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Abstract: Flexible structures are increasingly important in biomedical applications, where they can
be used to achieve adaptable designs. This paper presents a study of the design and behavior of 3D-
printed lightweight flexible structures. In this work, we focus on the design principles and numerical
modelling of spatial patterns, as well as their mechanical properties and behavior under various
loads. Contact surface fraction was determined as the ratio of the surface area of the printed pattern
to the surface area of the entire curved surface. The objective of this work is to design a spatial pattern
reducing contact surface fraction and develop a non-linear numerical model evaluating the structure’s
stiffness; in addition, we aimed to identify the best design pattern with respect to its stiffness:mass
ratio. The experimental verification of the numerical model is performed on 3D-printed prototypes
prepared using the Selective Laser Sintering (SLS) method and made of Nylon—Polyamide 12.
The obtained results provide insights into designing and optimizing lightweight external biomedical
applications such as prostheses, orthoses, helmets, or adaptive cushions.

Keywords: flexible; lightweight; spatial; structure; stiffness; biomedical; PA12; SLS

1. Introduction

Medical and protective aids are currently widely used means of treatment, pain
reduction, or health protection. In most cases, these aids are mass-produced with uniform
properties, which may not suit all users. An alternative way is to produce these aids, such
as shoe insoles, cranial orthosis, protective helmets and shoes for elite athletes, etc., with
individualized shapes and properties so that they serve their purpose as well as possible.
However, the possibility of such use depends on a number of factors such as mechanical
properties (weight and stiffness), manufacturability, appearance, etc. Analysis of these and
other factors has been reviewed by Seharing et al. [1].

The procedure using additive manufacturing (AM) can be used to design personal-
ized aids with unique properties for each user. The utilization of 3D printing in orthotic
inserts design to reduce foot pain was presented by Sharma et al. [2]. Determination
of the mechanical properties of the foot orthosis and their influence on its biomechanical
effect on individuals with flexible flatfoot was presented in the paper [3] by Lin et al. These
orthoses were 3D-printed with different orientations and the maximum compressive load
and stiffness were calculated based on experimental testing. To use AM for breast support
purposes, Prokop et al. dealt with determining breast stiffness in the paper [4]. Holmes et al.
presented a study of the mechanical behavior of 3D printed gyroid structures, which can be
used for customized cushions to prevent pressure ulcers [5]. Sotola et al. presented a novel
approach to the design of a transtibial prosthesis bed stump using topology optimization
and 3D printing [6] and they also presented a sensitivity analysis of key formulations
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of topology optimization [7]. AM products’ geometry and mechanical properties depend
on technological parameters. Kundera et al. analyzed the influence of these AM param-
eters, especially Selective Laser Sintering (SLS), on the quality of the resulting geometric
surface texture [8]. They also studied mechanical properties of models made of polyamide
PA 3200 manufactured by the SLS [9]. A comparison of mechanical properties and surface
texture of models produced by two AM technologies [10] was presented by Saharudin et al.
Mesicek et al. [11] studied the use of the Abrasive surface finishing method for improving
insufficient surface roughness of 3D-printed objects. An alternative way of smoothening
the surface before 3D printing is described, e.g., by Bacciaglia et al. [12].

AM can help for example, in the manufacturing of proper cranial orthoses with
predefined properties or of infills for helmets that will be light-weighted but strong enough
to protect riders. The design of a protective helmet for riders using reverse engineering
and AM was the brainchild of Wang and Co [13]. Using these techniques, a helmet was
designed, the internal shape of which is based on the anatomical shape of the rider’s head.
A cycling helmet that uses a Voronoi’s structure and has a better impact energy absorption is
another example of such AM-produced protective devices. This approach, along with other
uses of AM in the design of protective equipment, was introduced by Jefferson et al. [14]
who produced a helmet made of Kevlar and fiberglass composite. In both cases, the
possibility of good air circulation around the skin due to structured geometry is one of the
key benefits of such helmets. Due to the suitable properties of flexible or general lattice
structures, they are used in other industries as well. The design of lightweight parts with
high strength and energy absorption capacity is used in the aircraft, rocket, automotive, and
construction industries. Sharma et al. [15] dealt with the experimental and numerical study
of a bioinspired structure as an energy absorber for automotive and aerospace industries.
The methods of design and optimization of uniform lattice structures were dealt with
by Pan et al. [16]. Numerical analysis of anisotropic lattices developed 25 years ago for
spacecraft applications is presented by Vasiliev and Razin [17]. The design of lattice thermal
insulators used in the construction industry was presented by Alqahtani et al. [18].

