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Abstract: This study investigates the density of states and structural characteristics of helical ho-
mopolymers. Comprising repeating identical units, the model enables the exploration of complex
behaviors arising from a simple, yet generalized, set of potentials. Utilizing microcanonical analysis,
transitions between helical structures are identified and categorized. Through a systematic com-
parison of results under varying conditions, we develop a nuanced understanding of the system’s
general behavior. A two-dimensional plot illustrates the relative distribution of different structural
types, effectively showcasing their prevalence. The findings of this study substantially advance our
understanding of the density of states and structural transformations of helical homopolymers across
a range of conditions. Additionally, the prevalence plot offers valuable insights into the occurrence of
suppressed intermediate states, particularly in models featuring stiff helix segments. This research
significantly enhances our understanding of the complex interactions governing helix bundling
phenomena within the context of helical homopolymers.

Keywords: semiflexible polymers; conformational phases; phase transitions; helical polymers; Monte
Carlo simulations; microcanonical analysis

1. Introduction

This study explores the use of microcanonical inflection point analysis [1,2] to un-
derstand structural transitions in the helical homopolymer model [3]. This model is a
coarse-grained representation of polymer chains that exhibit helical secondary structures
and helix-bundled tertiary structures. Helical structures are common in various biopolymer
systems [4–7]. Finite-size effects are an essential aspect of the behavior of these systems.
Although the mechanisms responsible for helix formation vary [8], we aim to study the
general thermodynamic behavior in a context-independent manner.

The model used in this study consists of a set of effective potentials that coordinate
the interaction of the repeating polymer units. These potentials include representations of
bonded interactions, non-bonded interactions, bending angle sensitivity, and torsion angle
sensitivity. Polymer structures are generated using Markov chain Monte Carlo simulation
with the Metropolis–Hastings algorithm [9,10]. The efficiency of this simulation approach
can be improved by including multiple parallel replicas that are permitted to exchange
replicas at regular intervals [11–13]. In this study, the array of simulation threads is chosen
to span a two-dimensional array of conditions defined by temperature and a carefully cho-
sen model parameter that influences structure formation [14,15]. Hamiltonian exchanges
are performed between threads with different model parameters [16–18]. Throughout the
simulation, each thread produces a canonical ensemble of structures and tracks canonical
averages for parameters of interest.

Although the canonical data have previously been analyzed to provide a basic under-
standing of structural transitions and stability [19], this paper extends that work by using
histograms of canonical ensemble quantities to generate microcanonical results pertaining
to each possible structure’s energy. Microcanonical analysis is used to gain deeper insight
into the nature of the observed structural transitions. With the microcanonical ensemble,
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inflection point analysis is employed to identify and classify structural transitions [20].
Furthermore, the nature of these transitions can be better understood by considering a
two-dimensional structural prevalence plot, which shows the relative prevalence of various
structure types within each microcanonical ensemble [21–24].

2. Materials and Methods
2.1. Model

This study makes use of a helical homopolymer model that generates polymer struc-
tures exhibiting both secondary and tertiary structures. This model demonstrates phase
transitions between random-coil, globular, and various helical structure phases. The model
incorporates four potentials: the finitely extensible nonlinear elastic (FENE) potential [25],
the Lennard-Jones (LJ) potential [26], the bending potential, and the torsion potential [27].

Bonded monomers interact according to the FENE potential, which is described by
Equation (1). The strength of this potential depends on the distance between monomers,
r, where a minimum potential is achieved for r = r0 ≡ 1. The bond length is not allowed
to deviate from this equilibrium value by more than R ≡ 3/7. Any move that separates
two bonded monomers by more than r + R or brings them closer than r− R is immediately
rejected.

Non-bonded monomers interact according to the LJ potential if they are separated
by a distance of less than rc ≡ 2.5σ. The LJ potential is described by Equation (2), where
an energetic minimum is found for r = r0. This is achieved with σ ≡ 2−1/6r0. To avoid a
discontinuity at r = rc, we add an energy shift of vc = 4[(σ/rc)12 − (σ/rc)6].

