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Abstract: The research community is actively exploring ways to create cost-efficient and high-
performing electrocatalysts for the oxygen evolution reaction. In this investigation, an innova-
tive technique was employed to produce heteroatom-doped carbon containing NiCo oxides, i.e.,
HC/NiCo oxide@800, in the form of a three-dimensional hierarchical flower. This method involved
the reduction of a bimetallic (Ni, Co) metal–organic framework, followed by carefully controlled
oxidative calcination. The resulting porous flower-like structure possess numerous advantages, such
as expansive specific surface areas, excellent conductivity, and multiple electrocatalytic active sites
for both hydrogen and oxygen evolution reactions. Moreover, the presence of oxygen vacancies
within HC/NiCo oxide@800 significantly enhances the conductivity of the NiCo substance, thus
expediting the kinetics of both the processes. These benefits work together synergistically to enhance
the electrocatalytic performance of HC/NiCo oxide@800. Empirical findings reveal that HC/NiCo
oxide@800 electrocatalysts demonstrate exceptional catalytic activity, minimal overpotential, and
remarkable stability when deployed for both hydrogen evolution and oxygen evolution reactions in
alkaline environments. This investigation introduces a fresh avenue for creating porous composite
electrocatalysts by transforming metal–organic frameworks with controllable structures. This ap-
proach holds promise for advancing electrochemical energy conversion devices by facilitating the
development of efficient and customizable electrocatalytic materials.

Keywords: hetero atom; porous carbon; calcination; electrocatalyst; water splitting

1. Introduction

A sustainable way to produce hydrogen is water electrolysis. Until now, only 4% of
H2 has been produced through water splitting [1–3]. The overall electrochemical water
splitting includes hydrogen evolution at the cathode and oxygen evolution at the anode,
which is represented in the following equations [1–6]:

In acidic solution
At cathode : 2H+ + 2e− → H2 (1)

At anode : H2O→ 2H+ +
1
2

O2 (2)

Overall reaction : H2O→ H2 +
1
2

O2 (3)

In neutral and alkaline solution

At cathode : 2H2O + 2e− → H2 + 2OH− (4)
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At anode : 2OH− → H2O +
1
2

O2 + 2e− (5)

Overall reaction : H2O→ H2 +
1
2

O2 (6)

The kinetics of the overall reaction depend on an oxygen evolution reaction (OER),
as OER is a kinetically sluggish process [4–8]. Therefore, an efficient electrocatalyst to
overcome the sluggish kinetics of OER and thus reduce the activation energy barrier of both
the OER and HER (hydrogen evolution reaction) is required. In this regard, commercial
electrocatalysts based on noble metal (Pt) and metal oxides (RuO2/IrO2) are available,
in terms of which Pt is effective regarding HER and RuO2/IrO2 is effective regarding
OER [8–11]. But due to their high cost and low availability, their large-scale production
is hindered. Therefore, there is an urge to synthesize non-precious electrocatalysts. With
innumerable research works, it was found that non-noble metals, such as transition metal
alloys, oxides, hydroxides, (oxy) hydroxides, carbides, phosphides, and chalcogenides were
found to perform as effective electrocatalysts regarding HER and OER, and moreover, these
materials are cheap and are abundantly available [12–18]. Among the above mentioned
materials, transition metal oxides, in particular, bimetal oxides (where ‘A’ and ‘B’ represent
transition metals) are preferred due to their variable valence state, tunable morphology,
and enhanced redox stability. The bimetal oxide formed from Ni and Co was found to be
efficient regarding HER and OER performances due to their synergistic effect produced by
multiple valence states and their resistance regarding alkaline electrolyte [19–23].

