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Abstract: Large bone defects are clinically challenging, with up to 15% of these requiring surgical
intervention due to non-union. Bone grafts (autographs or allografts) can be used but they have many
limitations, meaning that polymer-based bone tissue engineered scaffolds (tissue engineering) are a
more promising solution. Clinical translation of scaffolds is still limited but this could be improved by
exploring the whole design space using virtual tools such as mechanobiological modeling. In tissue
engineering, a significant research effort has been expended on materials and manufacturing but
relatively little has been focused on shape. Most scaffolds use regular pore architecture throughout,
leaving custom or irregular pore architecture designs unexplored. The aim of this paper is to introduce
a virtual design environment for scaffold development and to illustrate its potential by exploring
the relationship of pore architecture to bone tissue formation. A virtual design framework has
been created utilizing a mechanical stress finite element (FE) model coupled with a cell behavior
agent-based model to investigate the mechanobiological relationships of scaffold shape and bone
tissue formation. A case study showed that modifying pore architecture from regular to irregular
enabled between 17 and 33% more bone formation within the 4–16-week time periods analyzed. This
work shows that shape, specifically pore architecture, is as important as other design parameters
such as material and manufacturing for improving the function of bone tissue scaffold implants. It is
recommended that future research be conducted to both optimize irregular pore architectures and to
explore the potential extension of the concept of shape modification beyond mechanical stress to look
at other factors present in the body.

Keywords: virtual design; tissue engineering; pore architecture; scaffold shape; cell behavior;
mechanobiological modeling

1. Introduction

Globally, approximately forty million large bone defects occur every year, and 5–15%
of all fractures result in non-union or impaired healing [1]. However, large bone fracture
treatment remains clinically challenging due to the requirements of cell differentiation,
migration, and proliferation to facilitate healing. The most common treatment used in
such cases is autologous bone grafting, which has several drawbacks, including the limited
sources of bone graft tissue available and the need for further surgery [2]. The use of
biomaterials, particularly in 3D-printed bone tissue engineered scaffolds, is now more
commonly considered as an alternative to the use of bone grafts with human tissue [3,4].

Despite the positive outcomes observed with 3D-printed bone tissue engineered
scaffolds [5], there are barriers to implementing the new bone tissue scaffolds developed in
research laboratories for use in clinical purposes. Some of these confluence factors have been
reported by Hollister [6], such as (1) the need for a more comprehensive understanding of
scaffolding materials and design specifications; (2) the demand for a deeper comprehension
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of material deterioration in therapeutically relevant applications, particularly in relation to
regulatory requirements; (3) the need to incorporate computational design techniques and
manufacturing processes more effectively; and (4) the necessity of increased participation of
the scaffold’s end users, namely users, in the design process in order to encourage surgical
acceptance and application of biodegradable scaffolds [6]. The findings of Hollister [6]
are related to the design processes of material selection, computer-aided design, and
manufacture and user-centered design. So, improving 3D-printed bone tissue engineered
scaffold design will enable better translation of these technologies into clinical practice.
Since bone healing involves both mechanical and biological processes, determining the best
design performance of bone tissue scaffolds is challenging. For instance, increasing the
pore size of the scaffold may enhance the biological aspect, while dramatically weakening
the scaffold’s stiffness and strength [7].

The functional design of components is well researched in engineering, and the
relationships between function, shape, material, and manufacturing have been explained
by Ashby et al. [8]. Wagoner Johnson et al. [9] and Shimojo et al. [10] drew out key
requirements for 3D-printed bone tissue engineered scaffolds, which from now on we will
refer to as ‘scaffolds’. In their work, they highlight the importance of biocompatibility,
biodegradability, pore morphology, porosity, chemical properties, mechanical function, and
processability. Furthermore, modifying environmental factors, such as changing mechanical
stress with fixation [11], use of biochemicals using growth factors [12], and more recently,
electrical field changes through stimulation [13], can also improve implant function [6].
Finally, many of these scaffolds would not have been created without the advances seen in
additive manufacturing techniques, for example 3D printing [14], phase separation [15],
two-step bulk polymerization [16], and solvent casting/particulate leaching [17]. Figure 1
is adapted from engineering design principles [8], and shows how implant function is
directly affected by material, shape, and environmental factors, and indirectly affected by
manufacturing through shape and material.
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Design involves many stages, but the most commonly employed in tissue engineering
is experimental feasibility. Pre-clinical and clinical studies which investigate the effect of
scaffold design are commonly expensive and require a lot of time to investigate the bone
regeneration process; for example, the mainstream in vitro cell test methodology generally
takes 7 to 28 days [18,19], at least one month to run, and may take a further month to
run tests and analysis. However, it is suggested that in silico approaches could enable
exploration of a much wider range of scaffold design parameters and reduce time and
monetary costs, as well as overcome ethical challenges by allowing the rapid identifica-
tion of an optimal design. The currently investigated experimental methods are mainly
implemented based on a trial-and-error approach [20]; this contrasts with most other engi-
neering and medical components, which usually begin with design and virtual prototyping
rather than practical experiments. Scaffolds do not replace the native bone during the
regeneration process, instead providing an appropriate environment in mechanical and
biological terms for the bone to regenerate. Currently, tissue engineered bone implant
technologies are designed through a physical prototype method and practical experiments
in vitro and in vivo. It is suggested that predictive healing computer models, i.e., virtual
prototypes, may thus be developed that account for the cellular activities such as migration,
proliferation, and differentiation, and support such regeneration, pre-operative schemes
for customized bone scaffold designs that might encourage the greatest formation of bone
during the regeneration process. Conducting a search on the research papers in the area of
tissue engineering using the search terms of ‘scaffold material’ and ‘scaffold shape’ gives
40,651 articles and 7381 articles, respectively. However, from Figure 1, it is clear that shape
(or scaffold geometry and architecture) is equally able to affect bone tissue implant function
as material, yet there appears to be nearly six times less research in this area. This suggests
that focusing research effort on scaffold shape and the use of in silico approaches could
make additional functional gains and facilitate better bone regeneration.