The use of lattice structure became an essential part of the design of prototype and
production parts, offering a way to reduce the weight and thus the amount of material
needed while maintaining high stiffness. These structures began to be used as the internal
filling of components. Fernandez-Vicente et al. [19] presented the influence of lattice struc-
ture design and infill density on the tensile mechanical properties of such structures. Tao
and Leu discuss AM processes, design methods and considerations, mechanical behavior,
and applications for lattice structures using this technology [20]. The use of 3D printing
in the production of biomedical or protective devices is on the rise, thanks to the possibility
of high-speed production of parts and the ongoing research into new usable materials.
Hazrat Ali et al. [21] presented finite element analysis of 3D-printed ankle-foot orthosis.
The process of manufacturing a product by 3D printing can be described as the creation
of a model placing layer by layer of material (depending on the chosen technology). 3D
printing enables the possibility of creating a variety of complex shapes that would be
difficult or impossible to create using the conventional methods mentioned above. The dis-
advantages of using 3D printing include the limitation of dimensions of the printed part
(depending on the used printer), the need to create supports, and the minimum thickness
of the part. For the production of the complex structures that are the subject of this paper,
it is beneficial to use 3D printing technology that does not require supports. However,
internal filling in the form of a lattice structure is not a suitable procedure to reduce skin
contact. A suitable solution is to design the structure as flexible rather than unnaturally
filled by the lattice structure from the beginning.

Therefore, flexible structures (FS) are most commonly represents by thin shells formed
of repeating identical units called cells. The main idea of such structures is to control
their mechanical properties by changing the cell’s geometry rather than changing ma-
terial to achieve the same properties. The design and study of structures with a given
deformation behavior were reported in the paper [22] by Panetta et al. A method for
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designing shells with given structural integrity and aesthetic properties was presented
by Schumacher et al. [23]. The same author also investigated the mechanical properties of
structured sheet materials having direction-dependent macro mechanical behavior and
aesthetic possibilities due to their appearance [24]. With the development of biocompat-
ible materials for 3D printing, lattice structures have started to be used in biomedicine
applications, such as implants. Kantaros and Piromalis [25] reviewed lattice scaffold struc-
tures for tissue regeneration. Based on all these studies, engineers can nowadays design
unique structures customized for the user with respect to material savings controlled by
the stiffness-mass ratio. The final mechanical properties of FS depend on the design and
size of the individual cell. An example of a flexible structure sample with three types of
planar patterns formed by identical cells is presented in Figure 1.

Figure 1. Flexible structure with three types of planar patterns presented in [26] (three-pointed star
pattern (A), modified three-pointed star pattern (B) and tri-hexagonal pattern (C)).

Marsalek et al. [26] prepared FS with planar patterns that were formed by repeating
identical 2D cells. These patterns were projected onto curved surfaces and then swept
to construct a 3D model, which can be printed using AM. These structures were 3D-
printed using the SLS method and made of Nylon-Polyamide 12. The SLS method is based
on layering the material in the form of powder and sintering it using a laser, the function
of the supports being borne by the unsintered powder. Using experimental measurements,
it was possible to determine the stiffness and load-bearing capacity (LBC) of five printed
samples. The authors further showed the possibility of modelling the stiffness and LBC
of this FS using a non-linear numerical model. However, the basic structure is formed
by planar patterns that are stretched to create a 3D object. The proposed solution had
either relatively high contact surface fraction (46 ÷ 56%) and low stiffness (4 ÷ 12 N/mm;
pattern B in Figure 1), or high stiffness (48 ÷ 170 N/mm) and lower contact surface
fraction (20 ÷ 24%; pattern C). Contact surface fraction is the ratio of the surface area
of the printed pattern to the surface area of the entire curved surface. This property is
particularly important to ensure good airflow between the structure and the skin, it also
prevents sweating and itching of the skin and at the same time it has a significant effect
on the amount of skin contact. Table 1 shows the stiffnesses of structures A, B, and C as well
as the contact surface fraction values.
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Table 1. Stiffness and contact surface fraction of individual pattern shown in Figure 1

Pattern Stiffness [N/mm] Thickness [mm]
Contact Surface

Fraction
[−]

A 57.52 ÷ 208.22
0.80 ÷ 2.05

44.4% ± 3%
B 3.98 ÷ 12.46 51.4% ± 5%
C 47.72 ÷ 169.74 22.4% ± 2%

In the presented paper, the authors focused on the design of a new lightweight
flexible structure (LFS). As this research builds on the paper by Marsalek et al. the same
material and manufacturing technology are chosen to allow the assessment of the FS
properties depending on its geometry and not on the choice of material. The aim was to
develop a structure with contact surface fraction reduced to only 10% while preserving
low stiffness and sufficient strength. Preliminary results of this work were published in
Bachelor’s thesis [27] of Kusnir in 2021 and also presented at the international conference
on Experimental Stress Analysis 2022 [28].