Metal oxides along with carbon materials can perform as a proper electrocatalyst,
as carbon materials form a base structure and support the metal oxide growth on it with
suitable morphology [24,25]. Instead of using pure carbon material, heteroatom-doped
carbon (HC) materials like nitrogen-, oxygen-, phosphorous- and sulfur-doped carbon
materials are effective, as these dopants (i) enhance the catalytic performance by increasing
the interfacial charge transfer between the bimetal oxides and HC, and (ii) improve the
stability of the electrocatalysts by binding well with the bimetallic species. The catalytic
activity of these hybrid electrocatalysts (bimetal oxides along with HC) depends on their
morphology, structure, dimension, crystal structure orientation, and the number of ac-
tive sites. Therefore, an appropriate synthetic strategy should be adopted to extract the
electrocatalytic property of the synthesized materials to their fullest [26–30].

There are many reports related to Ni- and Co-based electrocatalysts that could effi-
ciently enhance the water-splitting process. Martini et al. [31]. synthesized nanocomposites
with Ni and Co salts along with MoSe2 and MoS2 through hydrothermal and calcination
methods. The work revealed that the synthesized nanocomposites, i.e., NiCoMo, CoMoSeS,
CoMo, and NiCoMoSe, act as effective electrocatalysts regarding OER, with an overpo-
tential at 10 mA cm−2 current density of 356, 375, 375, and 390 mV, respectively. Wen
et al. [32] synthesized two different electrochemically active materials, viz., CoNi-ZIF-67
and hybrid CoNi-ZIF-67@Ti3C2Tx, through co-precipitation reaction. The work reports
that the hybrid material, CoNi-ZIF-67@Ti3C2Tx, is effective regarding OER, showing a
lower overpotential of 275 mV at a current density of 10 mA cm−2 than the pure CoNi-
ZIF-67 (overpotential = 341 mV at ηj = 10 mA cm−2). Zhang et al. [33] synthesized two
different electrocatalysts, CoNi-MOFs and CoNi-MOFs-DBD, with multiple active sites
by creating a metal–organic framework (MOF) and adopting low-temperature dielectric
barrier discharge plasma (DBD). The electrocatalysts, CoNi-MOFs-DBD, show a lower
overpotential of 563 and 168 mV, respectively, at a current density of 40 mA cm−2 regarding
OER and overpotential of 322 and 203 mV, respectively, at a current density of 10 mA cm−2,
regarding HER.

In all these works, the authors modified the metallic counterpart by preparing alloys,
oxides, hydroxides, sulfurization, selenization, and creating oxygen vacancies, but the
carbon part is not given much importance. Hence, in this work, we emphasized on both
metal and carbon parts. In case of metal, we preferred the bimetallic oxides of Ni and Co to
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create multiple vacancies. The carbon part, containing different heteroatoms, was prepared
from a polymer source (polybenzoxazine). The combination of heteroatom-containing
carbon with bimetallic oxides can result in a 3D hierarchical structure when hydrothermal
and calcination methods are adopted. The performance of the electrocatalyst regarding
OER and HER was examined and discussed in detail.

2. Materials

Eugenol (98%), and paraformaldehyde (95%) were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Ethylene diamine (99%), potassium hydroxide (KOH) (85%), sodium
hydroxide (NaOH) (97%) and dimethyl sulfoxide (DMSO) (99.9%) were purchased from
Duksan Chemicals Co., Ltd., Suji-gu Yongin, Republic of Korea. Nickel nitrate hex-
ahydrate, cobalt nitrate tetrahydrate, polyvinylidene fluoride (PVDF) (99%) and N, N-
dimethylformamide (DMF) (99.8%) were purchased from Duksan Chemicals Co., Ltd.,
Republic of Korea. All chemicals were used without further purification.