Experimental studies have looked at different bone tissue scaffold implant archi-
tectures to observe their impacts on the bone regeneration process; such investigations
have considered pore size [21–24], pore gradient [25], pore shape [26], and scaffold mate-
rial [27,28], all of which at least partially impact the bone generation process. However,
there are still some contradictory conclusions, such as the fact that while one study reported
the minimum pore size allowing good oxygen diffusion to be 100 µm [29], other studies
found good bone formation with scaffolds with pore sizes of around 25 µm [30]. Tissue
engineered bone implant technologies are largely focusing on material innovations and
regular architectures with microstructures that have interconnected porosity of around
300–800 µm pore size [21–23,30–38].

Previous researchers have employed methods to create mechanobiological (governing)
rules to predict bone formation during bone healing [39–43]. Other validated in silico
studies have used computer models based on these rules to investigate the bone regen-
eration process within scaffolds [44,45]. Previous in silico approaches have investigated
various design parameters related to the long-term bone regeneration process, including
assessing scaffold pore sizes [31], optimizing time-dependent mechanobiology-based topol-
ogy for the design of tissue scaffolds [46], and developing a unique dual-porous scaffold
(coarse and fine pores) and two models with controlled cubic pore sizes [47]. However,
they have only investigated regular pore architectures, potentially due to the complexity
of irregular architectures and the lack of experimental data on implemented irregular
pore structure. The FE method provides a way to assess the stress and strain of scaffold
architectures subjected to in vivo loading conditions, which when linked to agent-based
models, can show such stimuli acting on the regenerating tissue [48]. It is suggested that
using a virtual prototyping design framework to prototype implants, including both mate-
rial and shape, in addition to other environmental factors (mechanical loading, electrical
currents, biochemical environment), could create a tool to optimize implants for better
bone regeneration.
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Previous studies have indicated that considerable research efforts have been focused
on material but relatively little on scaffold shape, evidenced by most scaffolds using a
regular pore architecture throughout. Hence, the existing knowledge deficit regarding
the relationship between material and shape can potentially be addressed by employing
computational methods to assess the architectural characteristics of bone tissue engineer-
ing scaffolds. This approach would facilitate an initial wide exploration of designs in a
virtual environment and the use of computational optimization, allowing researchers to
concentrate their efforts on more promising design solutions, thereby minimizing the need
for costly and time-consuming in vitro and in vivo experiments. This study proposes a
virtual design framework to enable the development of scaffolds. It then introduces a
multi-scale computer model that utilizes mechanobiological relationships to assess the
impact of scaffold form on the process of bone regeneration, specifically pore architecture
in this case study. The data from an experimental investigation conducted in vivo have
been utilized to compare and validate the predictions made by the model. The investi-
gation of scaffold pore gradients, both regular and irregular, has been conducted. This
paper aims to demonstrate how different scaffold shape concepts (specifically scaffold
architecture) can be evaluated as a virtual prototype to create more optimal bone tissue
scaffolds. This study provides evidence that the architecture of scaffolds, particularly
those with irregular scaffold pore gradients, has a significant impact on the functionality
of scaffolds, leading to improved bone regeneration processes. The multi-scale model,
which has been validated using in vivo data [49], has demonstrated its capacity to evaluate
various scaffold architectures. As a result, it has promise for the evaluation and support of
pre-clinical investigations.