The polymer chain is additionally subject to torsion and bending potentials, which
precipitate the formation of helical secondary structures. These potentials are described
by Equations (3) and (4), respectively. In the case of the torsion potential, each series of
three bonds has a dihedral angle τ. An energy penalty is assigned based on each dihedral
angle’s variance from τ0 ≡ 0.873. Similarly, a series of two bonds can be used to calculate
their bending angle, θ. The bending energy is calculated from a bending angle’s deviation
from θ0 ≡ 1.742.

vFENE(r) = log{1− [(r− r0)/R]2}. (1)

vLJ(r) = 4[(σ/r)12 − (σ/r)6]− vc. (2)

vbend(θ) = 1− cos(θ − θ0). (3)

vtor(τ) = 1− cos(τ − τ0). (4)

The total energy of a polymer with configuration X can be calculated from a summation
over all of the potentials as shown in Equation (5). When included in the Hamiltonian, each
potential is scaled by an energy scale. These energy scales are denoted as SFENE, SLJ, Sτ ,
and Sθ .

H(X) = SFENE ∑
i

vFENE(ri i+1) + SLJ ∑
i>j

vLJ(rij)

+ Sτ ∑
l

vtor(τl) + Sθ ∑
k

vbend(θk). (5)

The energy scale used for each potential is chosen from commonly used values in the
literature [21,28]. These values are: SFENE ≡ −(98/5)r2

0R2/2 = −1.8, SLJ ≡ 1, and
Sθ = 200. The value of Sτ varies between simulation threads and influences the structure
types produced by a particular simulation.

2.2. Two-Dimensional Parallel Tempering

The polymer model is simulated using a parallel tempering Monte Carlo approach
that employs a two-dimensional array of threads with varied temperatures and Hamilto-
nians. This approach is used to simulate polymers comprising 30 and 40 monomers. The
30-monomer simulation consists of 160 threads, with 16 temperature values ranging from
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0.2 to 1.6. These values are chosen such that the lowest temperature will settle into a distinct
low-energy structure type and the highest temperature threads will produce random coil
structures that easily free a replica from any local free energy minimum. Intermediate
temperatures are spaced exponentially so that successive temperatures differ by the same
factor. There are 10 threads with each temperature value; these threads each simulate
a unique Hamiltonian with Sτ values between 5 and 14. The presumptive ground state
structure varies as a function of Sτ , so a single simulation is able to span several different
system types. The range of values for Sτ is chosen so that the simulation would include
single-helix systems, two-helix bundles, and intermediate systems between them. A second
set of simulations is run for 40-monomer chains with a similar computational setup. In the
40-monomer simulations, Sτ varies between 5 and 25. Exchanges between threads i and
j are accepted with a probability given in Equation (6). In this equation, βi is the inverse
temperature in thread i, Xi is the polymer configuration coming from thread i, and Hi is
the Hamiltonian for thread i.

Pexch = min

(
1,

eβi Hi(Xi)eβ j Hj(Xj)

eβi Hi(Xj)eβ j Hj(Xi)

)
. (6)

Each simulation thread uses a standard Metropolis algorithm with displacement
updates between exchanges. Updates displace a single random monomer by a random
amount. Updates are accepted with a probability Pacc = min(1, e−β∆E), where β = 1/(kBT).
We use units in which kb ≡ 1. To improve simulation efficiency, three different global
updates are included. For a global displacement, a monomer is chosen at random and
every monomer beyond the chosen one is displaced by the same amount. To perform a
bending update, a single monomer is randomly selected and all subsequent monomers
rotate around an axis perpendicular to the chosen monomers neighboring bonds. Torsion
update chooses a single monomer and rotates all monomers beyond the chosen monomer
around an axis formed by the previous bond. The use of global updates and the 2D parallel
tempering approach leads to efficient sampling of the entire range of energies for systems
with a variety of tertiary structure formations.

As data are collected, each simulation thread tracks canonical ensemble average values
for several measurable order parameters, most notably, energy and an order parameter,
q ≡ ∑|i−j|>6(vLJ(rij))/ ∑|i−j|≤6(vLJ(rij)). This order parameter measures the ratio of the
total Lennard-Jones interaction between monomers separated by more than six bonds to the
total Lennard-Jones interaction between monomers separated by six or fewer bonds. This
parameter increases when the chain is folded to include interactions between monomers
separated by many bonds. It is useful for distinguishing different helix bundling phases.

