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Abstract: Phenylalanine ammonia-lyase (PAL, EC 4.3.1.24) is common in plants and catalyzes
the formation of trans-cinnamic acid and ammonia via phenylalanine deamination. Recombinant
Bambusa oldhamii BoPAL3 protein expressed in Escherichia coli was immobilized on an electrospun
nanofibrous membrane using dextran polyaldehyde as a crosslinker. The immobilized BoPAL3
protein exhibited comparable kinetic properties with the free BoPAL3 protein and could be recy-
cled for six consecutive cycles compared with the free BoPAL3 protein. The residual activity of the
immobilized BoPAL3 protein was 84% after 30 days of storage at 4 ◦C, whereas the free BoPAL3
protein retained 56% residual activity in the same storage conditions. Furthermore, the resistance
of the immobilized BoPAL3 protein to chemical denaturants was greatly increased. Therefore, the
BoPAL3 protein can be immobilized using the natural dextran polyaldehyde crosslinker in place of
the conventional chemical crosslinker. Nanofibrous membranes made from polyvinyl alcohol (PVA),
nylon 6, and chitosan (CS) are incredibly stable and useful for future industrial applications.

Keywords: Bambusa oldhamii; chitosan (CS); dextran polyaldehyde; electrospun nanofiber; enzyme
kinetics; nylon 6; phenylalanine ammonia-lyase (PAL); polyvinyl alcohol (PVA)

1. Introduction

As one of the well-researched enzymes in all plants, phenylalanine ammonia-lyase
(PAL, EC 4.3.1.24, renamed from EC 4.3.1.5), catalyzes the non-oxidative deamination
process of phenylalanine to produce trans-cinnamic acid and ammonia (Figure 1) [1–3].
PAL proteins are generally encoded by multiple gene families in many plants, such as
Arabidopsis thaliana [4,5], Bambusa oldhamii [3,6–10], and Nicotiana tabacum [2]. PAL activity
is detectable in nearly all plants as well as in cyanobacteria [11], some fungi [12], and
limited microorganisms, such as Photorhabdus luminescens [13]. Cinnamic acid is used as the
starting precursor for thousands of phenylpropanoid compounds, including anthocyanins,
coumarins, flavonoids, lignins, and so on [14–16]. The benefits of trans-cinnamic acid for
human health are widely acknowledged, and these benefits include anti-aging, anti-cancer,
anti-diabetes, anti-fungal, and even anti-inflammatory effects [17–20]. Thus, there is a
possibility of using trans-cinnamic acid as a therapeutic agent for many human diseases,
such as Alzheimer’s disease, tuberculosis, and viral infections [21]. Indeed, trans-cinnamic
acid, according to recent studies, is a potential chemical that can help to reduce obesity in
animal models [22,23]. Furthermore, cinnamic acid derivatives are frequently utilized as
scents and UV-blocking chemicals in the cosmetic sector [24] and also have anti-bacterial,
anti-cancer, and antioxidant properties [25–28].
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scents and UV-blocking chemicals in the cosmetic sector [24] and also have anti-bacterial, 
anti-cancer, and antioxidant properties [25–28]. 

