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Abstract: The surface modification of cellulose nanofibers (CNFs) using a 2,2,6,6-tetramethylpiperidine-
1-oxyl (TEMPO)/sodium bromide (NaBr)/sodium hypochlorite (NaClO) system was successful in
improving their hydrophilicity. Following that, we fabricated hydrogels containing carboxylated
cellulose nanofibers (c-CNFs) and loaded them with polyhexamethylene biguanide (PHMB) using
a physical crosslinking method, aiming for efficient antimicrobial uses. The morphological and
physicochemical properties of all hydrogel formulations were characterized, and the results revealed
that the 7% c-CNFs-2 h loaded with PHMB formulation exhibited desirable characteristics such as
regular shape, high porosity, good mechanical properties, suitable gel content, and a good maximum
swelling degree. The successful integration of PHMB into the c-CNF matrix was confirmed by FTIR
analysis. Furthermore, the 7% c-CNFs-2 h loaded with the PHMB formulation demonstrated PHMB
contents exceeding 80% and exhibited a prolonged drug release pattern for up to 3 days. Moreover,
this formulation displayed antibacterial activity against S. aureus and P. aeruginosa. In conclusion,
the novel approach of c-CNF hydrogels loaded with PHMB through physical crosslinking shows
promise as a potential system for prolonged drug release in topical drug delivery while also exhibiting
excellent antibacterial activity.

Keywords: carboxylated cellulose nanofibers; hydrogel; TEMPO oxidization; polyhexamethylene
biguanide hydrochloride; antimicrobial applications

1. Introduction

Nanocellulose, which can be extracted from cellulose sources such as plants, algae,
fungi, and bacteria, is a fiber with a diameter of less than 100 nm and a length in the mi-
crometer range [1,2]. It possesses numerous hydroxyl groups and exhibits high mechanical
strength. Additionally, nanocellulose has important properties, including high flexibility,
biocompatibility, non-toxicity, biodegradability, renewability, and low cost [3]. For these
reasons, nanocellulose has received a lot of attention and interest from researchers as a
suitable nanostructure for developing new high-value materials in various fields. Cellulose
nanofibers (CNFs), which consist of both amorphous and crystalline cellulose domains,
are micrometer-long entangled fibrils [4]. CNFs have many unique properties, such as
biodegradability, biocompatibility, high strength, good mechanical properties, a large spe-
cific surface area, and the ability to form a strong entangled nanoporous network with an
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abundant pore structure. Additionally, CNFs demonstrate water swelling and absorptivity
characteristics [5]. Furthermore, their nanostructure clearly illustrates their advantages as
drug carriers, including their high drug loading rate and capacity for long-term sustained
release [6]. Li X. et al. fabricated a cellulose nanomesh (CNM) using a mild acid vapor
with a dilute enzymatic hydrolysis preparation method. Their study revealed that CNMs
exhibit many benefits, such as a large specific surface area, a high water retention capacity,
a high drug loading rate, and a sustained-release effect due to their gel matrix network [6].
CNFs have the potential to be combined with other polymers, enabling the creation of
nanocellulose hydrogels for various applications, such as wound dressings, food, cosmetics,
tissue engineering, and bioprinting [7–10].

In our previous study, we developed composite nanocellulose fiber-based hydrogels
loaded with clindamycin hydrochloride with calcium ion and citric acid as crosslinking
agents. The mass ratio between the CNFs and the two polymeric precursors (low methoxy
pectin and sodium alginate) was adjusted to create the CNF-based hydrogels. However,
the dispersion of the CNFs in aqueous media remained a significant challenge. Thus, we
incorporated polyethylene glycol (PEG) into the CNFs to enhance their dispersity in the
aqueous phase [11]. It is worth noting that using CNFs alone for hydrogel fabrication
can be challenging due to their weak macroscopic structure. Nevertheless, CNFs with
functional groups such as carboxyl and amino groups can be utilized to create hydrogels
with higher porosity and water capacity [12]. Moreover, Liu Y. et al. fabricated novel
physically crosslinked composite 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-CNFs and
polydopamine hydrogels through ion crosslinking with calcium ions as a crosslinker
loaded with tetracycline hydrochloride. The TEMPO-CNFs provided a 3D framework
structure, while polydopamine served as a photothermal reinforcing agent and drug
carrier. Their results indicated that the polydopamine/TEMPO-CNF composite hydrogel
exhibited easy preparation, suitable mechanical properties, excellent control over drug
delivery, and enhanced wound healing abilities [12]. Furthermore, Liu R. et al. prepared
a nanocomposite hydrogel from carboxylated CNFs (CNF) and gelatin (G) loaded with
aminated silver nanoparticles (Ag-NH2 NPs) for antibacterial purposes and wound healing.
They observed that the crosslinking reactions involved ionic interactions between the
amino group (-NH2) and the carboxyl group (-COOH) of the components. They concluded
that the CNF/G/0.5 mg/mL of the Ag-NH2 NP hydrogel dressing showed improved
mechanical performance, excellent biocompatibility, antibacterial activity, and accelerated
wound healing [13]. Numerous studies have evidently improved the structure of CNFs
using TEMPO oxidation. This technique selectively converts C6 primary hydroxyl groups
within the cellulose molecular chain into carboxyl groups, resulting in the negatively
charged dispersion of CNFs. This dispersion exhibits notable stability and dispersibility in
water, preventing sedimentation and demonstrating ionic thixotropy [14]. Based on the
findings of Yuan Z. et al., the utilization of TEMPO oxidation and ultrasonic treatments
on algae cellulose retains the high aspect ratio of algae cellulose nanofibers while also
improving their water dispersion and stability. This provides opportunities for the creation
of ionic gels and ensures the consistent distribution of ion sites in the gel matrix. These
findings were confirmed by the application of 3D Raman imaging technology [14].