2.3. Multiple Histograph Reweighting

This paper focuses on a microcanonical analysis of helical polymer systems. We
characterize phase transitions by analyzing the microcanonical entropy and its derivatives
as functions of energy. The microcanonical entropy, defined as S(E) = kB log(g(E)), is
calculated by reweighting the histograms produced by individual simulation threads. A
simulation thread, i, with temperature, T, produces a histogram, hi(E). This thread’s
histogram estimates the density of states using gi(E) = h(E)eβE. The accuracy of this
estimate at a given value of E naturally depends on the number of counts in that energy bin.

If histograms from threads at different temperatures overlap sufficiently, they can be
weighted to produce a density of states that spans all energies generated by all threads,
g(E). To achieve this, we start with an initial guess for the partition function of Z = 1
for all temperatures. Next, an estimate of ĝ(E) is computed using Equation (7), where
Mi represents the total number of measurements in thread i. The partition function esti-
mate can be improved using Equation (8). These equations are applied iteratively until
results converge.

ĝ(E) = ∑i hi(E)

∑i MiZ−1
i e−βiE

. (7)
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Zi = ∑
E

ĝ(E)e−βiE. (8)

In practice, the values of g(E) are too large to work with directly, so the logarithms of g(E)
and Zi are used instead.

From the density of states, the microcanonical entropy can be recalculated. We then
employ the Savitzky–Golay technique [29] to remove noise from S and calculate its first
three derivatives while preserving the underlying trends. The derivatives of S, denoted
as β(E) ≡ dS/dE, γ(E) ≡ d2S/dE2, and δ(E) ≡ d3S/dE3 are used to analyze phase
transitions.

Microcanonical inflection point analysis can be used to identify phase transitions and
determine their order. In the absence of phase transitions, S(E) and its derivatives will be
monotonic functions that alternate between increasing and decreasing, with all derivatives
asymptotically approaching zero. An n-th order phase transition in a finite system will
be exhibited as a region of minimal sensitivity within the (n − 1)-th derivative of the
microcanonical entropy. This behavior is illustrated in Figure 1, where sample data are
used to illustrate the inflection point or region of least sensitivity seen in the first derivative
of the S(E). This inflection point corresponds to a second-order phase transition and is
visible in panel (b). The second-order phase transition can also be identified by analyzing
the higher-order derivatives. In panel (c), the transition manifests as a peak approaching
zero and it becomes a zero-crossing in panel (d).

Figure 1. Illustration of example data for microcanonical inflection point analysis. The vertical blue
line marks the transition energy for a second-order phase transition. The entropy S is provided in
panel (a). Panels (b–d) give the first, second, and third derivatives of the entropy, respectively.
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We can further use the density of states to calculate canonical results with higher
resolution than initially sampled. The histogram of energies for a canonical ensemble with
inverse temperature, β, can be calculated from the density of states using h(E) = g(E)e−βE.
From this histogram, the average energy can be computed E = ∑ h(E)E / ∑ h(E). By
performing this calculation for an array of temperatures, we can determine the specific heat
from the temperature derivative of the ensemble average energy, CV = dE/dT.

2.4. Two-Dimensional Density of States

In addition to recording the energy histogram for each thread, a two-dimensional
histogram along E and a carefully selected order parameter are also recorded for each
temperature thread. In this study, the order parameter q is chosen. This parameter measures
the Lennard-Jones interaction between monomers separated by more than six monomers
relative to the interaction with monomers less than or equal to six bonds. For the helical
homopolymer system, this order parameter serves as a measure of the helix segment
bundling. A two-dimensional analog of the microcanonical entropy can be calculated from
these histograms using Equation (9).

g(E, q) = ∑i hi(E, q)

∑i MiZ−1
i e−βiE

. (9)

Cross-sections of the density of states can be extracted from g(E, q) and scaled by g(E)
to determine the relative prevalence of various structure types as a function of E. The
structural prevalence for a particular value of q is calculated from p(E, q) = g(E, q)/g(E).