Substrate specificity by the phenylalanine ammonia-lyase enzyme is deeply studied 
in Bambusa oldhamii [3,6–10]. Four BoPAL genes are heterologously expressed in Escherichia 
coli or Pichia pastoris, and all recombinant proteins exhibit undisputed PAL activity [3]. 
The active site of all four BoPAL enzymes is composed of a conserved Ala-Ser-Gly tripep-
tide, which is converted into the 4-methylididene-imidazole-5-one (MIO) cofactor [7–10]. 
Recombinant BoPAL1 protein is highly specific to phenylalanine as are many PAL pro-
teins from dicot plants [8,9]. Recombinant BoPAL2 and BoPAL3 proteins show minimal 
tyrosine ammonia-lyase (TAL) activity when using tyrosine as the substrate to produce p-
coumaric acid and ammonia [3,7]. Recombinant BoPAL4 protein can not only use phenyl-
alanine and tyrosine as substrates but also uses 3,4-dihydroxyphenylalanine (DOPA) as a 
substrate to yield caffeic acid and ammonia [10]. The His-123 in the BoPAL4 protein is the 
major site of substrate selectivity for tyrosine, and the recombinant BoPAL4-H123F mu-
tant exhibits reduced TAL activity and enhanced PAL activity [10]. The specific TAL ac-
tivity of the BoPAL3 protein is approximately a quarter that of the BoPAL4 protein [3]. 
The substrate selectivity site in the BoPAL3 protein is Phe-134, which is the same as in the 
BoPAL2 protein, although more studies should be conducted to investigate more sub-
strate selectivity sites among these enzymes. 

Enzymes are highly specific biocatalysts in nature that generally operate under mild 
reaction conditions, instead of chemical synthesis; however, free-form enzymes are more 
delicate and sensitive to temperature extremes, pH, and the presence of chaotropic chem-
ical substances [29,30]. From a commercial viability point of view, these biocatalysts have 
low operational stability and difficulty recycling, resulting in high prices and low appli-
cation values. In order to overcome the above limitation for enzymes in free form, the 
enzyme immobilization technique now offers a useful tool to improve enzyme perfor-
mance in industrial applications [31–34]. Functional nanomaterials, such as nanofibers, 
nanoparticles, and nanocomposites, have drawn interest and attention because of their 
distinctive characteristics and intriguing uses in enzyme immobilization techniques [35–
37]. Owing to their high surface-to-volume ratio, nanofibrous membranes can offer a siz-
able area for protein immobilization [36,38]. The electrospinning technique is a convincing 
method that has emerged in recent years that uses an electrostatic force to transform pol-
ymer solutions into nanofibrous membranes [38–40]. Previous studies have shown that 
immobilized enzymes have increased the resistance to extreme pH and temperature [41], 
increased reusability [42], extended storage stability, enhanced enzymatic activities 
[38,43], and so on. 

 
Figure 1. BoPAL3 enzyme catalyzes the deaminated conversion of L-phenylalanine to trans-cin-
namic acid. 

Several studies have used a whole-cell conversion strategy to produce trans-cinnamic 
acid in Escherichia coli [44] and Corynebacterium glutamicum [45]. In 2021, Petroselinum cris-
pum PAL protein was first entrapped on a polylactic acid matrix using the emulsion elec-
trospinning technique [46]. In this present work, we utilized another membrane material 
to immobilize the BoPAL3 protein using the electrospinning technique to produce trans-

Figure 1. BoPAL3 enzyme catalyzes the deaminated conversion of L-phenylalanine to trans-cinnamic acid.

Substrate specificity by the phenylalanine ammonia-lyase enzyme is deeply studied in
Bambusa oldhamii [3,6–10]. Four BoPAL genes are heterologously expressed in Escherichia coli
or Pichia pastoris, and all recombinant proteins exhibit undisputed PAL activity [3]. The
active site of all four BoPAL enzymes is composed of a conserved Ala-Ser-Gly tripeptide,
which is converted into the 4-methylididene-imidazole-5-one (MIO) cofactor [7–10]. Re-
combinant BoPAL1 protein is highly specific to phenylalanine as are many PAL proteins
from dicot plants [8,9]. Recombinant BoPAL2 and BoPAL3 proteins show minimal tyrosine
ammonia-lyase (TAL) activity when using tyrosine as the substrate to produce p-coumaric
acid and ammonia [3,7]. Recombinant BoPAL4 protein can not only use phenylalanine and
tyrosine as substrates but also uses 3,4-dihydroxyphenylalanine (DOPA) as a substrate to
yield caffeic acid and ammonia [10]. The His-123 in the BoPAL4 protein is the major site
of substrate selectivity for tyrosine, and the recombinant BoPAL4-H123F mutant exhibits
reduced TAL activity and enhanced PAL activity [10]. The specific TAL activity of the
BoPAL3 protein is approximately a quarter that of the BoPAL4 protein [3]. The substrate
selectivity site in the BoPAL3 protein is Phe-134, which is the same as in the BoPAL2 protein,
although more studies should be conducted to investigate more substrate selectivity sites
among these enzymes.