Polyhexamethylene biguanide hydrochloride (PHMB) is a biocidal cationic oligomer
with an average of 7–11 biguanide groups spaced by flexible hexamethylene segments. It
exhibits a highly effective, broad spectrum of activity against microorganisms while having
low toxicity to humans [15,16]. The chemical structure of PHMB is shown in Figure 1. It
is widely used in clinics, cleaning products, cosmetics, veterinary products, and various
industries [16–18]. The mechanism of action of PHMB involves multiple pathways. Its
interaction with negatively charged phospholipids disrupts the stability of cells’ phospho-
lipid bilayer and leads to leakage, potentially resulting in cell death. Additionally, the
entry of PHMB into bacterial cells may occur by mechanisms similar to those proposed for
cationic peptides. Upon entering the cells, PHMB’s interaction with the DNA backbone can
play a significant role in cell death by blocking the DNA replication pathway and inhibiting
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DNA repair processes [16]. PHMB demonstrates effectiveness against bacteria commonly
associated with skin infections, including Pseudomonas aeruginosa, Streptococcus pyogenes,
and Staphylococcus aureus. Commercial wound dressings that release PHMB are currently
available. These dressings utilize matrices made from a wide range of polymers, including
natural polymers such as cotton, viscose, rayon, bacterial cellulose, and extracellular matrix
biopolymers, as well as synthetic polymers such as polyesters and polyurethanes [19].
Eberlein et al. conducted a study that compared the treatment of wounds with a PHMB-
containing bacterial cellulose dressing (Suprasorb X+PHMB) to the local standard of silver
dressings in terms of pain relief. Their results revealed that Suprasorb X+PHMB was signif-
icantly more effective and efficient in eliminating the critical bacterial load [20]. Jin J. et al.
used gelatin and glycerin with glutaraldehyde as a crosslinking agent to create a PHMB
hydrogel-modified wound scaffold dressing with antibacterial activity [21]. Additionally,
Napavichayanun et al. created a biocellulose wound dressing using silk sericin and bacte-
rial cellulose loaded with PHMB. They observed that the dressing exhibited antibacterial
properties and promoted collagen synthesis during the healing process. In order to effec-
tively eliminate all tested bacteria (B. subtilis, S. aureus, MRSA, E. coli, A. baumannii, and
P. aeruginosa), a minimum loading concentration of 0.3% w/v of PHMB was required [22].
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Consequently, this study aimed to improve the dispersion of CNFs through surface
modification using TEMPO oxidation. We investigated the effect of the oxidation time
on the quality parameters of TEMPO-oxidized CNFs, including the degree of oxidation,
carboxylic acid content, and yield percentage. The structures of c-CNFs were characterized
using a field emission scanning electron microscope (FESEM), Fourier transform infrared
(FTIR) spectroscopy, and X-ray diffraction (XRD) analysis. The optimal formulation for
surface-modified CNF hydrogels was investigated. The morphology, mechanical properties,
drug loading content, in vitro drug release profile, and antibacterial effects of PHMB on
Staphylococcus aureus and Pseudomonas aeruginosa were determined. Hypothetically, the
surface modification of CNFs should improve their dispersion in aqueous media and
enable the development of surface-modified CNF hydrogels loaded with PHMB through
physical crosslinking, eliminating the need for other chemical crosslinking agents for
antimicrobial applications.

2. Materials and Methods
2.1. Materials

Cellulose nanofibers (CNFs, a white dry powder with a nominal fiber width of 50 nm)
were purchased from CelluloseLab, New Brunswick, Canada. 2,2,6,6-Tetramethylpiperidine-
1-oxyl (TEMPO 99.6%) was purchased from Sigma-Aldrich, Missouri, USA. Sodium bro-
mide (NaBr), sodium hypochlorite (NaClO), and sodium hydroxide (NaOH) were pur-
chased from Merck KGaA, Darmstadt, Germany. Polyhexamethylene biguanide (PHMB)
was purchased from Carbosynth Ltd., Compton, UK. Distilled water was used as the sol-
vent for preparing carboxylated cellulose nanofibers and hydrogels. All the other reagents
were analytical grade.

2.2. Preparation of Carboxylated Cellulose Nanofibers

Carboxylated cellulose nanofibers (c-CNFs) were synthesized via TEMPO-mediated
oxidation. Initially, a dispersion of 2 g of unmodified CNFs (u-CNFs) in 270 mL of deion-
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ized water was prepared. The u-CNF dispersion was combined with a solution of NaBr
(206 mg) and TEMPO (31.2 mg) in 20 mL of deionized water. The reaction was initiated
by adding 27 mL of 10% (w/w) NaClO, while maintaining the pH at 10.3 through the
incremental addition of 0.5 M NaOH. Stirring the mixture at room temperature (25 ± 2 ◦C)
was sustained for durations of 1, 2, and 3 h. To terminate the reaction, 1% (v/v) ethanol
was introduced, and subsequent centrifugation (8000 rpm for 30 min) and resuspension
steps were performed. Centrifugation continued until the conductivity of the purification
water reached <0.005 mS/cm. The purified c-CNF suspension was freeze-dried (Christ
Beta 2–8 LD-plus, Osterode am Harz, Germany) for 24 h [23]. The degree of oxidation and
the carboxyl group content of the c-CNF suspension were determined by conductomet-
ric titration [24].