2. Materials and Methods

This work can be divided into 3 phases. In the first phase, the design of a lightweight
flexible structure with a spatial pattern reducing contact surface fraction is described.
In the next phase, laboratory testing of printed LFS samples is performed and in the third
phase, results are used for the parametric study of pattern properties in a validated numeri-
cal model of LFS.

2.1. Design of the Spatial Pattern for the Lightweight Flexible Structure

For the purpose of this work, it was necessary to design a periodic spatial repeating cell.
The design of the cell was inspired by interconnected curved Swiss crosses. The individual
parameters a, b, c, r0, r1 of the designed pattern cell are shown in Figure 2 and dimensions
are presented in Table 2.

Figure 2. New lightweight spatial pattern design.
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This spatial pattern allows achieving a low contact surface fraction of only 10% for
each of the variants. The parameter t, the thickness of the cell structure, investigated in this
work ranged from 0.8–3.0 mm. A thickness of less than 0.8 mm resulted in poor quality
printing of the samples, the upper limit of 3.0 mm is due to the loss of the initial cell shape.

Table 2. Parameters of the designed pattern cell.

Variant a [mm] b [mm] c [mm] r0 [mm] r1 [mm]

Contact
Surface
Fraction

[−]

I 7.4 1.8 2.5 0.9 1.9
10% ± 1%II 8.0 2.0 3.2 1.0 2.0

III 8.6 2.2 3.0 1.1 2.1

The whole LFS was designed using a combination of two CAD SW, Rhinoceros (Robert
McNeel & Associates, Seattle, WA, USA, RHN) and Inventor (Autodesk, San Francisco,
CA, USA). In order to achieve the smallest possible deformation of the shape of the re-
sulting LFS, it was first necessary to create a projection surface in Rhinoceros. The shape
of the (projection) surface designed in Rhinoceros was close to hemispherical but not per-
fectly hemispherical, which resulted in significantly lower deformations of the resulting
LFS than a perfectly hemispherical surface would have. In effect, the projected struc-
ture behaved according to our needs. The projection surface was subsequently unfolded
into the plane, creating a rectangular surface that determined the dimensions for the prepa-
ration of the structure’s pattern. In Inventor, it was then possible to prepare the individ-
ual structures as planar plates, where the overall dimensions of the plate corresponded
to a rectangle with a small overlap. This prepared surface could then be back-mapped onto
the projection surface. This algorithm ensured the possibility of continuous mapping and
resulted in an almost perfectly hemispherical structure. The resulting structure without
a rim was then imported into Inventor, where this very complex and demanding STL
model could be linked to the rim of the sample. The geometry of the specimen rim was
designed to fit in a test stand (see [26]). This assembly of two parts was finally exported
again as an STL model, thus creating a definitive blueprint for 3D printing.

To allow comparison with the previous study [26], the same 3D printing technology
as in that paper (i.e., as for the same hemispherical structure created with planar patterns)
was used, namely SLS technology, which allows printing without supports. An EOS P396
printer (Electro Optical Systems, Krailling, Germany) with a maximum product size of
340 × 340 × 620 mm was used for printing. The scheme of LFS printing process is shown
in Figure 3.

LASER
SCANNER
SYSTEM

POWDER
DELIVERY
SYSTEM

ROLLER
POWDER
BED

PRINTED
OBJECT

a) b) c)

Figure 3. The scheme of SLS technology, (a) 25%, (b) 50%, and (c) 100% of LFS printing process.

A total of five samples with different parameters were printed, using the plastic
material polyamide PA12 (or also referred to as PA2200). Initial material properties are
taken from paper by Marsalek et al. [29] and listed in Table 3. This thermoplastic material
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is characterized by good chemical stability and can be used for biomedical applications.
The effects of selected geometrical parameters on the elastic properties of this material were
presented in [30].