Enzymes are highly specific biocatalysts in nature that generally operate under mild
reaction conditions, instead of chemical synthesis; however, free-form enzymes are more
delicate and sensitive to temperature extremes, pH, and the presence of chaotropic chemical
substances [29,30]. From a commercial viability point of view, these biocatalysts have low
operational stability and difficulty recycling, resulting in high prices and low application
values. In order to overcome the above limitation for enzymes in free form, the enzyme
immobilization technique now offers a useful tool to improve enzyme performance in in-
dustrial applications [31–34]. Functional nanomaterials, such as nanofibers, nanoparticles,
and nanocomposites, have drawn interest and attention because of their distinctive charac-
teristics and intriguing uses in enzyme immobilization techniques [35–37]. Owing to their
high surface-to-volume ratio, nanofibrous membranes can offer a sizable area for protein
immobilization [36,38]. The electrospinning technique is a convincing method that has
emerged in recent years that uses an electrostatic force to transform polymer solutions into
nanofibrous membranes [38–40]. Previous studies have shown that immobilized enzymes
have increased the resistance to extreme pH and temperature [41], increased reusability [42],
extended storage stability, enhanced enzymatic activities [38,43], and so on.

Several studies have used a whole-cell conversion strategy to produce trans-cinnamic
acid in Escherichia coli [44] and Corynebacterium glutamicum [45]. In 2021, Petroselinum crispum
PAL protein was first entrapped on a polylactic acid matrix using the emulsion electro-
spinning technique [46]. In this present work, we utilized another membrane material
to immobilize the BoPAL3 protein using the electrospinning technique to produce trans-
cinnamic acid. We first cloned the cDNA and constructed a heterologous expression system
to produce the Bambusa oldhamii recombinant BoPAL3 protein [3]. Polyvinyl alcohol (PVA)
and nylon 6 polymers were selected as support materials for the BoPAL3 enzyme due
to their high biocompatibility and good structural stability in aqueous solutions [38]. In
this work, we created PVA/nylon 6 fibers with the help of chitosan (CS), which gives
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the fibers amino groups. By using the periodate-mediated oxidation method to produce
dextran polyaldehyde, two reactive aldehyde groups were created that might be employed
as a natural crosslinker for immobilizing the BoPAL3 enzyme onto a nanofiber membrane,
which is safe, biodegradable, and environmentally friendly. PAL enzymatic activity, pH,
temperature, kinetic parameters (kcat and Km), storage stability, and chemical stability of
the free and immobilized BoPAL3 proteins were studied.

2. Materials and Methods
2.1. Chemicals

Chitosan (low molecular weight (MW), 50–190 kDa), Coomassie Brilliant Blue R-250
(CBR) dye, dextran (MW 200 kDa), nylon 6, phenylalanine, polyvinyl alcohol (PVA, MW
85 kDa–124 kDa), and trans-cinnamic acid were purchased from MilliporeSigma, Burlington,
MA, USA. Ampicillin, isopropyl β-D-thiogalactopyranoside (IPTG), and Luria–Bertani (LB)
medium were obtained from Cyrusbioscience Inc., New Taipei City, Taiwan. Bio-Rad
(Hercules, CA, USA) was the supplier of protein assay dye reagents, precision plus
proteinTM dual colors standards, and chemical reagents for protein electrophoresis. Other
chemicals used in this study were regent- or ACS-grade.