2.3. Yield Measurement

The yield percentage of carboxylated CNFs (c-CNFs) was measured using the gravi-
metric analysis method. The percentage yield of nanocellulose was calculated using the
following Equation (1).

Yield (%) = (Wc-CNFs/Wu-CNFs) × 100% (1)

where Wc-CNFs is the weight of the dry carboxylated CNFs (g) and Wu-CNFs is the dry
weight of the initial unmodified CNFs (g).

2.4. Morphological Characterizations of u-CNFs and c-CNFs

The morphology of the u-CNFs and c-CNFs was examined using a field emission scan-
ning electron microscope (FESEM) (TESCAN CLARA, Brno-Kohoutovice, Czech Republic).
Before imaging, the specimens were mounted onto aluminum stubs using double-sided
carbon tape (NEM tape, Nisshin Co., Ltd., Tokyo, Japan) and subsequently platinum-coated
for 2 min. These prepared samples were then placed on the imaging stage of the device.
FESEM images of all CNFs were obtained using a secondary electron detector operating at
an acceleration voltage of 15 keV in high vacuum mode with magnifications set at ×2000.

2.5. Fourier Transform Infrared Spectroscopy (FTIR)

Unmodified CNFs (u-CNFs) and carboxylated CNFs (c-CNFs) were identified and
evaluated for their functional groups by Fourier transform infrared spectroscopy (FTIR)
using a Nicolet iS10 FTIR spectrometer (Thermo Acientific Inc., Waltham, MA, USA). Briefly,
a powder of u-CNFs and c-CNFs (1 mg) was placed on an FTIR plate and inserted into
the instrument for reading. Absorbance levels were measured at a resolution of 4 cm−1 in
transmittance mode from 400 to 4000 cm−1.

2.6. Determination of the Degree of Oxidation and the Carboxylic acid Content of Carboxylated
Cellulose Nanofibers

The degree of oxidation (DO) and carboxylic acid content (CC) of c-CNFs were deter-
mined by conductometric titrations. Initially, 50 mg of c-CNFs was dispersed in 15 mL of
0.01 M HCl and mixed for 10 min to exchange the Na cations from the COO− group for
H+. The indicator phenolphthalein (0.1%) was added to the mixture. The suspensions were
titrated after that by adding 0.01 M NaOH solution in 0.1 mL increments while monitoring
the conductivity of the suspensions. The curve demonstrated the presence of a strong acid
(excess of HCl) and a weak acid (carboxylic acid). Finally, the degree of oxidation and the
carboxylic acid content were calculated using Equations (2) and (3) [24,25].

Degree of oxidation (DO) = 162 × (V2 − V1) × C/[w − (36 × C) × (V2 − V1)] (2)

Carboxylic acid content (CC, mmol/g) = C × (V2 − V1)/w (3)
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where, V1 and V2 are the equivalent volumes of the added NaOH in liters, C is the
concentration of the NaOH (0.01 M), and w is the dry weight of the sample in grams.

2.7. X-ray Diffraction (XRD) Analysis of u-CNFs and c-CNFs

XRD spectra for u-CNFs and c-CNFs were obtained using an X-ray diffractometer
(Miniflex ll, Rigaku Corporation, Tokyo, Japan) operating at 30 kV and 20 mA with CuKα

radiation. The measurements were conducted in the 2θ range of 3–80◦ with a step interval
of 0.02◦. The crystallinity index (CrI) was calculated using Equation (4) based on the highest
intensity peak (I200) and the intensity minimum (Iam) [26].

Crystallinity index (Crl) = [(I200 − Iam)/I200] × 100% (4)

where I200 is the XRD intensity of the crystal plane (200) and Iam is the XRD intensity of the
amorphous region.

2.8. Preparation of Carboxylated Cellulose Nanofiber Hydrogels

c-CNF hydrogels were prepared by dispersing different percentages (1–7% w/v) of c-
CNFs in deionized water (DI) using a homogenizer (IKA T25 Ultra-Turrax, IKA Laboratory
Technology, Staufen, Germany) under homogenization at 25 ◦C and 6000 rpm for 5 min.
Then, each formulation was transferred into Petri dishes, and 0.3% w/v PHMB was poured
into the CNF dispersion. After 24 h of immersion, the crosslinked hydrogels were removed
from the Petri dishes and washed with DI water, and excess surface DI water was gently
blotted with filter paper. After that, the hydrogels were freeze-dried (Christ Beta 2–8 LD-
plus, Osterode am Harz, Germany) for 24 h to obtain the freeze-dried c-CNF hydrogels.

2.9. c-CNF Hydrogel Characterizations
2.9.1. Morphological Characterizations

The morphology of the freeze-dried c-CNFs hydrogels was examined using a field
emission scanning electron microscope (FESEM) (TESCAN CLARA, Brno-Kohoutovice,
Czech Republic). The procedure was the same as described in Section 2.4. Subsequently,
SEM images of all c-CNFs hydrogels were collected using a secondary electron detector at
an acceleration voltage of 15 keV under high vacuum mode at magnifications of ×1000.

2.9.2. Fourier Transform Infrared Spectroscopy

Chemical interactions between the c-CNF hydrogel formulations and PHMB were
analyzed using an FTIR spectrometer (FTIR-4700, Jasco, Tokyo, Japan). The procedure for
analysis was the same as described in Section 2.5.