2. Materials and Methods
2.1. Virtual Design Framework

A virtual design framework is proposed that will take input parameters of bone
defect shape, biomechanical loading, and cell conditions and use these to simulate bone
scaffold implant performance over time. Figure 2 shows the steps within the virtual design
framework. The software is available for download in the Supplementary Materials and an
explanation of how to use the code is given in Appendix A. Specifically, inputs will consist
of proposed implant shape (defect geometry and scaffold architecture), biomechanical
loads exerted on the bone and implant (e.g., compressive load, bending moments, or other
boundary conditions), and cell conditions (cell type, number and location, factors for
scaffold material, and human subject metabolism). The mechanical stress environment
is then evaluated using a FE model of the bone, fixation, callus, and bone tissue scaffold
implant. The output of strain and hydrostatic stress on the bone tissue scaffold implant is
then used in an agent-based model, which will calculate cell differentiation, cell migration,
cell multiplication, and tissue formation (granulation, cartilage, bone, or tissue absorption)
for that particular point in time. These outputs, including the structural and geometry of
the new tissue formed, will then be inputted back into the model to enable calculation of
the bone scaffold performance for the next time period. These steps are repeated to enable a
time-dependent model of bone healing to be generated to evaluate the bone tissue scaffold
in the virtual environment.
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2.1.1. FE Model

Within this study, a linear elastic FE model was constructed to evaluate the principal
strain and hydrostatic stress of the bone scaffold implant. The FE model was developed
using Abaqus/CAE 2022 (Simulia, Johnston, RI, USA). The minimal principal strains and
hydrostatic stresses are calculated and used as inputs for a mechanobiological regulation
model based on Claes et al. [39], as shown in Equation (1), in the agent-based model
discussed in Section 2.1.2.

Bone scaffold implant shape is case specific, but the parts of the model are common to
all cases, and consist of bone, fixation, callus, and bone scaffold implant. The callus was
assumed to be a homogeneous, linear elastic tissue (granulation tissue–amorphous solid)
both occupying the bone scaffold implant’s pores during the initial phase of healing and
surrounding the bone defect.

Material properties for the FE model were taken from the literature [49–55] and are
shown in Table 1.

Table 1. Material properties used in the mechanobiological computer model [49–55].

Material Young’s Modulus (MPa) Poisson’s Ratio

Granulation tissue 0.2 0.167

Fibrous tissue 2 0.167

Cartilage 10 0.3

Cortical bone 8000 0.3

Bone marrow 2 0.167

HA-PELGA scaffold 350 0.3

Polyether-ether-ketone (PEEK) fixation 3800 0.36
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2.1.2. Agent-Based Model (Python Model)

Python programming language was used to create an agent-based model. Outputs of
strain and hydrostatic stress from the FE model are used as some of the inputs for this agent-
based model. The code will then define and simulate a callus part with a 50 µm spaced,
three-dimensional grid. Every point in the lattice structure will be occupied by a single
type of cell (mesenchymal stem cells (MSCs), fibroblasts, chondrocytes, or osteoblasts). The
callus was initially filled with granulation tissue and MSCs were produced from the bone
marrow cavity and the periosteum, which has been found to be rich with MSCs [56,57].
A share of 30% of the bone marrow cavity and the periosteum simulated points were
hypothesized initially to be seeded with MSCs [58]. The bone regeneration model was
then run iteratively to simulate tissue formation over a time period. A latency period of
7 days was implemented, which has been found to be the optimal period, after which the
activity of the cells was hugely reduced [48]. Baseline rates of proliferation, apoptosis,
differentiation, and MSC migration speed were used in previous in silico approaches, as
shown in Table 2. Due to the lack of the biological activities in large bone defects and
because the focus of this study is more on shape rather than material, the after-latency
period cell activities of proliferation and differentiation rates mimicked the rates of an
empty defect bone healing of a previously validated in silico model; see Table 2.

Cellular activity, specifically the differentiation procedure, follows the mechanobiolog-
ical rules (S) proposed by Claes et al. [39] and the bone resorption area [59]; in turn, this is
based on the hydrostatic stress and minimal principal strain, as given in Equation (1):

S = S(γ, p) =
γ

a
+

p
b

(1)

where γ is the minimal principal strain and p is the hydrostatic stress, a = 0.0375, b =
0.003 mm/s [60].

MSCs migrate randomly in six possible agent spaces and this process is repeated
every iteration in 7 jumps to achieve a MSC migration velocity of 30 µm/h [61]; see
Table 2. Proliferation of cells occurs randomly in six possible positions, only if these
positions are not occupied by another cell phonotype. The differentiation of MSCs into
fibroblasts, chondrocytes, and osteoblasts is determined using the mechanobiological theory
aforementioned in Equation (1) based on hydrostatic stress and minimal principal strain.
Every agent in the lattice is occupied by only one cell phenotype. The apoptosis process
occurs for all tissue types at different rates [62]; see Table 2. New tissue formation material
properties are updated after every three iterations to the corresponding element in the
callus part in FE model.

The FE model is updated with the new material properties with the new tissue for-
mation (see Table 2) of each element in accordance with the mechanobiological regulation
theory described in Equation (1) with an interactive update model. This update occurs
every three iterations after calculating the average of every model element over the previ-
ous three iterations. Every iteration represents one day of recovery; see Figure 2. This is to
reduce the computational cost, and its effect was negligible in the simulation predictions.