3. Methods
3.1. Synthesis of Hetero-Doped Carbon from Benzoxazine

The production of hetero-doped carbon from benzoxazine involves a multi-step proce-
dure commencing with the synthesis of the benzoxazine monomer, referred to as Eu-Bzo.
Eu-Bzo is derived through Mannich condensation, where ethylenediamine (3 g), eugenol
(16.42 g), and paraformaldehyde (6 g) were taken in 1:2:4 molar ratio and reacted for 3 h
at 120 ◦C. The resulting product, containing Eu-Bzo, is precipitated in NaOH solution
and left to dry completely overnight. Subsequently, the monomer undergoes a step-wise
curing process up to 250 ◦C, transforming into a self-curing thermoset polymer known as
poly(Eu-Bzo). The hetero-doped carbon was synthesized from this polymer. The formed
polymer is subjected to heating at 600 ◦C in a nitrogen atmosphere, effectively eliminating
oxygen and leaving behind a carbon skeleton. Next, the carbonized material undergoes
activation with aqueous KOH (the ratio of KOH and carbon material is 2:1). This activation
process introduces heteroatoms, such as nitrogen and oxygen, into the carbon skeleton.
Further activation of the resulting material occurs in a tubular furnace at 600 ◦C, leading to
the production of the final product, HC (hetero-doped carbon).

3.2. Synthesis of HC/NiCo Oxides

The synthesis of HC/NiCo oxide@600 begins with the dissolution of 10 mg of HC,
Ni(NO3)2·6H2O, and Co(NO3)2·4H2O in a mixed solvent of H2O/DMF/EtOH (1:1:1, v/v)
with a 2:1 mole ratio. The solution is stirred at room temperature for 60 min. This step allows
the metal salts to dissolve and interact with each other. Afterward, the resulting suspension
is aged at room temperature for 12 h while air is bubbled throughout the process. This
step oxidizes Ni and Co, which is necessary for the formation of the HC/NiCo oxide@600
composite. Next, the solution is sealed in a 100 mL Teflon-lined stainless-steel autoclave
and heated at 120 ◦C for 24 h. This step causes the metal salts to react and form the
HC/NiCo oxide@600 composite. Once cooled to room temperature, the black powder
formed is washed several times with DMF and EtOH and then dried overnight at 100 ◦C.
This step removes any residual solvent and metal salts from the composite. For HC/NiCo
oxide@600, the as-synthesized HC/NiCo (30 mg) is transferred to a tube furnace and
heated up to 600 ◦C at a rate of 5 ◦C min−1 under a nitrogen atmosphere for 2 h. This step
further stabilizes the composite and gives it its final properties. Sample-700, Sample-800,
and Sample-900 were prepared using the same procedure, but with different calcination
temperatures of 700, 800, and 900 ◦C, respectively (Scheme 1).
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3.3. Fabrication of Working Electrode

The working electrodes were fabricated using four different materials: HC/NiCo
oxide@600, HC/NiCo oxide@700, HC/NiCo oxide@800, and HC/NiCo oxide@900. The
first step was to grind HC/NiCo oxide@600 and PVDF in a 95:5 weight ratio with N-
methyl-2-pyrrolidone to create a homogeneous paste. This paste was then drop-casted
onto Ni foam with a 1 cm2 surface area and dried for 48 h at 100 ◦C in a hot air oven.
The other electrodes were prepared in a similar manner. Once the working electrodes
were fabricated, they were evaluated for their electro-catalytic activity using a standard
three-electrode system with 1 M KOH as the electrolyte. The electrochemical worksta-
tion CS2350 was used with Hg/HgO electrode and Pt foil as the reference and counter
electrodes, respectively. The system was purged with high-purity O2 before the OER
assessment, and the bubbling was maintained during the electrochemical experiment.
All potentials were calibrated against the reversible hydrogen electrode (RHE) using the
equation ERHE = EHg/HgO + 0.0592 pH + 0.098 V. The electrochemical workstation automat-
ically compensated for 90% of the iRs drop in each polarization curve. Various tests were
performed, including cyclic voltammetry (CV) measurements at different scanning rates,
linear sweep voltammetry (LSV) at a constant rate of 5 mV s−1, and Tafel slope calculations
from the linear part of overpotential versus current density in log scale (log |j|).