Table 3. Mechanical properties of PA12 presented in [29].

Symbol E µ ρ σY ET
[MPa] [−] [kg m −3] [MPa] [MPa]

Value 1224 0.39 1010 21 334

Where E is Young’s modulus, µ is Poisson’s ratio, and ρ is density. σY is yield strength
and ET is the tangent modulus; the latter two parameters are used in the numerical model
to capture the plastic strain of LFS. Although the density is not used in the numerical
simulation, it is possible to use it for determining the total density of the LFS.

2.2. Laboratory Testing of the 3D-Printed Lightweight Structure

The testing methodology of FS is based on previous research [26]. For the experiment,
the following equipment was used: testing device (1), specimen (2), and plunger (3),
the scheme of the testing assembly is shown in Figure 4. the plunger has a shape of a ball
cap with a radius R2 = 65 mm and height h = 18 mm, its surface is approximately 25%
of the hemisphere’s surface. The whole assembly was put in the universal testing device
TESTOMETRIC 500-50CT (Testometic, Rochdale, UK), the load was driven by displacement
u, and the response force F was measured.

Figure 4. Scheme of experimental measuring used in [26].

The specimen and testing device were 3D-printed using the SLS method from the PA12
material, the plunger was printed using the FDM (Fused Deposition Modelling) from
polylactic acid (PLA). It must be emphasized that specimens were more compliant than
the measurement device. The device was designed with robust legs with supports (see
Figure 5). Also, both the fastening system and plunger were printed as full material
(i.e., without using lattice infilling), which further increased their stiffness. The velocity
of plunger displacement was set to 3 mm per minute and the specimen was loaded until the
first cracks occurred. The process of laboratory testing of the 3D-printed LFS is on Figure 5.
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Figure 5. The process of laboratory testing of the 3D-printed lightweight structure stiffness. The initial
setup (left), deformation of LFS during loading (middle) and damaged structure on reaching load-
bearing capacity (right).

2.3. Numerical Modelling of the Lightweight Structure

It is advisable to create a non-linear numerical model to reduce the cost of printing and
experimental measurement. The advantages of these models over measurements include
the speed of recalculation of new properties when the FS parameters are changed and,
of course, null printing costs. The computational model was created in ANSYS Workbench
2021 R2 (Ansys, Canonsburg, PA, USA, AWB), employing the finite element method.
The authors of this article have many years of experience in the application of numerical
methods to solve the behavior of complex structures, such as numerical modelling of load-
bearing capacity of steel-wire ropes by authors Hroncek et al. [31], modelling of impact
test of rail wagon by Cech et al. [32], modelling of load-bearing capacity of single-stranded
wire rope by Lesnak et al. [33], or modelling of cam design of spring-loaded camming
device by Rybansky et al. [34].

The LFS itself is defined as shell midsurface, see Figure 2. To replace the continuum
with finite elements, the Shell 181 element was used, with a thickness corresponding
to t specific LFS. The discretization is shown in Figure 6. Each geometric model (I-III) has
its own mesh, with approximately 211,000 nodes and 173,000 elements.

Figure 6. Finite element mesh with a detail of shell discretization.

A non-linear numerical model was used to determine the deformation behavior, which
consisted of a model of the LFS (without rim) and the geometry of the plunger. For the LFS,
a bilinear elastoplastic material model with isotropic hardening was used, its parameters
are given in Table 3. The plunger was modelled as rigid geometry because its stiffness is
significantly higher than that of LFS. The boundary conditions were set to correspond most
closely to the experimental ones, see Figure 7. The edge of the LFS was fixed (blue) and
the load was applied using a plunger displacement function (green). A frictional contact
between the LFS and the plunger was considered with a friction coefficient of fs = 0.30,
same as in [26] (red). The computational model was considered with large deformations
and displacements.
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Figure 7. The scheme of the boundary conditions of LFS numerical model.

3. Results

The laboratory testing was done for 5 printed samples. Figure 8 shows the relation-
ships of the displacements on the reaction forces due to the LFSs deformations. Stiffness
generally cannot be described as linear; however, after some initial deformation, the force-
displacement diagram enters a linear phase. The initial non-linear deformation was caused
by adjusting the contact between the specimen and the plunger, was different for each
specimen, and was excluded from subsequent stiffness evaluation.