Table 2. Cellular activities including proliferation, apoptosis, differentiation, and migration rates per
day [44,61,62].

Proliferation Rate per Day Apoptosis Rate
per Day Differentiation Rate per Day Migration

Speed (µm/h)
Baseline After Latency Period Baseline After Latency Period

Stem Cells 0.3 0.12 0.05 0.3 0.06 30

Fibroblast 0.275 0.11 0.05 - - -

Chondrocyte 0.1 0.04 0.1 - - -

Osteoblast 0.15 0.06 0.16 - - -
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2.2. Model Validation
2.2.1. Experimental Data from the Literature

In order to validate our model, experimental data were utilized from the literature,
specifically in vivo experiments on the femurs of rodents [49]. Within the article, a 5 mm
bone defect was cut in rats, and a PEEK fixation plate was placed facially with four screws,
two of which were placed adjacent to the bone defect on both sides, and the other two were
inserted into the extremities of the PEEK fixation [49]. They used a HA-PELGA scaffold
as the bone implant in their study with a 3 mm diameter and a 3 mm length. The model
simulated the natural bone growth by using previously validated models’ cellular activities’
rates, including migration speed, differentiation, apoptosis, and proliferation rates, as
shown in Table 2 of Section 2.1.2.

2.2.2. Virtual Design Framework Set Up

The bone, fixation, scaffold, and boundary conditions from the literature [49] were
replicated in the virtual design framework.

Material properties of all the models utilized in this study were characterized as linear
elastic materials, with their respective Young’s modulus and Poisson’s ratio values provided
in Table 1.

The geometry of the FE model is shown in Figure 3. The scaffold geometry was
constructed based on the CAD illustration used in the experimental study from the litera-
ture [49]; the filament cross section was 0.4 mm and pore size was 0.8 mm; see Figure 3.
The callus geometry was estimated based on the histology of the graft-guided bone data,
using a Boolean method similar to that described in Section 2.1.1; see Figure 3. Our in
silico study incorporates seven components, namely bone fixation, two cortical bones, two
bone marrow parts, a scaffold, and a callus part. The length of the defect measured 5 mm.
The bone fixation procedure involved securing a rectangular cube measuring 9 mm in
length and 2 mm in width. Four screws were utilized, each possessing identical cylindrical
geometries with a diameter of 0.5 mm and a length of 3.5 mm. The two cortical bones were
observed to be structurally intact and exhibited a tube-like geometry, encompassing the
two bone marrows. The bone marrows possessed a diameter of 2 mm and a length of 3 mm,
while the cortical bones themselves had a thickness of 0.5 mm. The callus section of an arc
geometry was designed with the intention of replicating the histological illustrations in the
experimental study. Ultimately, this section will be removed from the scaffold utilized in the
study [49]. The dimensions of the callus arc were measured to be 9 mm in length and 5 mm
in diameter, with an overlap observed with the geometries of the cortical bone. The outer
callus arc geometry remains consistent across all validations (Section 2.2) and investigated
cases studies (Section 2.3). However, the inner geometry subtraction is contingent upon the
specific scaffold geometry employed in each respective case.

Mesh design was implemented through an investigation of mesh sensitivity to predict
the accuracy of the simulation, with the choice of mesh size optimizing the threshold
between the results and computing efficiency. The converged mesh designs were 0.8 mm
and 0.08 mm for the callus and scaffold, respectively. All the parts of FE model were
meshed using linear quadratic tetrahedral elements of type C3D10. The bone fixation mesh
size was 0.2 mm. Cortical bone and bone marrow mesh sizes were 0.42 mm and 0.35 mm,
respectively.

Boundary conditions of the model were established assuming that the callus region
and the pores of the scaffold were initially filled with granulation tissue. MSCs were then
placed on both sides of the bone defect, specifically on the periosteum and within the bone
marrow cavities. Previous studies have demonstrated that these areas are abundant in
MSCs [56,57,62]. The implementation of biomechanical loading was based on an experi-
mental study conducted on the femur bone of rats during gait [63]. A 17.7 N compression
load was applied on the cortical bone on the proximal side [62], which is equivalent to six
times bodyweight, simulating peak loading during gait [63]; the weight of the rat from the
experimental data from the literature was 300 g [49]. A 5.7 N shear load was applied at the
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distal end of the bone in the model (mid-shaft of the femoral bone), which is equivalent
to 10.7 times bodyweight, the maximum shear load which creates the maximum bending
moment produced during gait [63]. The proximal end of the model (cortical bone and
bone marrow regions) was constrained in all degrees of freedom using tie constraints. In
order to maintain consistent displacement of the connecting nodes, tie constraints were
employed to secure four bone fixation screws and the corresponding four holes in intact
bone, encompassing both cortical and bone marrow regions.
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rat femoral segmental defect regeneration [49]. (B) Callus geometry. (C) Scaffold architecture (square
section filaments of 0.4 × 0.4 mm and line spacing of 0.8 mm). (D) Dimensions of the finite element
model used in validation (Section 2.2) and the case study (Section 2.3) with details of cortical bone,
bone fixation with four screws, and bone defect size. Note that the scaffold architecture does vary in
each section.