4. Instrumentation

The prepared materials, i.e., HC/NiCo-600, HC/NiCo-700, HC/NiCo-800, and
HC/NiCo-900 were characterized by various physicochemical techniques such as field emis-
sion scanning electron microscopy (FESEM, Urbana, IL, USA) with energy-dispersive X-ray
spectroscopy (EDS), high-resolution transmittance electron microscopy (HRTEM, Tokyo,
Japan), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption–desorption
isotherms and X-ray photoelectron spectroscopy (XPS). FESEM was carried out on a Hitachi
S-4800 (Tokoy, Japan) equipped with EDX at an accelerating voltage of 4 kV. TEM/HRTEM
images were performed with an FEI-Tecnai TF-20 transmission electron microscope with
an operating accelerating voltage of 120 kV (Hillsboro, OR, USA). XRD measurements
were carried out using a PANalytical X’Pert3 MRD diffractometer with monochromatized
Cu Kα radiation (λ = 1.54 Å) at 40 kV and 30 mA and were recorded in the range from
10 to 80◦ (2θ) (Malvern, UK). The Raman spectrum was recorded on an XploRA Micro-
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Raman spectrophotometer (Horiba, Palaiseau, France) with a range of 500 to 4000 cm−1.
Nitrogen sorption isotherms were measured at −197 ◦C using a Micromeritics ASAP 2000.
Before the experiments, the samples were dried at 120 ◦C and evacuated for 8 h in flowing
argon at the flow rate of 60 standard cubic centimeters per minute at 140 ◦C. Surface
area, pore size, and pore volumes were obtained from isotherms using the conventional
Brunauer–Emmet–Teller (BET Raymond Ave., Fullerton, CA, USA) and Barrett–Joyner–
Halenda (BJH) equations. XPS spectra were achieved using a K-Alpha (Thermo Scientific,
Waltham, MA, USA). CasaXPS software version number (2.3.22PR1.0) was used for the
deconvolution of the high-resolution XPS spectra. All the instrumentation analyses were
undertaken at the core research support center for natural products and medical materials
of Yeungnam University.

5. Results and Discussion

The 3D hierarchical flower-like structure of HC/NiCo oxide@800 was synthesized
through a two-step process. Initially, a hydrothermal reaction at 120 ◦C for 24 h introduced
bimetallic components into the carbon framework. Subsequently, the HC/NiCo material
underwent calcination at various temperatures ranging from 600 to 900 ◦C. It was observed
that the optimal temperature for obtaining the desired 3D structure was 800 ◦C. Thus,
the calcination temperature significantly influences the formation of the 3D hierarchical
morphology. To gain further insights into the structure and composition, the HC/NiCo
oxide samples formed at different calcination temperatures (600, 700, 800, and 900 ◦C) were
subjected to preliminary analysis.

5.1. XRD

X-ray diffraction (XRD) analysis was used to investigate the phase purity and crys-
tallinity of HC/NiCo oxide at various calcination temperatures. The XRD patterns of
HC/NiCo, calcined at different temperatures, are shown in Figure 1a. The figure reveals
that the diffraction peaks correspond to the cubic planes of NiCo oxide [(111), (220), (311),
(400), (511), and (620)] at distinct 2θ values. These peaks indicate that the NiCo oxides are
well crystallized and have a high degree of phase purity (JCPDS no. 73-1702). In addition
to the NiCo peaks, a broad diffraction peak is observed between 15 and 30◦. This peak is
attributed to the characteristic (002) plane of the hexagonal graphitic structure of carbon.
The broadening of this peak suggests that the carbon in HC/NiCo oxide is not highly
graphitized [34–37]. This is likely due to the presence of the bimetallic NiCo oxide, which
disrupts the ordered arrangement of the carbon atoms. As a result, the carbon in HC/NiCo
oxide has a lower degree of graphitization than pure carbon [11,14,19].