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45

R
es

po
ns

e 
fo

rc
e 
F

[N
]

Plunger displacement u [mm]
Specimen I, t=1.0 mm
Specimen I, t=1.4 mm
Specimen II, t=1.6 mm

Specimen III, t=1.0 mm, Excluded Data
Specimen III, t=1.4 mm

Specimen I, t=1.0 mm, Excluded Data
Specimen I, t=1.4 mm, Excluded Data
Specimen II, t=1.6 mm, Excluded Data

Specimen III, t=1.0 mm
Specimen III, t=1.4 mm, Excluded Data

Figure 8. Force-displacement relationships for laboratory-tested specimens.

The stiffness of the structure is a fundamental design parameter for the design of a per-
sonalized LFS. The value of stiffness is defined as the slope of linear regression of non-
excluded data so that the coefficient of determination is at least 0.99. LBC of the LFS
in the load direction is also an important parameter, its values and evaluated stiffness are
given in Table 4. Sample II with a thickness 1.60 mm achieved the highest LBC 554.00 N.
The highest stiffness of 31.97 N/mm was achieved in sample I with a thickness 1.40 mm.
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Table 4. Measured stiffness k.

Specimen Thickness [mm] Measured Stiffness
[N/mm]

Load Bearing
Capacity [N]

1.40 36.82 450I 1.00 15.06 357
II 1.60 31.97 554

1.40 29.04 520III 1.00 11.25 343

The presented non-linear numerical model was validated by measured data. The bi-
linear elastoplastic material model with isotropic hardening was employed. It took into
account other non-linearities, such as large displacements and displacements and contacts.
The results of the numerical model indicate a quality calibration with a maximum error
between the model and the experiment of 4.00%, see Table 5. A comparison of the force-
displacement diagram of the measurement and numerical models is shown in Figure 9.
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Figure 9. Comparison of the force-displacement relationships between experiment and simulation.

Table 5. Comparison of the stiffness k between experiment and simulation.

Specimen Thickness [mm]
Measured
Stiffness

Simulated
Stiffness

Stiffness
Difference

[N/mm] [N/mm] [%]

1.40 36.82 35.89 2.53I 1.00 15.06 14.68 2.52
II 1.60 31.97 32.05 0.25

1.40 29.04 28.38 2.27III 1.00 11.25 11.7 4.00

With a prepared numerical model, a parametric study was performed to determine
the effect of the thickness of the spatial structure on its stiffness, while a change in thickness
has no influence on the contact surface fraction presented in Table 2. A total of 27 combina-
tions of three LFS geometries with nine thicknesses were calculated, relationships between
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stiffness and thicknesses are shown in Figure 10 and summarized in Table 6. The compu-
tation time of one numerical model run s counted in hundreds of minutes on a standard
machine (Intel i5-8600 workstation, 6 cores, 32 GB RAM). For example, the calculation time
of the Variant III, t = 1.6 mm, was 515 min (443 iterations).
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Figure 10. Results of a parametric study of the effect of LFS thickness on its stiffness.

The maximum stiffness of 184.97 N/mm was achieved for model I with a thickness
of 3.0 mm, while the lowest stiffness of 5.06 N/mm was achieved for model II with
a thickness of 0.8 mm. The dependence of the stiffness on the simulated thickness is not
linear, which is similar to the results of the LFS with a planar pattern [26], see Figure 10.

Table 6. Relationships between simulated thickness and stiffness k [N/mm] of LFS.

Variant
Simulated Thickness t [mm]

3.0 2.5 2.0 1.8 1.6 1.4 1.2 1.0 0.8

I 184.97 128.56 80.65 64.00 49.99 35.89 24.03 14.68 8.61
II 135.79 91.72 55.06 42.84 32.05 22.79 15.51 9.56 5.06
III 159.02 107.60 66.45 52.98 39.09 28.38 18.22 11.70 6.38

4. Discussion

The objective of this work was to design a lightweight flexible structure with spatial
patterns. The stiffness of the designed LFS was evaluated using two methods, namely by
experimental measurement and by numerical modelling using the Finite element method.
Five printed samples were used for experimental testing. Experimental data were used
for validation of the non-linear numerical model, which was used for the parametric study
of the effect of thickness on the stiffness of LFS.

Although a parametric study of the effect of only thickness was performed, it would
be advisable to study the effect of the other design parameters of the pattern, see Table 2.
The resulting stiffness depends on the combination of all design parameters. It should be
noted that modelled and simulated stiffnesses are validated in one loading direction only
while in the other directions, the FS properties are likely to be different. Due to the relatively
wide coverage of stiffness magnitudes, this research can be further used for the design
of biomedical devices and help in deploying these FS (such as helmets, orthoses, prostheses,
protective and healing equipment, etc.) in practice.

