 shows the preparation process flow chart.
From the experimental results, the CNT@SACo interlayer exhibits catalytic activity cat-
alyzes the conversion of polysulfides, and inhibits the shuttling of polysulfides. The
lithium–sulfur battery with the CNT@SACo interlayer exhibited a high discharge specific
capacity of 880 mAh/g at 1 C, and maintained a capacity of 595 mAh/g after 500 cycles,
with a capacity decay rate of 0.064% per cycle.

The Atomic Layer Deposition method has highly precise film control and uniform ma-
terial distribution in the preparation of the middle layer of lithium–sulfur batteries, which
helps improve battery performance. As shown in Table 5, the application of interlayers
prepared by Atomic Layer Deposition (ALD) in lithium–sulfur batteries.
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Figure 14. Application of Interlayer Prepared by Atomic Layer Deposition in Lithium–sulfur Batteries:
(a) Schematic illustration of the preparation process of the CNT@SACo interlayer by the ALD method,
(b) TEM of CNT@SACo, (c) high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) image of CNT@SACo [70]. Reproduced with permission from the ACS Applied
Energy Materials.

Table 5. Applications of Atomic layer deposition (ALD) separators and interlayers in lithium–sulfur
batteries.

Main Materials Initial Capacity
(mAh g−1)

Capacity Remaining
(mAh g−1)

Decay
Rate

SEM
Figure Reference

Interlayer

ALD-ZnO 998 846 (0.2 C,100 cycles) ---
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4.7. Composite Process
4.7.1. Separator

Ding et al. [119] prepared multi-walled carbon nanotubes @titanium dioxide quan-
tum dots (MWCNTs@TiO2) modified PP separators using atomic layer deposition (ALD).
Figure 15 shows a flow chart of the preparation process. It can be seen from scanning elec-
tron microscopy that the initial PP separator had a large pore size, and the MWCNTs@TiO2
was intertwined after modification. The porosity increased and the pore size was improved,
effectively preventing soluble polysulfides from shuttling into the anode through the sep-
arator. The electrochemical data of the cell showed that the Coulombic efficiency and
cycle stability of Li-S cells were improved. At 0.5 C, the capacity decay of Li-S using this
separator was reduced to 0.072% per cycle.
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tively reduce interface resistance. MoS2 can strongly adsorb the Li2Sx due to interactions 
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Figure 15. Application of a separator prepared by the composite process in lithium–sulfur batteries:
(a) schematic diagram of preparation, (b) PP separator SEM, (c) MWCNTs@TiO2/PP separator SEM,
(d) MWCNTs@TiO2/PP separator profile SEM, and (e) cycle curve [119]. Reproduced with permission
from the Electrochimica Acta.

4.7.2. Interlayer

Sang-Hyun Moon et al. [120] used a combination of electrospinning and vacuum
filtration to prepare a 1T-MoS2/CNF intermediate layer and applied it to lithium–sulfur
batteries. As shown in Figure 16, carbon nanofibers have strong conductivity and can effec-
tively reduce interface resistance. MoS2 can strongly adsorb the Li2Sx due to interactions of
S-S and metal-S bonds, preventing the dissolution of Li-polysulfide in a liquid electrolyte.
When the interlayer is applied to lithium–sulfur batteries, it exhibits good electrochemical
performance. After 500 cycles at 1 C, the capacity retention rate was 73% under 1C. The
initial specific capacity reached as high as 480 mAh g−1.
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5. Conclusions and Outlook

In recent years, with the rising demand for new energy, it has become important to
develop an energy storage system with high energy density, low cost, and a long cycle
life. Traditional lithium batteries have a high cost and low energy density, which makes it
difficult for them to meet the huge market demand. Li-S batteries are regarded as one of the
most promising energy storage systems due to their high theoretical specific capacity and
low cost. Li-S batteries also have some urgent problems to solve, such as poor conductivity
of S, the expansion of the positive electrode volume during the electrochemical reaction,
and the most important problem, the shuttle effect caused by polysulfides. As an important
component of lithium–sulfur batteries, separators are very important in suppressing the
shuttle effect of polysulfides.

From the perspective of separator preparation, the research mainly focuses on the
preparation of new separator materials and the modification of traditional separators. Due
to their high porosity and liquid absorption rates, electrospinning technology can effectively
enhance the actual discharge-specific capacity of lithium–sulfur batteries. However, the
electrospun fiber separator tends to have a relatively large thickness and low mechanical
strength. In this field, future advancements can be made by starting at the raw material level
to develop high-performance electrospun nanofibers that exhibit excellent strength and
temperature resistance. For instance, the PI fiber demonstrates exceptional temperature
resistance, along with favorable mechanical properties and other new electrospinning
separation materials, including PAN, polyvinyl chloride (PVC), PVDF, and polyethylene
oxide (PEO) separators.

Lithium–sulfur batteries have undergone significant progress; however, most research
is still based on cylindrical cell designs. The real operational environment for pouch-
type cells is more demanding due to their lower sulfur active material content, making
it challenging to achieve high energy density. Additionally, the fabrication processes for
modified separators and interlayers are currently not scalable and come with higher costs.
Through the optimization of separator structures and the exploration of new materials,
there is potential to further enhance the electrochemical performance of lithium–sulfur
batteries while reducing the costs. Some perspectives regarding the future of lithium–sulfur
battery separators in terms of structural design and material selection are listed as follows:
(1) ion-selective separators: This type of separator can block the shuttling of polysulfides
while allowing for the passage of lithium ions. Implementing ion-selective separators
holds the promise of improving Coulombic efficiency and battery cycle life. (2) Multilayer
structure separators: Multilayer separators composed of layers with different properties
can achieve more precise control over the shuttling of polysulfides while providing higher
ion transport rates. (3) Porous separators: Porous separators with high porosity can accom-
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modate more electrolytes, contributing to improved electrical conductivity and polysulfide
adsorption capability in lithium–sulfur batteries. Researchers are exploring various pore
sizes and pore structures to optimize battery performance. (4) Metal–organic framework
(MOF) materials: MOFs, known for their large surface areas and porous structures, have
found applications in lithium–sulfur battery separators due to their exceptional ability to
adsorb polysulfides. (5) Biobased materials: Biodegradable materials, with their natural re-
sources, renewability, and environmental friendliness, hold potential for use in eco-friendly
batteries. (6) Two-dimensional materials: Two-dimensional materials such as graphene
have been investigated for use in battery separators due to their excellent conductivity
and mechanical strength, which could enhance battery performance. These innovative
structural designs and material selections are expected to drive the commercialization of
lithium–sulfur batteries in the future, playing a crucial role in energy storage systems.
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