3. Results

In this section, key findings from this study are presented. Phase transitions are
identified and classified by plotting the microcanonical entropy and its derivatives. For
several example systems, the transition signals observed in the microcanonical analysis
are compared with those in the canonical analysis. These phase transitions can be further
understood by examining multiple cross-sections of a two-dimensional representation of
the density of states across energy and q. We begin by presenting data for an array of
simulations in which all polymers have a length of N = 30 and will discuss polymers with
N = 40 in Section 3.2.

3.1. Microcanonical Results

In Figure 2, data are provided for three distinct system types all with length, N = 30.
The first column, Figure 2a,d,g,j,m, presents data pertaining to a simulation in which
Sτ = 5. Here, random coil structures are observed at high energy and two-helix bundles
appear at low-energy. The single-helix phase is not dominant for any energy range. The
rightmost column, Figure 2c,f,i,l,o, pertains to simulations with Sτ = 13. This system
generates distinctly single-helix low-energy structures. The center column, Figure 2b,e,h,k,n,
represents systems with Sτ = 8. This system is intermediate to the other two, producing
both single-helix and two-helix structures at low energies. Ultimately, the lowest-energy
structures for this system are two-helix bundles. Further discussion on the specific makeup
of the structural phases for these systems will be provided in Section 3.1.1.

In the top row of Figure 2, panels (a)–(c), the canonical ensemble specific heat is given
as a function of that ensemble’s average energy, E. Phase transitions typically correspond
to peaks in the specific heat. A single strong peak is evident in each system shown here.
Each peak represents the transition to the lowest-energy structure type. In panel (a), an
additional phase transition is visible as a shoulder at a higher energy than the prominent
peak. Panel (b) also exhibits a nearly hidden shoulder at a higher energy than the primary
peak. These specific heat plots serve as a reference against which inflection points in the
microcanonical quantities can be compared.

The microcanonical entropy, S, is given for three different values of Sτ in Figure 2d–f.
The absence of inflection points in the microcanonical entropy suggests that there are no
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first-order phase transitions in these systems. The derivatives of the microcanonical entropy
are presented in the bottom three rows, panels (g)–(o).

Figure 2g–i gives β. A region of decreased sensitivity is evident in panel (h). This re-
gion, apparent in the second derivative of S, corresponds to a second-order phase transition.
This transition continues to be seen in the higher-order derivatives as peaks approaching
zero. Additionally, this transition is observable in panel (b) as a peak in the specific heat.

All three plots of γ in Figure 2j–l feature inflection points that correspond to third-
order phase transitions. In panel (j), two distinct inflection points align well with the peak
and shoulder observed in the specific heat plot in panel (a). In panel (k), we see the peak
associated with the second-order transition as well as an inflection point at higher energy.
Again, the transitions in the microcanonical entropy plots align closely with the peak and
shoulder in the specific heat. In panel (l), a single inflection point is present signifying a lone
third-order transition. This transition again aligns with a transition present in the specific
heat. Each of the third-order transitions, represented as regions of decreased sensitivity in
the γ plots, can be clearly identified as inverted peaks in the δ plots from Figure 2m,n.

Figure 2. (a–c) For three different values of Sτ , the canonical ensemble specific heat is given as a
function of each ensemble’s average energy. The microcanonical entropy is given in (d–f). The first
(g–i), second (j–l), and third (m–o) derivatives of microcanonical entropy are given as a function of
energy. All panels in this figure represent polymers of length N = 30.
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Not only are the transitions more easily identified using microcanonical analysis when
compared to the canonical representation in the top row, but the transition order can be
inferred from the order of derivative that first shows a region of minimal sensitivity.

A broader range of systems is explored in Figure 3. Panel (a) presents β for systems
with Sτ values ranging from 5 to 14. Although subtle, inflection points corresponding to
second-order transitions are discernible for Sτ of 8, 9, and 10. These transition energies
are more easily identified by considering Figure 3b, which shows the second derivative of
the microcanonical entropy, γ. In this figure, the three second-order transitions occur at
transition energies of −19.6, −21.6, and −23.1 for the Sτ = 8, 9, and 10 curves, respectively.

Figure 3. (a) For each value of Sτ in the N = 30 simulation, the first derivative of microcanonical
entropy is given as a function of energy. Panels (b,c) present the second and third derivatives of the
microcanonical entropy, respectively.