2.2. Expressions of Recombinant BoPAL3 Protein in Escherichia coli

The TOP10 strain of E. coli was used to propagate and overexpress the pTrcHis-BoPAL3
plasmid [3]. A total of 250 mL LB media (0.5% yeast extract, 1% tryptone, and 1% NaCl)
and 100 µg/mL of ampicillin were used to inoculate the cells, which were, then, shaken
at 200 rpm at 37 ◦C. When an OD600 reached 1.0 from 0.6, a final IPTG dose of 1 mM was
added to induce the BoPAL3 protein expression, and then, transferred to a 30 ◦C shaker
for a further 6–8 h incubation [47–49]. Centrifugation at 6000× g for 20 min was used to
harvest the E. coli cells, and the pellets were kept at −20 ◦C, in a freezer, until use.

2.3. Preparation of Recombinant BoPAL3 Protein

Recombinant BoPAL3 protein was affinity purified on a Ni-NTA resin (Cyrus Bio-
science Inc., New Taipei City, Taiwan) and chelated with nickel (Ni2+) ions. E. coli cells
stored at −20 ◦C were resuspended in 20 mL lysis buffer containing 50 mM Tris–HCl
(pH 7.5), 10 mM imidazole, 100 mM NaCl, and the indicated amount of protease in-
hibitors [3]. An Ultrasonic Processors Sonicator 3000 (Misonix, Farmingdale, NY, USA)
was used to sonicate cells, which mechanically disrupts the cells. The cell lysate was cen-
trifuged at 10,000× g for 10 min. A Ni-NTA column was used to apply the supernatant, and
buffers containing either 50, 125, 250, or 500 mM of imidazole were used to competitively
elute the recombinant BoPAL3 protein. The purity of eluted protein was estimated using
polyacrylamide gel electrophoresis.

2.4. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was carried
out based on the previously described method [3,38]. Gels were stained with Coomassie
Brilliant Blue R-250 dye after electrophoresis for 30 min, and then, de-stained using 20%
methanol. Gel images were taken using a Gel Doc XR+ Imaging System (Bio-Rad, Hercules,
CA, USA).

2.5. Preparation of Nanofibrous Membrane by Electrospinning Method

Polyvinyl alcohol (PVA), nylon 6, and chitosan (CS) polymer solutions were prepared
as 4% (w/v), 8% (w/v), and 1% (w/v), respectively [38]. Three polymer mixes were
combined and pushed into a spinneret using a 5 mL syringe with a 21 G/13 mm diameter,
which was operated by an NE-300 pump (New Era Pump Systems, Farmingdale, NY,
USA). The spinneret needle was charged with a voltage of 13.8 kV, using a high voltage
power supply, Model FES-COS (Falco, New Taipei City, Taiwan). The needle tip and
collector plate were 13 cm away. Then, the roller collector covered in baking paper was
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used to format electrospun PVA/nylon 6/CS nanofiber membranes. The membranes were
observed using a thermal field emission scanning electronic microscope (FE-SEM, JEOL
JSM-7800F, Akishima, Tokyo, Japan), and the diameter of the nanofiber membrane was
measured by ImageJ software Version 1.53n (NIH, Bethesda, MD, USA) [38].

2.6. Preparation of Dextran Polyaldehyde Crosslinker

Dextran polyaldehyde crosslinker was produced based on Hong et al. [38]. A total of
1 g dextran and 2.3 g sodium metaperiodate were dissolved in 30 mL sodium phosphate
buffer (50 mM, pH 6.0) and oxidized in the dark for 2 h. The reaction was terminated
by adding 100 µL of ethylene glycol followed by dialyzing in sodium phosphate buffer
overnight. The dextran polyaldehyde crosslinker was kept at 4 ◦C, in a refrigerator, un-
til use.