Although all parts of the assembly for experimental testing were 3D-printed, they
were much stiffer than the tested specimen and, therefore, the flexibility of these parts
was neglected. The testing device was also analyzed in a previous study using the finite
element method [26], which proved how much deformation of the specimen was influenced



Polymers 2023, 15, 3896 11 of 14

by the compliance of these parts. The deformation of the testing device was negligible
compared to the deformation of the spatial structure.

The stiffness characteristics are not linear during loading, but it is important to quantify
the initial stiffness for the design of the LFS so that an adequate LFS can be matched
to the purpose (orthoses, prostheses, etc.). When designing biomedical aids, it is necessary
to design the LFS so that its range of applications lies primarily in the linear LFS loading
response region.

In a previous study [26], FS with a planar pattern were presented. The disadvantage
of these structures, however, was relatively large contact surface fraction at low stiffness.
In the presented study, a reduction of contact surface fraction to approximately 10% was
achieved while maintaining low stiffness (minimum 5.06 N/mm). The actual contact with
the user’s skin will depend on the value of contact surface fraction, but also on other
factors such as load, geometric design, selected material, loading on single cells, etc. The
total thickness of the new spatial design (2 · c + t, see Figure 2), is obviously greater than
in the case of planar structures from the previous study. However, the new geometry
has the advantage of reducing the possibility of skin scratching and clothing snagging
caused by the sharp geometry of the planar design. The geometry printed using the SLS
method shows a high surface roughness, which could be reduced by using the vaporization
smoothing method [35]. This technique closes the external pores on the surface and allows
improvement of the mechanical properties of the printed parts [36].

Numerical models include all types of non-linearities (non-linear material model,
large deformations, and contacts). This relatively complex simulation can be more accu-
rate using a sophisticated material model (the bilinear model with isotropic hardening is
acutely used). The model also does not include the effect of possible anisotropic material
behavior due to the direction during printing. For the numerical simulation, a relatively
high computational performance is required for this primary study. For the design of
real equipment, the geometry of the task, different loading states, etc. would increase
this complexity.

Load-bearing capacity (LBC) was also experimentally determined as the load at
which the structure was damaged. The fact that LBC was not numerically modelled can
be considered a limitation of the presented study. However, developing such additional
computations is beyond the scope of the presented study and as it is a complicated
process, would inflate the length of the paper over a reasonable level. Another possible
area of study is the modelling of load-bearing capacity of individual cells and their
deformation behavior. To determine whether a single cell can be turned inside out
without destroying, a numerical analysis of the LFS (Variant II) with 0.8 mm thickness
was performed. During loading, the limit plastic strain was exceeded before the cell was
turned inside out. The limit plastic strain is based on a previous study result [26]. It
should be also noted that in real life, other parameters, such as fatigue properties, play
an important role in the usability of the designed structures, which should also be a
subject of future studies.

5. Conclusions

In this work, a lightweight flexible structure, the stiffness of which is variable
depending on the final application, which also offers a greatly reduced contact surface
fraction to as low as 10%, was designed. The newly designed spatial LFS used in
biomedical applications might provide better sweat drainage, airflow, and lower skin
contact, which could increase the patient’s comfort. Using two methods (experimental
and numerical approaches), 5 printed samples were compared. Non-linear computer
modelling of such a pattern has proved to be a useful tool, yielding results highly
consistent (<4% difference) with the experimental evaluations. Although experimental
stiffness determination is a more accurate tool, numerical modelling is particularly
advantageous in the case of parametric studies.
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Using a parametric model validated using experimental results, a total of 36 specimens
with stiffness ranging from 5.06–184.97 N/mm were produced. The variant II with a thick-
ness of 0.8 mm was determined as the LFS variant with the lowest stiffness of 5.06 N/mm.
This pattern variant provides consistently the lowest stiffness at each modelled thickness
compared to other patterns, see Figure 10. As can be seen from this figure, the relationship
of stiffness on modelled thickness is non-linear in the defined region, unlike the previous
study with 2D flexible structures, where the relationship is linear.
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3D 3-Dimensional
AM Additive Manufacturing
AWB Ansys Workbench 2021R2
CA California
CAD Computer-Aided Design
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