All systems display inflection points in γ corresponding to third-order transitions with
approximate transition energies of 7.0. Additionally, lower-energy third-order transitions
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are observed for Sτ values of 5, 6, 7, and 11, with transition energies of −20.8, −15.5, −16.5,
and −26.2, respectively. These third-order transition energies are most easily identified by
examining the inverted peaks in δ, as shown in panel (c). For Sτ = 12, a region of minimal
sensitivity at E = −27.9 represents a fourth-order transition.

3.1.1. Two-Dimensional Density of States

Structural prevalence is a useful way to visualize the full behavior of a system. In
Figure 4, we analyze structural prevalence as a function of both E and order parameter
q. Single-helix bundles have little to no LJ interaction between monomers separated by
more than six bonds and therefore have a q value of approximately 0.01. In contrast,
for two-helix bundles, each helix segment has monomers that interact with monomers
from the other segment, more than six bonds away. Two-helix bundles tend to have q of
approximately 0.35.

In Figure 4a–d, each panel gives the relative prevalence of structures across a space of
E and q. A vertical slice through a single value of energy can be thought of as a normalized
histogram of the structures found at each q. Bright yellow regions represent values of q
which are highly represented in a single microcanonical ensemble with energy E. Darker
regions represent more sparsely populated regions of the q vs. E space. No structures were
observed within the bins that are colored white. Because the color scale is logarithmic,
small changes in shade can represent rather large differences in structural prevalence. For
this reason, panels (a)–(d) should be seen as more qualitative results. In order to read
quantitative information from this chart, Figure 4e–h give horizontal cross-sections from
each two-dimensional prevalence plot.

In all four Sτ examples given, the lowest-energy structures are made up entirely of
structures within a single q bin. Figure 4a–c represents systems with Sτ values between
5 and 12. In all of these cases, the lowest energy structures have a value of q of 0.36
corresponding to two-helix bundles. As Sτ increases, the energetic advantage for folding
decreases, and the energy of the ground state two-helix bundle approaches that of the lowest
energy single-helix structures. At Sτ = 14, single-helix structures become energetically
preferable to two-helix bundles. For this reason, the lowest energy populated bin in panel
(d) occurs at q ≈ 0.

As energy increases, structural variability increases as well. For the two-helix bundles,
this effect is very apparent; as E increases the variability in q also increases. We see
that when structures are constrained with a stronger torsion potential (Sτ), this structure
variability increase is less dramatic than in the more weakly constrained cases. For Sτ = 5,
there is a secondary peak at relatively low energy and q ≈ 0.5. This secondary peak
corresponds to two-helix bundles in which the two ends of the polymer begin to wrap
around each other instead of remaining constrained to their own helix segment. Within
the range of Sτ values explored within this study, these structures are never the dominant
structure type. The increase in structural variability with increasing energy is not captured
as well in the single-helix case (Sτ = 14), because variability does not as quickly affect the
value of q.

Figure 4e–h show horizontal cross-sections from the above graphs. Each curve gives
the prevalence of structures of a particular value of q as a function of energies. In each case,
the highest value of q given corresponds to two-helix bundles and the lowest corresponds
to single-helix structures. In panels (a)–(c) we see the q = 0.36 curve trend toward 1 at
low energy, as all structures are represented within this single q bin. As energy increases,
varied two-helix bundle states begin to increase in prevalence and at some point, single-
helix structures also begin to increase in prevalence. The energy at which the single-helix
structures increase in prevalence corresponds well to the low-energy phase transitions seen
in Figure 3. Single-helix structures dominate at low energies in (d), but as energy increases
we do see the presence of some two-helix bundles.
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Figure 4. (a–d) A two-dimensional structural prevalence plot is given for several interesting values of Stau in the N = 30 simulation. In these figures, the structural
prevalence is given as a function of structure energy and order parameter, q. Low-energy two-helix bundles have q ≈ 0.35 and single-helix structures have q ≈ 0.01.
Below, in (e–h), cross-sections of the two-dimensional structural prevalence plot are given. Values of q are chosen such that p(E) is shown for two-helix bundles,
single-helix structures, and an array of intermediate structures.
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Of particular interest is the suppression of intermediate states between single-helix
structures and two-helix bundles. These intermediate states are depicted by green curves in
panels (e)–(h). Figure 4e makes it clear that for the third-order phase transition previously
noted in the Stau = 5 system, intermediate states between the single-helix phase and the
two-helix phase have significant populations. At larger values of Sτ , the intermediate states
are increasingly suppressed within the energetic window surrounding the transition from
single-helix to two-helix bundle structures.