Solving simulations took approximately 6–8 h for 112 iterations on a standard worksta-
tion computer. This is equivalent to a bone healing period of 16 weeks, with each iteration
representing one healing day. The variation in job execution time in the FE model can be
attributed to the number of processors utilized in each run. The cell migration process
in Python is characterized by its long duration, primarily due to the randomly occurring
movement of agents and the substantial population of agents occupied by MSCs, both of
which contribute to further deceleration of the cell migration process.

The agent-based model execution process followed the same procedures outlined in
Section 2.1.2. The rates of various cellular activities, including migration speed per day,
proliferation, apoptosis, and differentiation rates, were comprehensively elucidated in
Table 2. The coupling of the finite element model is performed iteratively, as outlined in
Section 2.1.1.

Validation analyses are processed and visualized using Python libraries. The outcomes
of each iteration are recorded in Excel (CSV) files and preserved for subsequent analysis.
Each cell type was assigned a corresponding integer number (e.g., osteoblast cells were
assigned number 2, as shown in the Supplementary File) in a CSV file for each healing
day. Subsequently, these cells were processed for qualitative visualization and quantitative
calculations. The Python libraries NumPy, pandas, and plotly.graph_objs were utilized
to implement the lattice component for each day of the healing process. Subsequently,
the resulting data were visualized with the bone cells were colored in gray [64]. The
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quantification of bone, cartilage, and fibrous volumes was achieved by determining the
integer count of tissue points occupied by each of these components within a lattice
structure, as specified in a CSV file, for each day of the healing process. These counts were
then multiplied by the respective volume of each tissue point (20−3 mm3) to obtain the
overall volume of each component.

2.3. Case Study: Scaffold Architecture Gradient Effect

To investigate the effect of the longitudinal pore gradients on bone regeneration, three
separate scaffold architectures were designed, one regular and two irregular pore gradients.
The geometry of the model was the same as in Section 2.2, apart from the bone scaffold
implants. The material properties, validated mesh design, and boundary conditions were
taken from Sections 2.1 and 2.2, respectively. Material properties of the scaffolds assumed
that the scaffolds possessed the same material properties as polymer−ceramic composites,
with a Young’s modulus of 1000 MPa and a Poisson’s ratio of 0.3 [42,45].

Three scaffold designs, depicted in Figure 4, were chosen to investigate the impact of
varying longitudinal pore gradients. All scaffolds were made using filaments and pores
with a rectangular shape. All designs had the same radial dimensions of 0.25 × 0.25 mm
and 0.2 mm for the pores and filaments, respectively. The filaments and pores were
varied longitudinally for all designs. Design one, REG, has regular geometry, where all
the filaments and pores have the same longitudinal dimensions of 0.2 mm and 0.3 mm,
respectively. Design 2, IREG1, has irregular filament and pore geometry with smaller sizes
on the edge of the defect, which increased linearly to the largest size at the center of the
defect. Longitudinal pore size and filament size both ranged from 0.1 to 0.4 mm. Design 3,
IREG2, has irregular longitudinal filament and pore geometry with larger sizes on the edge
of the defect, which reduce linearly to the smallest size at the center of the defect. From the
literature, bone tissue scaffold pore sizes range from 100 to 800 um for both in vitro and
in vivo studies [38,65,66], so pore sizes were chosen to vary longitudinally between 0.1 and
0.4 mm for IREG1 and IREG2, which is within the range of the values from the literature.
Longitudinal sizes ranged from 0.4 to 0.1 mm for both the pores and filaments. Case study
analysis was conducted similarly to the validation analysis presented in Section 2.2.2.
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3. Results
3.1. Creation of Virtual Design Framework

A framework to design the scaffold in a virtual environment was successfully created
using an FE model and agent-based model. The framework input data can be edited for a
variety of bone defects and scaffold geometries. The model is available for download from
the Supplementary Material (S1 or S2).

3.2. Model Validation Using In Vivo Experiment Results from the Literature

The developed in silico multi-scale computer model was verified against an in vivo
experimental study from the literature [49], which considered a 5 mm defect fracture
in a rat model implanted with an HA-PELGA scaffold and a PEEK bone fixation as the
reference group. The results in Figure 5 show how the model was used to predict bone
formation to examine the biomechanics behind the influence of scaffold design parameters.
Experimental data from the literature and the computer model of bone formation are in
agreement, which validates the virtual design framework.
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Figure 5. (a) Graphical outputs of the experiment and the simulation: the top row shows the bone
formation histology from the experimental study from the literature [49], and the middle row shows
the simulation bone prediction images. (b) Graph showing quantitative outputs from the experiment
and the simulation of the regenerated bone volume for time periods from 4 to 16 weeks.