2.7. Immobilized BoPAL3 Protein on Nanofiber Membrane by Crosslinking

A total of 3 mg nanofiber membrane was crosslinked with purified recombinant
BoPAL3 protein, with vigorous shaking at 150 rpm for 10 min. To optimize the immobiliza-
tion parameters, dextran polyaldehyde crosslinker percentages of 1 to 5% and incubation
times of 3 to 24 h were examined. The BoPAL3/PVA/nylon 6/CS nanofiber membrane
was rinsed with sodium phosphate buffer before its residual PAL activity was analyzed.

2.8. Biochemical Properties Analysis of Free and Immobilized BoPAL3 Proteins

The protein concentration was analyzed using the protein–dye binding assay [6–8], with
bovine serum albumin (BSA) as the reference. PAL activity was assayed by the synthesis of
trans-cinnamic acid, with increased absorbance at the wavelength of 290 nm [6–8]. A total of
50 mM Tris–HCl (pH 8.5), 12.1 mM L-phenylalanine, and an aliquot of recombinant BoPAL3
protein were used as the ingredients in the reaction mixture, which had a total volume of
1.0 mL. After 30 min incubation at 37 ◦C, the assay mixture was stopped by adding 100 µL
of 6N HCl [9,10]. D-phenylalanine was used as the blank substrate in the parallel assay.
The trans-cinnamic acid produced in micromoles per minute was the definition of one PAL
activity unit (U). To optimize the reaction temperature, PAL activity assays were carried
out at standard reaction conditions in a range of temperatures between 25 and 70 ◦C. To
optimize the reaction pH, PAL activity assays were carried out at 37 ◦C for 30 min using a
universal buffer (40 mM acetic acid, 40 mM boric acid, and 40 mM phosphoric acid) in a
pH range from 5 to 11. The maximum PAL activity at optimum conditions was normalized
to 100%.

L-phenylalanine in concentrations between 0.12 and 12.1 mM was utilized in order
to determine the kinetic characteristics of the BoPAL3 enzyme. A substrate saturation
plot was performed with a 10 min incubation time at 37 ◦C [9,47]. The Michaelis–Menten
equation [50] and double reciprocal plot [51] were employed to compute the Km, Vmax, and
kcat values.

2.9. Determination of Reusability and Denaturant Tolerance of Immobilized BoPAL3 Protein

The reusability of immobilized BoPAL3 proteins on the nanofiber membranes was
determined under standard PAL activity assay conditions. Reactions were performed for
30 min at 37 ◦C using 12.1 mM phenylalanine as the substrate. The immobilized BoPAL3
protein was resuspended in a new substrate mixture after each cycle in order to measure its
residual activity over the course of six cycles.

In denaturant tolerance experiments, PAL activities were compared between free and
immobilized BoPAL3 proteins, with or without chemical denaturant. Activity assays were
carried out using the standard PAL reaction mixture in the presence or absence of 6 M urea,
2% SDS, or 40% ethanol. PAL activity of the free or immobilized BoPAL proteins without
chemical denaturant was measured and normalized as 100%.
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2.10. Data Statistical Analysis

All experiments were conducted individually in triplicate and data are expressed
as mean ± standard deviation (SD, error bars). Graphs and statistical analysis, one-way
analysis of variances (ANOVA), were obtained by using SigmaPlot software version 11.0
(Systat Software Inc., San Jose, CA, USA).