The Sτ = 12 system has a fourth-order phase transition from the single-helix phase to
the two-helix bundle at E = −25. In Figure 4g, the intermediate structures are completely
unrepresented as the representation of the single-helix phases decreases and that of the
two-helix phase increases. At Sτ = 14, the presumptive ground state structure is a single-
helix segment. The microcanonical analysis shows that there is no low-energy phase
transition present in this system. However, we can observe interesting behavior with
the presence of some two-helix bundles at energies slightly above those of lowest energy
single-helix structures. Although they are never the dominant structure type, their presence
should not be ignored. In this system, we also observe significant suppression of the
intermediate states.

Figure 5 provides some example structures from the simulation with an Sτ of 8.
Although the structures and energies differ in simulations with other values of Sτ , they
are qualitatively arranged in the same manner. Organized single-helix structures occur at
low E and low q, whereas organized two-helix bundles occur at low E and q ≈ 0.35. As
energy increases, some structural variability is evident in the structures presented above.
This variability manifests as inconsistent spacing of monomers in successive helix turns
and variable spacing between helical segments. At higher energies, variability in the joint
between helix segments is also found. As E ≈ −18, one helix segment of a two-helix bundle
can be longer than the other, and at E ≈ 20, random coil structures become dominant and
structures no longer have distinct helix segments. The Sτ = 8 system was chosen because
there is a significant representation of the intermediate structures falling in between the
single-helix phase and the two-helix bundle phase. As Sτ increases, this intermediate region
becomes so sparse that a simple time series of structures from all canonical ensembles fails
to capture a representative sample.

Figure 5. Example structures from the Sτ = 8 simulation. Structures are plotted in the approximate
location of their E and q.
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3.2. Alternate System Size

In addition to 30-monomer systems, the same approach has been applied to a system
with 40 monomers. Figure 6 presents the one-dimensional microcanonical quantities for the
40-monomer helical homopolymer model. The range of Sτ values is adjusted to stabilize
the same tertiary structures observed in the 30-monomer results. At Sτ = 8.3, two-helix
bundles are the sole low-energy structure type produced and at Sτ = 25, single-helix
structures dominate at low energies. Intermediate values of Sτ are also presented.

Figure 6. (a) For each value of Sτ in the N = 40 simulation, the first derivative of microcanonical en-
tropy is given as a function of energy. (b,c) give the second and third derivatives of the microcanonical
entropy, respectively.
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We can see in Figure 6a that systems with Sτ of 8.3, 11.7, 15, and 18.3 all exhibit
second-order phase transitions at energies of 3.0, −10.4, −18.8, and −27.5, respectively.
These correspond to the transition between low-energy two-helix bundles and a single-helix
phase, which dominates at an intermediate energy range. For Sτ = 21.7, the transition
between two-helix bundles and single helices is a third-order transition occurring at an
energy of −34.9.

Systems with Sτ values of 18.3, 21.7, and 25.0 clearly exhibit a third-order transition
at E ≈ 10. This corresponds to a transition between random-coil structures and more
organized single-helix structures. Although this transition is present in all of the systems
studied here, the signal is obscured by the peak corresponding to lower-order transitions
seen in the Sτ = 8.3, 11.7, and 15.0 cases. Evidence of this transition is most easily observed
as an inverted peak in the δ plot from panel (c).

Figure 7 presents a two-dimensional prevalence representation for the N = 40 systems.
Qualitatively, the behavior of the 40-monomer system closely resembles that of the N = 30.
At Sτ = 8.3, there is a strong low-energy representation of two-helix bundle structures
at q ≈ 0.35. With a slight increase in energy, some structures emerge with a q value of
approximately 0.6; this peak corresponds to three-helix bundles. These structures are poorly
stabilized and form with several different orientations. Although there are single-helix
structures formed for Sτ = 8.3, they are only represented in the relatively higher energy
range of E > −30.