2.9.3. Mechanical Strength Test

To evaluate the mechanical strength of the selected c-CNF hydrogels, we utilized a
texture analyzer, TA.XT plus (Stable Micro Systems, Surrey, UK). The procedures described
in [11] were followed. Each hydrogel was assessed five times. After the experiments, we
calculated the puncture strength (N/mm2) using Equation (5).

Puncture strength = Fmax/A (5)

where Fmax is the force at the breaking point (N), and A is the surface area in contact with
the probe’s surface (mm2).

2.9.4. Gel Content

The crosslinking efficiency was evaluated by conducting a gel content analysis in
phosphate-buffered saline (PBS) with a pH of 7.4, maintained at 37 ± 0.5 ◦C, as described
in [11]. Freeze-dried c-CNF hydrogels were cut into dimensions of 1 cm × 1 cm. The
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experiment was performed in triplicate under the same conditions, and the average gel
content (GC) values were calculated using the following Equation (6).

Gel content (%GC) = Wd/Wi × 100 (6)

2.9.5. Swelling Ratio

The swelling ratio of freeze-dried CNF-based hydrogels was determined through a
gravimetric method in 20 mL of PBS with a pH of 7.4 maintained at 37 ± 0.5 ◦C for 24 h,
as described in [11]. Three randomly selected samples were cut into 1 cm × 1 cm. The
calculation of the maximum swelling degree (%) was calculated using Equation (7).

Maximum swelling degree (%MSD) = (Ww − Wd)/Wd × 100 (7)

2.10. PHMB Loading Content

For each formulation of freeze-dried c-CNF hydrogel with PHMB, three random sam-
ples were placed into vials containing 20 mL of deionized water. These vials were allowed to
stand for 24 h, ensuring the complete dissolution of the hydrogels. The dissolution process
was facilitated by a magnetic stirrer set at 100 rpm, maintaining room temperature. After
dissolution, the solution samples were filtered using a 0.45 µm membrane filter to exclude
minor particles. Subsequently, the filtered samples were subjected to dilution. The average
PHMB content was determined using a UV spectrophotometer (UV2600i, Shimadzu Cor-
poration, Kyoto, Japan) operating at a wavelength of 236 nm. The quantification of PHMB
content was calculated using a standard PHMB solution with a concentration range from
2.5 µg/mL to 17.5 µg/mL, which displayed high linearity (r2 = 0.996). Equation (8) was
used to calculate the drug content of the PHMB-incorporated hydrogel.

PHMB loading content (%) =
Amount of drug in hydrogel

Theorectical drug
× 100 (8)

2.11. In Vitro Drug Release Profile

c-CNF hydrogels containing PHMB, shaped as squares measuring 1 cm × 1 cm, were
immersed in 20 mL of PBS buffer with a pH of 7.4 at 37 ± 0.5 ◦C. The medium was
continuously stirred using a magnetic bar at 50 rpm. At predetermined intervals (0.5, 1,
2, 3, 6, 12, 24, 36, 48, 72, and 84 h), 2 mL of the dissolution media were collected, and an
equal volume of PBS (2 mL) was replaced. The collected samples were analyzed for PHMB
release using a UV-Vis spectrophotometer (UV2600i, Shimadzu, Kyoto, Japan) at 236 nm.
All dissolution experiments were performed in triplicate. The amount of released drug was
calculated using the following Equation (9).

Amount of released drug (%) =
Amount of released drug at the specific time

Amount of drug in hydrogel
× 100 (9)

2.12. Antimicrobial Test

The antibacterial activity of the c-CNF hydrogels was assessed using the disc diffusion
technique as described in [27]. All evaluated c-CNF hydrogel samples underwent steriliza-
tion under ultraviolet light for 1 h before the antibacterial test. Briefly, c-CNFs-PHMB were
applied to prepared bacterial agar plates. As a negative control, c-CNFs without PHMB
were utilized, while antibiotic assay discs from Whatman (GE Healthcare, Pittsburgh, PA,
USA) loaded with a 0.3% PHMB solution served as the positive control. Each experiment
was conducted in triplicate.

2.13. Statistical Analysis

The data presented were indicated as mean ± standard deviation (S.D.). Statistical
significance was determined through the one-way ANOVA test using SPSS statistics soft-
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ware version 17.0 (IBM Corporation, Armonk, NY, USA). A significance level of p < 0.05
was considered indicative of statistically significant differences.