3. Results and Discussion
3.1. Preparation of Recombinant BoPAL3 Protein by Affinity Chromatography

The BoPAL3 gene was isolated using a PCR-based cloning method and deposited in the
GenBank® database (NIH, Bethesda, MD, USA) with the accession number: HM009319 [6].
Two exons (2142 bp open-reading frame) in the BoPAL3 gene were separated by one 96 bp
intron and encoded a 713 amino acid polypeptide (Figure 2A). The full-length BoPAL3
gene was subcloned into the pTrcHisA plasmid and expressed in the Escherichia coli Top10
strain [3]. The recombinant BoPAL3 protein was affinity-purified and competitively eluted
using a range of imidazole buffers (Figure 2B). In the 125 mM imidazole buffer treatment,
the BoPAL3 recombinant protein was isolated to almost homogeneity with a molecular
mass of about 75 kDa (Figure 2B). The purification result in this work was comparable to
a previous report [3]. The E. coli expressed the BoPAL3 protein as an active PAL enzyme,
which was, then, used to study the parameters of the enzyme immobilization on the
electrospun nanofiber membranes.
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Figure 2. Preparation of recombinant BoPAL3 protein. (A) Exons (rectangle) and intron (line) in the
BoPAL3 gene are shown to scale and the number of base pairs (bp) is indicated. (B) Ni-NTA resin
was used to affinity-purify the N-terminal His-tagged recombinant BoPAL3 protein, which was then
separated on a 10% SDS-polyacrylamide gel and stained with Coomassie Brilliant Blue G-250. Mr,
Bio-Rad precision plus protein standards; CE, crude extract; SP, soluble protein; UN, unbound protein.
Recombinant BoPAL3 proteins that were bound to Ni-resin were eluted by various imidazole buffers,
at the indicated concentrations.
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3.2. Crosslinking Condition Optimization

For electrospinning polyvinyl alcohol (PVA)/nylon 6/chitosan (CS) nanofiber mem-
branes, the ideal flow rate, applied voltage, and distance from spinneret to collector were
0.10 mL/h, 13.8 kV, and 13 cm, respectively [38]. In this study, we continued to follow the
standard conditions to obtain electrospun nanofiber membranes, and the diameter of the
nanofiber membrane was approximately 120 nm, which was comparable to a previous
study [38].

Polysaccharides are common polymeric compounds in nature and have many positive
aspects, such as biocompatibility, biodegradability, and so on. One of the major applica-
tions of polysaccharides is three-dimensional (3D) crosslinking, which is used in life or
pharmaceutical science instead of using a chemical crosslinker, such as disuccinimidyl
suberate (DSS), glutaraldehyde, and so on [38,52]. Dextran polyaldehyde was successfully
used to crosslink the pectinase enzyme onto the surface of chitosan nanoparticles [53]. As
a macromolecule crosslinking agent, dextran polyaldehyde was created and utilized to
encapsulate BoPAL3 recombinant protein in the PVA/nylon 6/CS nanofibrous membrane.
The hydroxyl groups in dextran were oxidized by sodium periodate to yield dialdehyde
groups (at C-2 and C-3 positions of glucose), crosslinking the amine groups on the BoPAL3
protein in the presence of chitosan [38,53]. Recently, chitosan has become a popular ma-
terial for fabricating membranes [54,55]; however, in this study, chitosan was used as an
amine donor to enhance the crosslinking reaction. To optimize the dextran polyaldehyde
concentration, the PAL activity was determined at a crosslinker range of 1% to 5%, with
the maximum PAL activity of the immobilized BoPAL3 protein measured using the 2%
crosslinker treatment (Figure 3A). A decrease in enzyme activities was detected at higher
crosslinker concentration (3–5%) treatments, indicating that over-crosslinking may impair
the protein structure of the BoPAL3 enzyme as well as its enzyme function. Similar results
were observed and published previously [38,53]. To optimize the dextran polyaldehyde
crosslinking time, the PAL activity was measured from 3 to 24 h, and the optimum ac-
tivity of immobilized BoPAL3 protein was detected after the 9 h treatment (Figure 3B).
Consistently, an increase in the treatment period may cause over-crosslinking, leading to a
reduction in enzyme activity [56,57]. As a result, 2% dextran polyaldehyde combined with
a 9 h crosslinking treatment was appropriate for immobilizing the BoPAL3 protein onto the
PVA/nylon 6/CS nanofibrous membranes.
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Figure 3. Optimal conditions for crosslinking BoPAL3 proteins on electrospun nanofiber membranes.
(A) Dextran polyaldehyde concentrations ranging from 1% to 5% were combined with recombinant
BoPAL3 protein for 3 h, and then, the PAL enzymatic assay was performed under standard conditions.
(B) Dextran polyaldehyde of 2% was combined with recombinant BoPAL3 protein for 3 to 24 h,
and then, the PAL enzymatic assay was performed under standard conditions. The highest PAL
activity by the immobilized BoPAL3 protein was normalized to 100%. Experiments were conducted
independently in triplicate, and data are expressed as mean ± standard deviation (S.D.; error bars).
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3.3. Temperature and pH Stability of Free and Immobilized BoPAL3 Proteins