For systems with Sτ greater than 8.3, several changes become apparent. At Sτ = 15
the presence of three-helix bundles completely disappears. The lowest energy for the
single-helix phase decreases and eventually approaches that of the two-helix bundles in
the Sτ = 21.7 case. As the increased Sτ brings the energies of the two-helix and single-
helix phases closer together, intermediate structures become increasingly entropically
suppressed. This effect is evident at Sτ = 15 when considering the green curves in panel (f).
The Sτ = 21.7 system demonstrates this effect even more strongly, with intermediate
phases nearly entirely unrepresented in our simulation. The low-energy dominance of the
single-helix structures is apparent in the Sτ = 25 system. In panels (d) and (h), very few
two-helix bundle structures are observed.
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Figure 7. (a–d) A two-dimensional structural prevalence plot is given for several interesting values of Stau in the N = 40 simulation. In these figures, the structural
prevalence is given as a function of structure energy and order parameter, q and E. Low-energy two-helix bundles have q ≈ 0.35 and single-helix structures have
q ≈ 0.01. Below, in (e–h), cross-sections of the two-dimensional structural prevalence plot are given. Values of q are chosen such that p(E) is shown for two-helix
bundles, single-helix structures, and an array of intermediate structures.
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4. Discussion

Microcanonical inflection point analysis is gaining wider acceptance in the realm of
computational statistical physics, particularly for its ability to provide a nuanced under-
standing of phase transitions [30–33]. In our study, this method has proven useful for
identifying, classifying, and understanding structural transitions in helical homopolymers.
The flexibility of the approach means that it can be applied wherever the density of states
is known, suggesting its utility across a broad range of disciplines including condensed
matter physics and biological systems. Additionally, we find that incorporating an order
parameter to differentiate phases allows us to produce a two-dimensional prevalence plot,
which offers additional insights into the physical behavior of the system under study.

In this paper, we expand on earlier research on the helical homopolymer model, where
phase transitions were identified and a hyperphase diagram was constructed through
analysis of canonical quantities [28]. We employ microcanonical inflection point analysis to
gain a deeper understanding of phase transitions in polymers with lengths of N = 30 and
N = 40. Specifically, we are able to more precisely measure phase transition energies and
determine the order of each transition. The energy scale for torsion potential, Sτ , is tuned
to achieve varying helical segment stiffness [3]. Across all systems investigated in this
paper, we find a third-order phase transition between single-helix structures and random
coil structures. In cases where there is an energetic preference for two-helix bundles, an
additional transition from single-helix to two-helix bundles occurs at lower energy. The
order of this transition is influenced by the stiffness of the helix: stiffer systems show second-
order transitions, whereas more weakly confined systems exhibit third-order transitions.
Despite the variations in transition energy and helix stiffness, the order of phase transitions
remains consistent across both system sizes examined in this study.

Utilizing two-dimensional prevalence plots, we observe varying degrees of entropic
suppression for intermediate states between the two-helix and single-helix phases. Gener-
ally, we find that systems with stiffer helical segments exhibit greater entropic suppression
of these intermediate structures. This trend holds true for both the 30-monomer and the
40-monomer systems. The entropic suppression of these intermediate states stems from
their significantly increased energy levels in models with stiff helical segments. From a
practical standpoint, this entropic suppression complicates accurate sampling when us-
ing traditional one-dimensional replica exchange schemes. In our case, incorporating a
two-dimensional replica exchange scheme greatly improved simulation efficiency.

5. Conclusions

This study underscores the utility of microcanonical inflection point analysis for
studying complex systems. We used this method to analyze phase transitions in the helical
homopolymer model. We found consistent third-order transitions between single-helix and
random coil structures across different system sizes. Additionally, systems with an energetic
preference for two-helix bundles exhibited an extra transition, the order of which varied
based on helix stiffness. The methodology proved to be a robust tool for understanding
phase transitions, thereby broadening its applicability across statistical systems.

There are several intriguing avenues for future work related to this publication; al-
though the utility of microcanonical inflection point analysis is evident, this technique
could benefit from further formalization and refinement to promote its broader adoption
across various disciplines. With respect to the helical homopolymer model, conducting a
microcanonical analysis of longer chains would permit a more comprehensive investigation
of transitions in systems featuring stable three-helix bundle.
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