3. Results and Discussion
3.1. Preparation and Morphological Characteristics of c-CNFs

The surface modification of nanocellulose can be achieved by three main methods:
imparting ionic charges to nanocellulosic surfaces, generating nanocellulosic materials
with hydrophobic surfaces, and polymer grafting on nanocellulose [28,29]. The oxidation
method, specifically the method that works by imparting ionic charges, is commonly
used to improve the surface properties of nanocellulose using oxidative agents. The
most commonly used chemical in the surface modification of nanocellulose is 2,2,6,6-
tetramethylpiperidine-1-oxyl (TEMPO), which is a weak oxidizing agent. It can react
with sodium hypochlorite (NaClO) and halogen salts such as sodium bromide (NaBr) and
sodium chloride (NaCl) in an alkaline state. By oxidation, TEMPO generates a nitrosium
ion (+N=O) that contains positively charged nitrogen atoms (a nitrogen carbonyl cation),
resulting in a potent oxidizing agent [30]. The oxidation process converts the hydroxyl
groups at the carbon position 6 (C6) of the nanocellulose fibers into aldehyde and carboxyl
groups, which are then ionized into sodium carboxylates at pH 10, as shown in Figure 2.
Increasing the surface charge density of the CNFs allows for the formation of physically
crosslinked CNF hydrogels [31].
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In the present study, the surface modification of CNFs was conducted by oxidation
using the TEMPO/NaBr/NaClO system with variations in reaction time at 1, 2, and 3 h.
Following modification and freeze-drying, all c-CNFs exhibited a fluffy and uniformly
white appearance. The internal morphology of the c-CNFs was examined using FESEM
micrographs, as shown in Figure 3. The results demonstrated a significant difference in
morphology between the unmodified and modified cellulose nanofibers. The u-CNFs had
diameters of 50 nm and lengths in the hundreds of micrometers (Figure 3a), whereas the
c-CNFs, after modification with varying reaction times of 1, 2, and 3 h, exhibited shorter
lengths and were arranged in thicker ribbons and thin film fragments measuring several
micrometers (Figure 3b–d). Consequently, the modified cellulose nanofibers are more prone
to internal morphological changes and dispersion in aqueous solutions, indicating that a
substantial amount of carboxylic acid on the c-CNF surfaces is crucial for extensive CNF
self-assembly or inter-CNF interactions through hydrogen bonding [25].
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The yield percentages of c-CNFs obtained through oxidation using the TEMPO/NaBr/
NaClO system varied with reaction time (1, 2, and 3 h.) and were measured as 75.46 ± 0.82%
w/w, 60.08 ± 0.73% w/w, and 51.43 ± 0.45% w/w of the dry raw material, respectively.
When compared to other studies using TEMPO-mediated oxidation, Gond et al. reported
a yield percentage of 65% [32]. Additionally, our study’s yield aligned with the results
of Xu H. et al., who observed a pulp yield ranging from 40% to 90% during TEMPO-
mediated oxidation lasting between 0 and 120 min. These results indicate that the yield
decreases with increased reaction time [33]. This decrease can be attributed to the dissolu-
tion of water-soluble cellulosic components, which are subsequently removed during the
cleaning process [31,33,34].

3.2. Fourier Transform Infrared Spectroscopy (FTIR)

FTIR spectroscopy was conducted to evaluate possible interactions among materials
by analyzing the chemical shift or intensity change of functional groups, which are related
to chemical interactions among substances after oxidation, and to confirm the effectiveness
of the synthesis [26]. Figure 4 shows the absorbance bands of representative spectra of
unmodified CNFs (u-CNFs) and carboxylated CNFs (c-CNFs) at different times of the
modification process. This study demonstrated that the broad and intense band observed
at 3200–3600 cm−1 corresponds to O-H stretching, while the wide band at 2900 cm−1 repre-
sents -CH2 and C-H stretching. The band around 1630 cm−1 corresponds to C=O stretching,
and the bands at 1425 cm−1 and 1370 cm−1 indicate the bending vibrations of C-H [30,31].
The complex bands observed at 895–1200 cm−1 represent -O- stretching, and the band at
555–660 cm−1 represents O-H bending out of the plane [30,35,36]. The absorbance bands
in the spectra of c-CNFs differ from those of u-CNFs. The slight shift in the peak position
from 1630 cm−1 to 1600 cm−1 after TEMPO oxidation is attributed to the stretching of the
carboxylate groups (-COO−), indicating the successful conversion of the hydroxyl group at
the C6 position into a carboxylate group through cellulose oxidation [31,34]. Furthermore,
the presence of the carbonyl stretching of COO- of c-CNFs can be observed by the spectrum
differences from u-CNFs, with the peak located around 1740 cm−1 [30,34]. In a previous
study, Tran Thi Thanh Hop et al. prepared TEMPO-oxidized nanocellulose from bleached
wood pulps. Additionally, Hassan et al. developed TEMPO-oxidized nanocellulose films
derived from coconut residues, such as coconut shells and coconut husks. Both studies
found similar characteristic FTIR peaks in TEMPO-oxidized CNFs [26,31].
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3.3. Degree of Oxidation, Carboxylic Acid Content, and X-ray Diffraction (XRD) Analysis of
u-CNFs and c-CNFs

The degree of oxidation (DO) and carboxylic acid content (CC) can be determined by
conductometric titrations. Typically, the maximum degree of oxidation of nanocellulose is
approximately close to 0.10 [24,37]. Our results indicated that the DO values of c-CNFs-1
h, c-CNFs-2 h, and c-CNFs-3 h were 0.0691, 0.0993, and 0.0971, respectively, as presented
in Table 1. This suggests that c-CNFs-2 h and c-CNFs-3 h have undergone oxidation
of almost all the surface-accessible hydroxyl groups of nanocellulose into carboxylated
groups [24]. Furthermore, our study calculated the CC values of c-CNFs-1 h, c-CNFs-2
h, and c-CNFs-3 h, all of which were approximately in the range of 0.40 to 0.60 mmol/g.
The carboxylic content of TEMPO-oxidized CNFs depends on the cellulose source and the
reaction conditions [38,39]. However, no significant differences were observed in the DO
and CC values between c-CNFs-2 h and c-CNFs-3 h.
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Table 1. Degree of oxidation (DO), carboxylic acid content (CC), and crystallinity index (CrI) of
u-CNFs and c-CNFs.