The optimum temperature of the free BoPAL3 enzyme was 50 ◦C [3]. In this study,
PAL enzyme assays were conducted at temperatures ranging from 25 to 80 ◦C in or-
der to optimize the reaction temperature for the free and immobilized BoPAL3 proteins
(Figure 4A). The BoPAL3 enzyme performed well at temperatures between 50 ◦C and 60 ◦C,
when it was free and immobilized, respectively (Figure 4A). The immobilized BoPAL3
protein showed better temperature stability than the free BoPAL3 protein, suggesting that
the BoPAL3 protein can be stabilized and function at higher temperatures through protein
immobilization, which was comparable to a previous study [38].
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The optimum pH for the free BoPAL3 enzyme was 8.5 [3]. In this study, PAL enzyme
assays were conducted at a pH range of 5 to 11, in order to optimize the reaction pH for the
free and immobilized BoPAL3 proteins (Figure 4B). Both the free and immobilized BoPAL3
proteins performed best at pH 8.5 (Figure 4B), indicating that protein immobilization has
no effect on pH, which was comparable to a previous study [38].

3.4. Kinetic Parameters of Free and Immobilized BoPAL3 Proteins

To study the binding affinity between the substrate and enzyme, the Km value was
obtained from the substrate saturation curve based on the Michaelis–Menten equation [50],
and from the double reciprocal plot based on the Lineweaver–Burk equation [51]. The lower
the Km value, the higher the affinity toward its substrate. The kcat value is the turnover
number, which represents the product mole number per enzyme mole number per second.
The higher the kcat value, the better the catalytic activity. Therefore, the kcat/Km value
represents the overall catalytic efficacy of the enzyme.

The kcat values of the free and immobilized BoPAL3 enzymes were 1.09 s−1 and
1.28 s−1, respectively, which were similar to the BoPAL1 enzyme and were lower than for
the BoPAL2 enzyme (Table 1). The Km values of the free and immobilized BoPAL3 enzymes
were 200 µM and 268 µM, respectively, which were lower than for the BoPAL1 and BoPAL2
enzymes (Table 1). The Km values of the immobilized BoPAL1–3 proteins were marginally
greater than the values for the free BoPAL1–3 proteins, presumably due to the crosslinking
effects that limit the permeability of the matrix [38,58–60]. This overall kinetic parameter
for the free BoPAL proteins was comparable with a previous study [3].
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Table 1. Kinetic comparison between free and immobilized BoPAL1–3 proteins.

Enzymes
kcat (s−1) Km (µM) kcat/Km (s−1 µM−1)

Reference
Free Immobilized Free Immobilized Free Immobilized

BoPAL1 1.01 1.21 518 534 1.91 × 10−3 2.2 × 10−3 [38]
BoPAL2 4.02 3.99 329 379 1.23 × 10−2 1.05 × 10−2 [38]
BoPAL3 1.09 1.28 200 268 5.45 × 10−3 5.29 × 10−3 This study

The calculated kcat/Km values for the free and immobilized BoPAL3 proteins were
5.45 × 10−3 s−1 µM−1 and 5.29 × 10−3 s−1 µM−1, respectively (Table 1). In terms of
the catalytic property estimated by the kcat/Km value, the free and immobilized BoPAL3
proteins were ranked second among the three BoPAL proteins (Table 1). As a result, similar
kcat/Km values were measured for both the free and immobilized BoPAL proteins. This
suggests that through the effects of crosslinking, BoPAL proteins do not significantly reduce
catalytic effectiveness and specificity.