The results of the XRD analysis show that HC/NiCo oxide is a highly crystalline
material with a high degree of phase purity. However, the carbon in HC/NiCo oxide is
not highly graphitized, likely due to the presence of the bimetallic NiCo oxide. This has
implications for the catalytic properties of HC/NiCo oxide, as the degree of graphitization
of the carbon can affect the activity and selectivity of the catalyst. In addition to the
XRD analysis, other techniques can be used to investigate the structure and properties of
HC/NiCo oxide. For example, SEM and TEM can be used to visualize the morphology of
the NiCo oxide and the carbon matrix. Raman spectroscopy can be used to determine the
degree of graphitization of the carbon. These techniques can provide further insights into
the structure and properties of HC/NiCo oxide, which can be used to design more efficient
and selective catalysts.
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5.2. Raman

Figure 1b illustrates the Raman spectra of HC/NiCo oxide at various calcination
temperatures. The characteristic D-band and G-band of carbon materials appear at 1336
and 1575 cm−1, respectively. The degree of graphitization of carbon materials is assessed
using the R value, which is obtained by the ID/IG peak ratio. The calculated peak intensities
between the D and G bands for HC/NiCo oxide@600, HC/NiCo oxide@700, HC/NiCo
oxide@800, and HC/NiCo oxide@900 are 1.12, 0.93, 0.93, and 0.96, respectively. This R
value indicates an increase in structural defects in the carbon material due to the inclusion
of bimetallic oxides. Furthermore, all spectra exhibit a broad peak at 619 cm−1, indicating
the formation of metal–oxygen–metal bonds [29,38–42]. The intensity of this peak is
notably more pronounced and broader in HC/NiCo oxide@800 compared to the others,
indicating that 800 ◦C is the optimal temperature for bimetallic oxide formation within the
carbon interstices.

5.3. BET Analysis

The porosity characteristics of the materials under investigation were analyzed through
BET analysis. Figure 1c,d present the N2 adsorption/desorption isotherms and pore size
distribution (PSD) for these materials. All prepared samples exhibited a typical type IV
isotherm, indicating the presence of mesopores within their structure. The overlapping
adsorption and desorption isotherms suggested the co-existence of micropores and meso-
pores in the material’s framework. The PSD analysis revealed that the majority of pores for
all samples fall within 10–50 nm in diameter. Particularly, HC/NiCo oxide@800 displayed
a significant number of pores with diameters between 3–12 nm and 26 nm. The material
synthesized at 800 ◦C demonstrated a well-distributed porous structure containing both
micropores and mesopores [42,43]. The BET surface area measurements for HC/NiCo ox-
ide@600, HC/NiCo oxide@700, HC/NiCo oxide@800, and HC/NiCo oxide@900 were 224,
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235, 286, and 240 m2 g−1, respectively. These results indicate that a calcination temperature
of 800 ◦C yielded an optimal hierarchical porous structure with a suitable surface area. This
favorable structure enables efficient ion adsorption and desorption at an accelerated rate
while maintaining robust mechanical integrity.