Sample DO CC (mmol/g) CrI (%)

u-CNFs - - 28.74 a

c-CNFs-1 h 0.0691 ± 0.0027 a 0.4200 ± 0.0163 a 32.48 b

c-CNFs-2 h 0.0993 ± 0.0028 b 0.6000 ± 0.0163 b 40.76 c

c-CNFs-3 h 0.0971 ± 0.0016 b 0.5867 ± 0.0094 b 41.03 c

For each test, average values with the same letter are not significantly different. Thus, average values with
different letters, e.g., ‘a’ or ‘b’, are statistically different (p < 0.05).

The chemical characteristics and crystallinity index (CrI) of u-CNFs and c-CNFs
were investigated by XRD characterization. The crystallinity index of c-CNFs is a critical
factor that affects their mechanical strength within the polymer matrix. The XRD analysis
demonstrated that the diffraction patterns of the c-CNF samples closely resembled those
of native nanocellulose, displaying characteristic diffraction peaks at approximately 16.5◦,
22.5◦, and 34.6◦, which are indicative of the typical cellulose I structure [26], as shown in
Figure 5. The CrI values are presented in Table 1. Our study revealed that the CrI of u-CNFs
was at 28.74%, whereas c-CNFs exhibited an increase to 41.03% due to the elimination of
non-cellulosic content and extractives from the amorphous regions after TEMPO-mediated
oxidation [40]. Our results are consistent with previous studies. For example, Madivoli et al.
isolated CNFs from Oryza sativa residues using TEMPO-mediated oxidation and reported
similar XRD patterns. They estimated the %CrI as around 42% [40].
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3.4. Preparation and Morphological Characteristics of c-CNF Hydrogels

In the present study, we developed 14 different formulations of c-CNF hydrogels
loaded with PHMB through physical crosslinking for antimicrobial applications. By the
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optimization of polymer ratios, we successfully created crosslinked hydrogels that were
flexible. The homogeneous and translucent characteristics of the 6 and 7% w/v c-CNFs
hydrogel formulations are shown in Figure S1. In contrast, formulations with a c-CNF
content lower than 6% w/v displayed rough surfaces and irregular shapes, indicating
incomplete hydrogel formation (Figure S1). The interaction between the amine group
in PHMB and the carboxyl of c-CNFs results in the formation of ionic interactions. The
amine group in PHMB also interacts with the hydroxyl groups of c-CNFs, facilitating the
formation of hydrogen bonds. Additionally, van der Waals forces are present between
the C-N, C-O-H or C-O-C interactions. These interactions contribute to the presence of
crosslinked junctions within the hydrogel structure and enable the dispersion of PHMB
within the continuous c-CNF phase [15,41]. This study identified the optimal amount of
c-CNFs as a critical factor influencing the hydrogel structure, thus focusing on 6 and 7%
w/v c-CNF/PHMB hydrogels.

Figure 6 shows the influence of hydrogel composition on the observed structures in
the cross-sectional SEM micrographs of 6% and 7% w/v c-CNF hydrogels. The absence of a
separation phase indicates the successful integration of the c-CNFs with PHMB. A notable
disparity in the morphology of the polymeric structure was observed when comparing the
morphology of the 6% w/v c-CNF hydrogels to the 7% w/v c-CNF hydrogels. The 6% w/v
c-CNF hydrogels exhibited lower porosity in the polymer microstructures, while the micro-
graphs of the 7% w/v c-CNF hydrogels exhibited a highly porous morphology. However,
there were no significant differences in the microstructures observed between formulations
exhibiting the same c-CNF contents with different reaction times. Furthermore, Liang
et al. developed porous PHMB-loaded silk fibroin sponges with antibacterial activity. They
found that increasing the mass ratio of PHMB/silk fibroin to 5/100 and 10/100 resulted in
a higher number of microscale holes appearing within the pore walls, thereby enhancing
connectivity between the pores [15]. Hence, the quantity of added c-CNFs served as a
significant parameter determining the morphology and porosity.
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3.5. Fourier Transform Infrared Spectroscopy (FTIR) of c-CNF Hydrogels Loading PHMB

FTIR analysis was conducted to reveal indications of chemical interactions between
different composite hydrogels, which can be observed through shifts in chemical signals or
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changes in intensity. Figure 7 demonstrates the FTIR spectra of PHMB and c-CNF hydrogel
formulations. The structural characteristics of PHMB can be identified by analyzing four
prominent bands at 3300 cm−1, 2930 cm−1, 1629 cm−1, and 1536 cm−1, corresponding to
the stretching vibration of N-H, aliphatic C-H, C=N stretching, and amine (-NH2) bending
vibration, respectively [27,42]. The spectra clearly show peaks at approximately 3300 cm−1

and 3100 cm−1, corresponding to the stretching vibration of hydroxyl and secondary
amine groups, indicating the presence of hydrogen bonds between c-CNFs and PHMB
in the hydrogel formulations [43]. Furthermore, the c-CNF/PHMB hydrogels exhibit
a distinct absorption peak at 1536 cm−1, corresponding to the N–H bending vibration.
Additionally, there is an absorption peak at 1155 cm−1, representing the C–N stretching
vibration. Moreover, the absorption peak around 1000 cm−1 corresponds to the stretching
vibration of C–O in C–O–H and C–O in C–O–C [15,44,45]. These peaks indicate the
presence of van der Waals forces [15]. In particular, a slight shift in the peak position from
1600 cm−1 to 1630 cm−1 indicates the occurrence of interactions with and adsorption of
PHMB in the c-CNF hydrogels via the amine group of PHMB and the carboxylic group of
c-CNFs [12]. FTIR analysis provides confirmation of the successful integration of PHMB
into the c-CNF matrix.
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3.6. Puncture Strength, Gel Content, Maximum Swelling Degree, and Drug Content of c-CNF
Hydrogel Loaded with PHMB