3.5. Reusability and Storage Stability of Free and Immobilized BoPAL3 Proteins

The recyclability of immobilized enzymes is one of the important factors in industrial
applications. PAL activity was measured under standard reaction conditions at pH 8.5 with
12.1 mM Phe for 30 min. After six consecutive cycles of PAL activity measurements, the
immobilized BoPAL3 protein still had 36% residual activity (Figure 5A), indicating that the
BoPAL3/PVA/nylon 6/CS nanofibrous membrane was capable of being reused.
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Figure 5. Properties of immobilized BoPAL3 protein. (A) Immobilized BoPAL3 activity was assessed
under standard assay conditions on electrospun nanofiber membranes for 30 min. Afterward, it was
transferred to the subsequent reaction mixture and tested again, six times in total. (B) The storage
integrity of free and immobilized BoPAL3 proteins was monitored at 4 ◦C and PAL activity was
measured under standard assay conditions every 3 days up to 30 days. The highest PAL activity
of the free or immobilized BoPAL3 protein was normalized to 100%. Experiments were performed
independently and in triplicate, and data are expressed as mean ± S.D. (error bars).

The free and immobilized BoPAL3 proteins were kept at 4 ◦C to assess their storage
stability, and after 3 to 30 days, the PAL activity was determined under standard reaction
conditions at pH 8.5 with 12.1 mM Phe for 30 min (Figure 5B). The residual activity of
the free BoPAL3 protein was 56%, while the immobilized BoPAL3 protein retained 84%
residual activity. The enhanced storage stability of the immobilized BoPAL3 protein may
be, presumably, due to the crosslinking to the BoPAL3/PVA/nylon 6/CS nanofibrous
membrane, preventing the potential strain effects at the active site [38,53]. Thus, immobi-
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lization of the BoPAL3 protein on the membrane can prolong its stability in long-term cold
storage conditions.

3.6. Denaturant Tolerance Assay between Free and Immobilized BoPAL3 Proteins

Enhancement of denaturant tolerance is another positive aspect of protein immobiliza-
tion applications [38,59,60]. To compare denaturation resistance, the residual activity of
the free and immobilized BoPAL3 proteins was approximately 16% and 38%, respectively,
for 6 M urea-treated moieties, 10% and 22%, respectively, for 2% SDS-treated moieties, and
12% and 78%, respectively, for 40% ethanol-treated moieties (Figure 6). This result indicates
that BoPAL3/PVA/nylon 6/CS nanofibrous membranes are relatively resistant to these
three chaotropic chemicals [38,59,60].
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Figure 6. Denaturant tolerance assay of free and immobilized BoPAL3 proteins. Relative PAL activity
of free or immobilized BoPAL3 proteins was performed under standard assay conditions with 2%
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absence of denaturant was normalized to 100%. Experiments were performed independently and in
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4. Conclusions

Recombinant BoPAL3 protein was purified and immobilized on electrospun nanofiber
membranes using dextran polyaldehyde as a natural/polymeric crosslinker to produce
trans-cinnamic acid. The resulting immobilized BoPAL3 protein showed superior thermal
stability at 60 ◦C, catalytic activity, reusability, denaturation resistance, and storage stability
for 30 days over the free BoPAL3 protein. In addition, 2% dextran polyaldehyde treatment
for 9 h was the best condition to conjugate BoPAL3 protein onto the PVA/nylon 6/CS mem-
brane. Overall, this immobilization technology uses biocompatible natural materials, has
serious environmental benefits, and increases the utility of BoPAL proteins in comparison
to typical chemical crosslinking reagents.
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