As observed, the predicted bone formation at the rat femur defect site in our model
was similar to the experimental results from the literature in all time periods from 4 to
16 weeks [49]. Specifically, at 4 weeks mean bone formation was 5.1 and 3.7 mm3 (1.4 mm3

difference) for our model and the experiment, respectively, which falls within the standard
error mean deviation for the 4-week experimental result of ±1.5 mm3. At 16 weeks it was
18.9 and 22.5 mm3 (3.6 mm3 difference) for our model and the experiment, respectively,
which falls within the standard error mean deviation of the 16-week experimental result
period of ±3.8 mm3.
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Additionally, the predicted bone formation from our model had higher density on
the bone fixation side, which was similar to that observed in the experimental study. Our
model also showed bone formation both inside and on the surface of the scaffold, which
was also observed in the experiment. These values of differences and general bone growth
positions gave confidence that the model was in agreement with the experiment. The
predicted bone formation of the 5mm rat femur defect from our simulation was within the
range of measured bone formation of the in vivo experiment from the literature [49] for all
the time periods of 4, 8, 12 and 16 weeks. Figure 5 shows the bone formation of both the
in vivo experiment from the literature [49] and the results of the model developed in our
virtual design framework. The predicted bone formation was shown to be denser in the
bone fixation site, as shown in the experimental study.

3.3. Case Study Results: The Influence of Longitudinal Pore Gradients
3.3.1. Bone Formation

Figure 6 shows the graphical representation of bone volume changes from 4 to 16 weeks
for three different scaffolds with different pore gradients, REG, IREG1, and IRG2. The
results of bone formation show differences between the different scaffold designs. Specifi-
cally, they show that the irregular pore gradient scaffold, IREG2, produced more new bone
tissue growth in all time periods. In comparison to the regular pore scaffold, REG, the
irregular pore scaffold, IREG2, produced 15.66% more bone over the healing period.
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During the initial four-week period, the bone volumes of IREG2 and REG were
predicted to have a maximum difference of 1 mm3. However, in the final iteration after
16 weeks, the observed difference exceeded 4 mm3, as depicted in Figure 6. IREG2 emerged
as the most favorable design among the cases, as it consistently yielded the highest bone
volume throughout the entire 16-week healing period. In the initial 4- and 8-week periods,
REG exhibited a greater bone volume compared to IREG1. However, it is anticipated that
during the subsequent 8-week timeframe (12 and 16 weeks), IREG1 will demonstrate a
higher propensity for bone formation.

3.3.2. Cartilage and Fibrous Formation

Figure 7 shows cartilage and fibrous tissue formation from 4 to 16 weeks for the three
scaffolds. A conflict in fibrous growth between IREG1 and REG was observed. The fibrous
formation at the end of 16 weeks was found to be largest in REG, measuring 32.1 mm3. In
comparison, IREG1 and IREG2 had fibrous formations measuring 28.5 mm3 and 25.7 mm3,
respectively. The volumes of cartilage exhibited variability across all cases. During the
4-week healing period, it was observed that IREG2 exhibited the greatest quantity of
cartilage formation, measuring 0.4 mm3. In contrast, IREG1 and REG demonstrated lower
levels of cartilage generation, measuring only 0.16 mm3 and 0.13 mm3, respectively. In
contrast, after a healing period of 16 weeks, the IREG2 group exhibited the lowest quantity
of cartilage at 1.8 mm3, whereas the REG group demonstrated the highest amount of
cartilage at 2.1 mm3. The IREG2 group ranked second with a marginal difference at
2.1 mm3. Evidently, IREG2 and REG exhibited their maximum values at the 8-week mark
of the healing period, subsequently declining until the conclusion of the healing period. In
contrast, IREG1 demonstrated continuous growth throughout the entire healing period.
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4. Discussion

In this research, a virtual design framework was created to enable the optimization
of synthetic polymer bone tissue scaffold implants. The model was validated against an
animal model and showed good agreement in bone volume formation at all time periods
from 0 to 16 weeks. The framework was then used to demonstrate the importance of
scaffold architecture relationship to implant function. Specifically, it showed that modifying
longitudinal pore gradients from regular to irregular will affect bone formation over time.
Gradients which are wider nearer the native bone ends and become smaller towards the
center (IREG2) of the tissue scaffold implant showed 83% and 33% greater bone volume
after 4 weeks and 10% and 17% greater bone growth after 16 weeks than IREG1 and REG,
respectively. This demonstrates that implant shape, in particular pore architecture, is an
important design factor to improve bone tissue scaffold performance, as proposed by
Figure 1.