5.4. XPS Analysis

Figure 2 presents the results of an XPS analysis of the surface chemical composition
and valence state of HC/NiCo oxide@800. The survey spectrum (Figure 2a) confirms
the presence of C, N, O, Co, and Ni elements. The intensity of the O 1s peak is greater
than that of the N 1s peak, suggesting that the oxygen atoms come from both the carbon
surface and the formation of bimetallic oxides. To gain a deeper understanding of the
surface chemistry, the spectra for each element were deconvoluted. The high-resolution C
1s spectrum (Figure 2b) is resolved into four peaks: 284.2 eV (C=C carbon of the aromatic
ring), 285.4 eV (C–C single bond), 287.5 eV (carbonyl carbon, C=O/C–O), and 290.6 eV
(C–N carbon). The N 1s spectrum (Figure 2c) is deconvoluted into three peaks, representing
different nitrogen forms: pyridinic N at 397.8 eV, pyrrolic N at 399.6 eV, and quaternary N
at 401.3 eV. The presence of these different nitrogen species enhances the capacitance of
the material, with pyridinic and pyrrolic N participating in pseudo-capacitive interactions
and quaternary N improving the carbon material’s conductivity through efficient ion
transfer. The O 1s spectrum (Figure 2d) is deconvoluted into three peaks: a dominant
peak at 530.7 eV attributed to metal–oxygen bonds, and two smaller peaks at 531.9 and
533.1 eV corresponding to surface-adsorbed hydroxyl (–OH) and carbonyl (C–O) oxygens,
respectively. The presence of oxygen atoms enhances the wettability of the electrode
material and its overall capacitance. The bimetallic components, Co and Ni, were also
analyzed. The deconvoluted spectrum of Co 2p (Figure 2e) shows two spin states at
781.6 and 797.4 eV corresponding to Co 2p3/2 and Co 2p1/2, respectively, along with
satellite peaks indicating the coexistence of Co2+ and Co3+. Similarly, the deconvoluted
spectrum of Ni 2p (Figure 2f) exhibits two spin-orbit doublets at 854.8 and 873.1 eV,
representing Ni 2p3/2 and Ni 2p1/2 spin states, and two satellite bands indicating the
presence of Ni2+ state. The incorporation of bimetallic oxides into the carbon framework
facilitates rapid redox reactions, thereby enhancing pseudo-capacitance. Overall, the
XPS analysis demonstrates the successful integration of bimetallic oxides into the carbon
structure. This offers intriguing prospects for improved performance in energy-storage
applications [9,26,35].
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spectrum of each components.

5.5. SEM Analysis

Field-emission scanning electron microscopy (FESEM) was employed to analyze the
morphology of HC/NiCo oxide samples synthesized at different calcination temperatures.
Figure 3a–f illustrates SEM images of pristine carbon, HC/NiCo oxide at various calcination
temperatures, and the EDX spectrum of HC/NiCo oxide@800. The SEM image of pristine
carbon (Figure 3a) reveals a smooth, spherical shape, exhibiting multiple interconnected
particles of different sizes. However, after incorporating bimetallic oxides and subjecting
them to calcination, a remarkable transformation from a spherical to a flower-like structure
occurred. The flower-like morphology emerged through a process wherein the carbon ma-
terial laid the foundation in the form of a basic spherical structure, on which the bimetallic
oxides flourished, giving rise to a 2D petal-like formation that ultimately culminated in
an intricate 3D hierarchical flower-like architecture. Clearly, the calcination temperature
played a pivotal role in this transformation, as depicted in the SEM images. At 600 and
700 ◦C (Figure 3b,c), the calcination temperature was insufficient to achieve a complete
3D structure. Consequently, the flowers were inadequately formed, with noticeable in-
stances of broken petals. At 800 ◦C (Figure 3d), the optimal calcination temperature, a fully
developed 3D hierarchical flower with closely aligned petals manifested. On the other
hand, when the temperature was raised to 900 ◦C (Figure 3e), the petals clustered together,
resulting in a diminished flower morphology with abundant void spaces. Moreover, some
flower structures were damaged, yielding non-uniform shapes. These structural observa-
tions solidify the superiority of 800 ◦C as the ideal calcination temperature for obtaining a
flower-like morphology. The intricate porous network structure, consisting of interlinked
spheres with vertically aligned 2D petals, facilitates seamless charge transport and ion
diffusion. The EDX spectrum of HC/NiCo oxide@800 (Figure 3f) further corroborates the
presence of all elements (C, N, O, Co, and Ni) in their respective proportions.
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5.6. TEM Analysis