An ideal hydrogel for wound dressings should possess a suitable puncture strength,
allowing it to maintain its structure and durability throughout the application period. In
order to assess the mechanical properties of c-CNF hydrogels loaded with PHMB, the
puncture strength was measured to determine the influence of the polymer component.
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The results are presented in Figure 8 and Table S1. Our results indicated that formulations
with a higher CNF content (7% c-CNFs-2 h/PHMB and 7% c-CNFs-3 h/PHMB) exhibited
greater puncture strength (~0.3 N/mm2) compared to formulations with a lower CNF
content (6% c-CNFs-2 h/PHMB and 6% c-CNFs-3 h/PHMB). There was no significant
difference in puncture strength between formulations in the same c-CNF content with
different reaction times (p > 0.05). This observation may be attributed to the presence of a
higher number of crosslinked junctions and interactions within the polymeric matrix of
7% c-CNF hydrogels, facilitating the formation of ionic interactions and hydrogen bonds
between the amine group in PHMB and the carboxyl and hydroxyl groups of c-CNFs
in comparison to 6% c-CNF hydrogels. Our results are consistent with previous studies.
Yuan Y. et al. developed a biodegradable starch-based antibacterial film that incorporated
nanocellulose and PHMB. They observed an increase in the tensile strength value from
0.76 MPa to 3.44 MPa as the amount of nanocellulose increased. Therefore, the addition of
nanocellulose had the potential to improve the mechanical properties of the starch film [45].
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(D) drug content of c-CNF hydrogels containing PHMB. For each test, average values with the same
letter are not significantly different. Thus, average values with different letters, e.g., ‘a’ or ‘b’, are
statistically different (p < 0.05).

The structural stability of PHMB-incorporated c-CNF hydrogels was assessed by mea-
suring the gel content (%GC) in phosphate-buffered saline (PBS) at pH 7.4 at 37 ± 0.5 ◦C,
and the results were presented in Figure 8 and Table S1. The analysis of the gel fraction
revealed that the 6% c-CNFs-2 h/PHMB and 6% c-CNFs-3 h/PHMB formulations exhibited
a higher %GC (approximately 55%) when immersed in PBS. On the other hand, the formu-
lations containing 7% c-CNFs-2 h/PHMB and 7% c-CNFs-3 h/PHMB, which had higher
CNF contents, exhibited a lower %GC (approximately 30%) due to the presence of a highly
porous network and the interaction of hydrogen bonds with the immersion media. The
polymer matrices contained a significant number of hydrophilic groups (–OH or –COOH),
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and the higher concentration of these hydrophilic groups increased the polarity and water
solubility, thereby resulting in a decrease in gel content [46,47].

The evaluation of the hydrogel’s swelling behavior was examined by immersing it in
PBS at pH 7.4 for 24 h, as shown in Figure 8 and Table S1. Our result revealed that the 7%
c-CNFs-2 h/PHMB and 7% c-CNFs-3 h/PHMB formulations exhibited an increased %MSD
(approximately 225% to 230%) due to their highly porous network and interactions with
water through hydrogen bonding. Conversely, the %MSD of the 6% c-CNFs-2 h/PHMB and
6% c-CNFs-3 h/PHMB formulations, which contained lower CNF contents, demonstrated
the lowest %MSD in PBS (approximately 75% to 78%). This can be attributed to the reduced
presence of hydrogen bonds in their network, resulting in decreased water permeability.
The degree of swelling is influenced by the porosity and hydrophilicity of the hydrogel,
as water permeates the structure and interacts with the hydrophilic polymers through
hydrogen bonding [48]. The composite hydrogels exhibit a porous surface, allowing for
the efficient absorption of exudate. They possess a high capacity for water absorption and
effective water retention, making them suitable for wound dressing applications [45].

The PHMB content of the 6% c-CNFs-2 h/PHMB, 6% c-CNFs-3 h/PHMB, 7% c-CNFs-
2 h/PHMB, and 7% c-CNFs-3 h/PHMB preparations was determined and presented in
Figure 8 and Table S1. The drug content of the 7% c-CNFs-2 h/PHMB and 7% c-CNFs-
3 h/PHMB hydrogels exceeded 80%, demonstrating significantly higher drug contents
compared to the 6% c-CNFs-2 h/PHMB and 6% c-CNFs-3 h/PHMB formulations. This
difference may be attributed to the greater porosity observed in the hydrogel structure
(Figure 6). High porosity facilitates a higher drug-loading capacity within the hydrogel
matrix [49]. Theoretically, ionic interactions and hydrogen bonding could be formed
between the amine group in PHMB and the carboxyl and hydroxyl groups of c-CNFs.

Based on our study, the 7% c-CNFs-2 h/PHMB formulation was selected to evaluate its
in vitro drug release profile and antibacterial activity. This formulation offers advantages
over the 7% c-CNFs-3 h/PHMB formulation as it requires less time and fewer chemicals
for surface modification using the TEMPO/NaBr/NaClO system than the 7% c-CNFs-3
h/PHMB formulation, resulting in cost savings. Furthermore, the 7% c-CNFs-2 h/PHMB
formulation exhibited desirable characteristics, including a regular shape, high porosity,
good mechanical properties, suitable gel content, a good maximum swelling degree, and
PHMB contents that were greater than 80%.