Our study presented a multi-scale computer model to simulate bone healing utilizing
bone scaffold implants with daily biological and biomechanical variations throughout
the healing period. Other researchers have also produced mechanobiological models but
they have not implemented this as a design tool [39,40,50]. Specifically, to the author’s
knowledge, this is the first study to investigate the influence of scaffold shape design
parameters, including irregular scaffold architectures (longitudinal pore gradient effect),
using a mechanobiological regulatory bone regeneration model.

The findings of our computational study indicate that scaffold architecture primarily
influences bone growth (implant function in Figure 1). The IREG2 design demonstrated the
best characteristics from the limited designs within the case study, resulting in the highest
bone volume compared to the other designs. There are time-related bone growth differences
between IREG1 and REG, with the former giving larger bone growth in the earlier period
and the latter giving more bone growth in the later period. This indicates that bone growth
rates may be modulated through pore architecture design. Further work in this area would
be needed to fully understand this functional potential. Bone formation originates from the
bone marrow and periosteum, both of which contain a significant number of MSCs [56,57].
During the initial phase of bone formation, it was observed that larger pores of IREG2
(measuring 0.4 × 0.2 mm) resulted in the highest bone volume. The second largest pore
size, denoted REG (measuring 0.3 × 0.2 mm), produced less bone volume compared to
IREG2 but more than IREG1, which had the smallest pore sizes at the extremities. These
observations occurred during the first 8 weeks of bone differentiation. This finding is
consistent with prior research [67,68], as illustrated in Figure 6. During the second 8-week
period (9–16 weeks), despite the fact that IREG2 exhibited a smaller pore size in the central
region of the scaffold, it remained dominant in terms of higher bone volumes compared to
REG and IREG1. This phenomenon may be attributed to the increased formation of bone
during the initial 8-week period, which subsequently contributed to improved mechanical
support and larger cell numbers throughout the remaining healing process. The significance
of scaffold architecture in bone growth may be heightened by the presence of a critical
defect (in this case 5 mm). By reconfiguring the dimensions of scaffold filaments and pores
within the defect size, such as employing larger filaments at the extremities during bone
growth initiation, improved mechanical support and enhanced vascularization due to
larger pore sizes for nutrition could be achieved. Previous research has indicated that larger
pore sizes are correlated with superior vascularization [67,68]. According to Luca et al.,
it has been reported that gradual pore gradient scaffold designs from large to small are
more effective in promoting gradual osteogenic differentiation of MSCs [69]. Furthermore,
during the subsequent eight-week period, the findings indicated that the bone volume in
IREG1 surpassed that of REG. Specifically, there was an increase in pore size at the center
of the scaffold in IREG2, allowing more cell activity, while REG exhibited no alteration in
pore dimension (smaller pore sizes in the center than IREG2).

Previous research has demonstrated that scaffold architecture significantly impacts
the osseointegration during in vivo studies [26,70]. Specifically, the impact of scaffold pore
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shape and interconnectivity on bone growth in large bone defects has been well docu-
mented [26,71]. Although these studies have demonstrated that pore size has a significant
impact on bone growth, they have focused on regular pore structures and have not explored
the design space of irregular pore architectures. This means that shape remains largely
unexplored in research in comparison to material, growth factors, and fabrication methods.
Given the large design space of bone tissue scaffold implant shape and the intricate relation-
ships between shape and mechanobiological function, it may be more suitable to explore
this research area using virtual modeling and optimization methods (such as artificial
intelligence) to narrow the design space rather than using just experimental techniques.
Nevertheless, our computational simulation method aligned with several prior in vivo
investigations regarding the impact of gradient pores on bone growth [25,67,68]. It has also
been validated against an in vivo experiment from the literature [49]. Additionally, our ap-
proach offered enhanced control over the design parameter investigated (pore architecture)
to enable the collection of detailed quantitative data on various bone tissues. In addition to
in vitro and in vivo investigations, in silico methodologies, particularly multi-scale models,
have demonstrated their efficacy as virtual predictive tools for assessing various scaffold
parameters. This has the potential to decrease the number of in vivo trials, thereby reducing
both time and costs in accordance with the three Rs approach (Replacement, Reduction,
and Refinement). However, this in silico model may exhibit limitations in accurately
simulating certain processes, such as the impact of surface properties on the growth of
bone cells. Essentially, it is only simulating at a micro level, and not at a nano level. It is
plausible that changing pore sizes and filament sizes may slightly change surface properties
on the filaments during practical manufacturing. However, this will be very minor in
comparison to surface modification, which could be achieved through material change or
secondary processes.