A comprehensive examination of the surface integration of HC/NiCo oxide@800 was
conducted using high-resolution transmission electron microscopy (HRTEM). The results,
presented in Figure 4a–i, encompass HRTEM images, selected area electron diffraction
(SAED) patterns, and energy-dispersive X-ray spectroscopy (EDS) maps of HC/NiCo
oxide@800. The TEM image in Figure 4a clearly exhibits a hierarchical structure with
two distinct morphologies. At its base, there is an ultra-thin porous structure, adorned
uniformly with sharp spikes throughout. The porous structure is derived from the car-
bon’s spherical shape, while the spike-like structure originates from the petal shape of the
bimetallic oxides. This finding corroborates well with the SEM results. The TEM images at
higher magnification (Figure 4b) reveals that the structure is densely packed without any
signs of aggregation. This compact and well-anchored configuration, comprising conduc-
tive carbon material infused with bimetallic oxides, facilitates highly active interfaces and
redox centers, thus enhancing supercapacitor performance. The SAED pattern (Figure 4c)
distinctly displays the different phases of the bimetallic oxides. Moreover, the EDS maps
confirm the uniform distribution of all elements, namely C, N, O, Co, and Ni, present in it.
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This substantiates that Co and Ni are uniformly embedded within the carbon framework
(Figure 4d–i).The combination of these preliminary characterizations provides strong evi-
dence that HC/NiCo oxide@800 has been successfully synthesized with the
desired morphology, making it well-suited for use as an electrode material in
electrochemical applications.
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5.7. Electrochemical Studies

The synergistic effect of bimetal oxides and heteroatom-doped carbon (HC/NiCo
oxide) is expected to enhance the OER activity in water-splitting process. The electro-
chemical performance of the synthesized materials was analyzed using a three electrode
system, where HC/NiCo oxide is used as working electrode against Hg/HgO as reference
electrode with Pt as counter electrode using 1 M KOH electrolytic solution. Figure 5 depicts
the electrochemical measurements of HC/NiCo oxide electrodes toward OER. As can
be seen from the LSV measurements (Figure 5a), the overpotential corresponding to the
current density of 10 mA/cm−2 was found to be 350 mV for HC/NiCo oxide@600; 295 mV
for HC/NiCo oxide@700; 280 mV for HC/NiCo oxide@800; and 330 mV for HC/NiCo
oxide@900. Among the prepared materials, HC/NiCo oxide@800 exhibits the lowest over-
potential of 280 mV with the lowest Tafel slope of 59.24 mV dec−1 (Figure 5b). This could be
attributed to the fact that the bimetallic oxides are enclosed by the carbon material, which
prevents the corrosion of bimetals in an alkali solution. By doing so, the carbon material
paves the way for electron transition from the transition metal oxides and thus accelerates
the oxygen evolution reaction. As can be evidenced by the SEM images, a proper morphol-
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ogy is obtained at a calcination temperature of 800 ◦C and thus HC/NiCo oxide@800 can
provide a continuous pathway for electron transfer through the hierarchical 3D morphology,
exhibiting a lower overpotential value. These overpotential values are much lower or com-
parable to previously reported works: 356 mV for NiCoMo [4]; 275 mV for CoNi-ZIF67 [5];
563 mV at 40 mA cm−2 current density for CoNi-MOFs-DBD; and 290 mV for NC-2@CoO.
Figure 5c displays the double-layer capacitance obtained from the CV measurements in the
non-Faradaic region at different scan rates. The Cdl values were found to be 11.24, 6.25, 5.88,
and 8.23 mF cm−2 for HC/NiCo oxide@600, HC/NiCo oxide@700, HC/NiCo oxide@800,
and HC/NiCo oxide@900, respectively. The higher Cdl value implies larger electrochemical
surface area (ECSA). Even though HC/NiCo oxide@600 possess larger surface area, its
surface is not effective in transferring electrons during the electrochemical process. Even
with low surface area and proper morphology, HC/NiCo oxide@800 could effectively
transfer electrons, showing enhanced electrocatalytic activity regarding OER [44–46].
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Electrochemical impedance spectroscopy (EIS) measurements were performed to
evaluate the kinetics of the electrocatalytic process. Figure 5d represents the EIS spectra of
the prepared materials. The EIS spectra reveals that among the four materials, HC/NiCo
oxide@800 has the lowest Rct (charge transfer resistance) of 1.08 Ω, evidenced by the
smallest semicircle, when compared with others (7.67 Ω for HC/NiCo oxide@600; 3.1 Ω
for HC/NiCo oxide@700; and 4.8 Ω for HC/NiCo oxide@900). This is attributed to the
fact that the interconnected 3D flower-like morphology formed from the HC and bimetal
oxides paves the way for effective electron transfer from the highly conductive HC to
bimetal oxides, thereby reducing their charge transfer resistance. The electrochemical
stability of HC/NiCo oxide@800 was measured at different potentials with varying current
densities from 10 to 100 mA cm−2 for 12 h and displayed in Figure 5e, and the inset of the
figure displays the stability at 10 mA cm−2 current density for 20 h. There is only a very
slight decrease in current densities from lower to higher region, indicating the enhanced
electrochemical stability of the prepared material. Figure 5f depicts the LSV curves before
and after the stability measurement, showing a slight shift from the original spectrum,
indicating the long-term stability of the electrocatalytic material.