3.7. In Vitro Drug Release Profile of c-CNFs Hydrogel Loading PHMB

The drug release profile of the 7% c-CNFs-2 h/PHMB hydrogel was evaluated in
phosphate-buffered saline (PBS) at pH 7.4, as shown in Figure 9. This hydrogel exhibited a
prolonged drug release pattern. Initially, there was a burst release of PHMB from the c-CNF-
loaded hydrogel within the first 4 h, followed by a gradual release reaching approximately
100% within 72 h. This initial burst release can be attributed to the weak bonding between
c-CNFs and PHMB, which relies on physical forces such as van der Waals’ forces, hydrogen
bonding, and electrostatic adsorption [50]. The subsequent slow release can be attributed
to the disruption of the weak physical forces between c-CNFs and PHMB, as well as
overcoming diffusion barriers within the surrounding networks [15]. The penetration of the
drug within the matrix systems is influenced by the hydrophilicity of the formulation that
contains 7% c-CNFs [11,51]. In another study, porous PHMB-loaded silk fibroin sponges
with antibacterial activity exhibited burst release within the first 12 h, followed by a slower
release for up to 20 days. This behavior was attributed to the presence of a hydrophobic
region in the polymer, hindering solvent molecule permeation and reducing drug diffusion
from the polymeric matrices [15]. In addition, it could be explained by the crystalline
structure of the c-CNFs. To clarify, crystalline structures are usually soluble in water and
thus might prevent the permeation of water molecules into the hydrogel’s structure to
dissolve PHMB.
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3.8. Antibacterial Activity of c-CNF Hydrogel Loaded with PHMB

The c-CNF hydrogel loaded with PHMB was assessed for its antibacterial activity
against S. aureus and P. aeruginosa using the disk diffusion method. As a negative control, 7%
c-CNFs-2 h film without PHMB was used, while a Whatman disc loaded with 0.3% PHMB
served as the positive control. The results demonstrated that the antibacterial activity of 7%
c-CNFs-2 h/PHMB against S. aureus and P. aeruginosa significantly increased compared to
the positive control, as shown in Table 2. The porous structure of the hydrogel facilitated
increased interactions at the interface between the loaded PHMB and the bacteria, thereby
enhancing its antibacterial efficacy. Our results are consistent with previous studies. For
example, Ye Y. et al. developed a poly(ethylene glycol) methyl ether acrylate (PEGMA)
hydrogel with improved antibacterial activity. They found that the porous structure
provided space for bacterial growth, while the extensively exposed surface enhanced
bacterial interactions [52].

Table 2. Antibacterial activity of c-CNF hydrogel against S. aureus and P. aeruginosa.

Samples
Zone of Inhibition (mm)

S. aureus P. aeruginosa

7% c-CNFs-2 h ND ND

7% c-CNFs-
2 h/PHMB 18.90 ± 0.37 a 12.47 ± 1.68 a

0.3% PHMB 10.91 ± 0.27 b 8.08 ± 0.91 b

ND means not detected; superscripts with different letters in each column denote statistically different (p < 0.05)
mean values.
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4. Conclusions

The surface modification of CNFs using the TEMPO/NaBr/NaClO system was suc-
cessful in improving their hydrophilicity. The yield percentages were reasonable and
sufficient for the fabrication of c-CNF hydrogels loaded with PHMB through physical
crosslinking for antimicrobial applications. Firstly, the potential of carboxylated cellulose
nanofibers was confirmed by FESEM, FTIR, DO, CC, and XRD studies. Our study selected
c-CNFs-2 h and c-CNFs-3 h as suitable samples based on all the parameters evaluated. Sub-
sequently, c-CNF hydrogels loaded with PHMB were fabricated using physical crosslinking.
Among the 14 c-CNF formulations, 7% c-CNFs-2 h/PHMB and 7% c-CNFs-3 h/PHMB
exhibited desirable characteristics, such as regular shape, high porosity, good mechanical
properties, suitable gel content, and a good maximum swelling degree. The successful
integration of PHMB into the c-CNF matrix was confirmed by an FTIR study. Additionally,
7% c-CNFs-2 h/PHMB and 7% c-CNFs-3 h/PHMB were successfully prepared, with PHMB
contents exceeding 80%. Consequently, we selected to evaluate the in vitro drug release
profile and antibacterial activity of the 7% c-CNFs-2 h/PHMB formulation. This formu-
lation demonstrated a prolonged drug release pattern, with the PHMB release observed
over a period of 3 days. Moreover, it exhibited significant antibacterial activity against S.
aureus and P. aeruginosa. Based on the present study, we have concluded that c-CNFs-2 h
is the optimized time for surface modification using the TEMPO/NaBr/NaClO system,
which can be utilized for the synthesis of carboxylated cellulose nanofibers. Furthermore,
our novel approach of synthesizing c-CNF hydrogels loaded with PHMB through physical
crosslinking shows promise as a potential system for prolonged drug release in transdermal
drug delivery and exhibits excellent antibacterial activity. However, further studies are
required to evaluate the in vivo treatment efficacy of the developed c-CNF hydrogels for
skin infections.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/polym15173572/s1, Figure S1: The appearance of c-CNF hydrogels
loaded with PHMB by the variation of reaction time (2 and 3 h) and the ratio of c-CNFs (1–7% w/v)
and Table S1: Puncture strength, gel content (GC), maximum swelling degree (MSD), and drug
content of c-CNF hydrogels containing PHMB.
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