Several studies have previously implemented the incorporation of local mechanics in
the callus healing region to consider the formation of bone tissues during the soft and hard
callus phases [50,62,72]. Impressive advancements have been made in the field of bone
healing prediction. However, it is worth noting that the ultimate stage of remodeling was
not fully predicted, leading to the erroneous assumption that the bone would persist entirely
within the bone marrow cavity by the end of the simulation. Isaksson et al. and Byrne et al.
have effectively conducted simulations of the concluding phase of bone remodeling [42].
However, their investigations have been limited to empty bone defects and have not been
subjected to experimental validation. Isaksson et al. employed a rat model, while Byrne
et al. utilized a human tibia defect. Prier-Metz et al. have conducted excellent research
employing agent-based modeling in conjunction with finite element modeling to study
various species (specifically, sheep and rat models) in both empty conditions and with the
aid of scaffolds, with the aim of simulating the entire bone healing process [31,44,45,73].
These studies have examined the impact of different scaffolds’ material properties and
different pore sizes, but with regular scaffold architectures, on the bone regeneration
process. However, they have not explored scaffold shape, specifically the full design space
of irregular bone tissue scaffold architectures.

Our study has several limitations, which include:

• The predefined callus shape was created in silico and filled with granulation tis-
sue, whereas no callus formation was observed in vivo. This is similar to many
other mechanobiological models mentioned above [31,44,45,73], but one recent study
modeled the callus behavior [74]. Nevertheless, the callus part was subjected to a
biomechanically stressed environment, as determined by the mechanobiological model
proposed by Claes et al. [39]. This mechanobiological formula makes it possible to pre-
dict the formation of various tissue types in callus areas, which may not be detectable
in vivo with current measurement methods.
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• No revascularization process of the defect was included in this simulation, despite
the fact that other studies have found this to be a concerning issue in large bone
defects [75–78]. In this simulation, this was mitigated by forming bone only in suitable
biological and mechanical environments. This may have a slight impact on the results
of the case studies focused on the effect of the longitudinal pore gradients.

• No scaffold degradation was included in the model. However, in this study Young’s
modulus and the Poisson ratio for the three scaffold cases were 1000 MPa and 0.3,
respectively, which are within the range of polymer−ceramics composites used in
bone regeneration applications [61,79], which commonly use polycaprolactone (PCL),
poly(l-lactide) (LPLA) or poly(lactic acid) (PLA) as the base polymers of the bone
tissue scaffold implant. Lam et al. [80] reported that PCL scaffolds have no significant
degradation and little effect on bone regeneration for periods of six months or less.
Similar low degradation is reported for LPLA and PLA [81,82].

• Fixed relationships for cell behavior was a limitation of this model. Cell fates, mi-
gration, and multiplication are based on fixed relationships with the stress environ-
ment without any statistical variation. In an in vitro or in vivo experiment, statistical
changes would be present. However, if these statistical changes were included the
simulation would become more computationally expensive.

Further work is required to fully validate mechanobiological models, which would
be aided by more open-source data on results from experimental studies (in vitro and
in vivo) that give full information on bone tissue formation, boundary conditions, and bone
defect details.

5. Conclusions

In conclusion, this study produced a novel virtual design framework which used a
multi-scale mechanobiological model by integrating Python coding with lattice tools and
Abaqus/CAE 2022 (Simulia, Johnston, RI, USA) to examine the impact of irregular scaffold
architecture, such as longitudinal gradient pores, on the bone regeneration process in large
bone defects. This model was validated by in vivo experiments from the literature, and
is available to download from Supplementary Materials (S1 or S2). It can be used as a
virtual design framework to design and optimize bone tissue scaffold implants. It will
enable reduction in the design space to focus more expensive and time-consuming in vitro
or in vivo experimental efforts on more promising scaffold solutions.

This study shows that shape is an important factor in bone scaffold implant design.
This is similar to the relationship proposed in engineering design, as shown in Figure 1;
in this case, scaffold architecture directly affects implant function (regenerated bone),
with irregular pore gradients yielding up to 17–33% more bone growth than regular pore
architectures studied in the optimized case studies. Further work is required to extend
mechanobiological models beyond mechanical stress/strain stimulus to include more of
the complex aspects found during in vivo bone healing conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym15193918/s1. S1: Mechanobiological Model (Python 3.10.6
version); S2: Mechanobiological Model (Notebook version).
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Appendix A Software for Mechanobiological Model

The software file can be downloaded from the Supplementary Materials section (S1,
S2). If you use this software, please reference this paper to acknowledge the work of the
authors.

Instructions on how to run the software are as follows:

1. Create folder for the case requiring to be implemented.
2. Create FE model with all the case set up, including geometry, material properties, and

boundary conditions (Abaqus/CAE 2022 (Simulia, Johnston, RI, USA) license would
be needed).

3. Save the output files from Abaqus in the same folder (ex. job-1.inp, and job-1.dat).
4. Create batch file in the same folder with the name of bone.run_abaqus.bat with these

commands ‘abaqus job=bone ask_delete=OFF standard_parallel=all cups=2 interactive’.
5. Open Python code; there are two main items to change:

a. Change the index numbers to fit callus part in job.inp file, this can be changed
in (1.Read Job File) in python code, see Figure A1 below.

b. Change boundary conditions for your case in (3.create FE Model Job File
(Abaqus), and 3.1 Update FE Model Job File With New Bone Formation) in
Python code as in Figure A2 below.
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