The electrocatalytic behavior of the prepared materials regarding HER was measured
using LSV and depicted in Figure 6a. The figure shows an overpotential value at a current
density of 10 mA cm−2 to be 300, 250, 186 and 275 mV for HC/NiCo oxide@600, HC/NiCo
oxide@700, HC/NiCo oxide@800, and HC/NiCo oxide@900, respectively. Tafel plots were
constructed using logarithmic current density against potential, represented in Figure 6b,
and the Tafel slopes were found to be 113 mV dec−1 for HC/NiCo oxide@600; 81 mV
dec−1 for HC/NiCo oxide@700; 76 mV dec−1 for HC/NiCo oxide@800; and 96 mV dec−1

for HC/NiCo oxide@900. It could be seen that HC/NiCo oxide@800 has the lowest over-
potential value of 186 mV and a Tafel slope value of 76 mV dec−1. This proves that a
perfect 3D hierarchical structure along with sufficient surface area helps in creating more
active sites that could predominantly transfer electrons continuously via interconnected
petal-like morphology and thus result in lower overpotential value. The obtained value
regarding HER is much lower than the previously reported works; using Co and Ni: at a
current density of 10 mA cm−2, CoNi-MOFs displayed an overpotential of 322 mV, and
CoNi-MOFs-DBD-2mins displayed an overpotential of 203 mV regarding HER [47,48]. It
can be clearly visualized that bimetallic oxides along with heteroatom-doped porous carbon
synergistically improved the electrocatalytic performance. Moreover, the electrochemical
stability of HC/NiCo oxide@800 was assessed at a current density of 10 mA cm−2, repre-
sented in Figure 6c, exhibiting excellent stability for 20 h. The LSV (Figure 6d), measured
after 20 h, shows a very slight variation from the LSV measurement taken before stability
analysis. This further proves that HC/NiCo oxide@800 has excellent structural stability
that could be retained even after stability measurements.
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6. Conclusions

An efficient bifunctional electrocatalyst, HC/NiCo oxide@800, for water splitting,
was prepared successfully by adopting simple and effective hydrothermal and calcination
methods. The synergistic effect of heteroatom-doped carbon and bimetallic oxides produces
a stable three-dimensional hierarchical flower-like morphology at a calcination temperature
of 800 ◦C. This morphology effectively transfers electrons from one place to another, thereby
facilitating both the HER and OER processes involved in the water-splitting reaction. The
carbon part produced from polybenzoxazine source is very useful as it contains both
nitrogen and oxygen species along with the carbon material. As these hetero atoms are
present in the ring structure of Pbz, the carbonaceous material derived from Pbz has a stable
network of hetero atoms. The prepared electrocatalyst, HC/NiCo oxide@800, has a lowest
overpotential and a Tafel slope of 280 mV and 59.24 mV dec−1 regarding OER, and 186 mV
and 76 mV dec−1 regarding HER. The prepared electrocatalyst has a bifunctional role. The
present work proves that along with modifying the metallic counterpart, modification of
the carbon counterpart will be effective to produce a perfect electrocatalyst for hydrogen
production from water splitting. This kind of material fabrication with proper morphology
and porosity can be utilized for other energy-related applications, including supercapacitors
and sensors.
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