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Abstract: Silicone rubber (SIR) is used in high-voltage insulators because of its insulation, and excel-
lent hydrophobicity is very important in harsh outdoor environments. To enhance the hydrophobicity
and low-temperature resistance of silicone rubber, methyl vinyl silicone rubber and fluorosilicone
rubber (FSIR) blend composites with different ratios were prepared. The samples were characterized
and analyzed using scanning electron microscopy, tensile testing, dynamic mechanical analysis and
static contact angle testing. The results showed that after blending, SIR and FSIR were well compati-
ble. FSIR had higher elastic modulus and reduced the tensile strength to some extent in SIR/FSIR
composites. The addition of a small amount of FSIR made its crystallization temperature decrease
from −30 to −45 ◦C, meaning that the low-temperature resistance was significantly improved. The
breakdown strength of SIR/FSIR composites can still be maintained at a high level when a small
amount of FSIR is added. The contact angle of the composites increased from 108.9 to 115.8◦ with the
increase in FSIR content, indicating the enhanced hydrophobicity. When the samples were immersed
in water for 96 h, the hydrophobicity migration phenomenon occurred. The static contact angle
of the samples with less FSIR content had a weaker decreasing trend, which illustrated that the
hydrophobicity was maintained at a high level.

Keywords: silicone rubber; fluorosilicone rubber; mechanical properties; breakdown strength;
hydrophobicity

1. Introduction

Hydrophobicity materials are widely used in all aspects of industry and life, such
as high-voltage insulators, hull surface coatings, oil pipeline inner walls and so on. An
insulator is an important and indispensable part of power transmission and transformation
lines, and the operation condition is directly related to the stability and safety of the
power grid [1,2]. The silicone rubber composite insulator is the latest insulator. Compared
to the traditional porcelain insulator and glass insulator, the silicone rubber composite
insulator has the advantages of light weight, favorable durability, excellent hydrophobicity,
good resistance to dirt flash and being easy to manufacture and maintain [3–8]. Silicone
rubber composite insulators are mainly composed of high-temperature vulcanized silicone
rubber (HTV) composite umbrella skirt, glass fiber-reinforced epoxy resin core rod and
end fittings [9]. Due to the Si–O bond of silicone rubber and its inorganic properties,
silicone rubber is superior to ordinary organic rubbers in terms of heat resistance, chemical
stability, electrical insulating, abrasion resistance and weatherability [10]. The excellent
hydrophobicity and hydrophobic recovery properties of silicone rubber are key factors
in its use as a high-voltage outdoor insulation material. As an insulating material used
outdoors for a long time, the silicone rubber umbrella skirt will gradually age under the
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long-term influence of humidity, surface discharge, ultraviolet rays, temperature, smoke
and other factors [11,12]. The aging of the material will make the surface of the insulator
hydrophobicity deteriorate, resulting in the occurrence of a leakage current and flashover
phenomenon, meaning that the hydrophobicity is an important index used to examine the
performance of the insulator [13,14].

To enhance the hydrophobicity of silicone rubber, researchers have used various ap-
proaches, including surface modifications, such as plasma jet treatment [15,16], spraying [17],
laser irradiation [18], or adding fillers to build up nanostructures. Mendoza et al. [19] con-
ducted a comparative assessment of hydrophilic and hydrophobic ZnO nanoparticles
and their methods of deposition on the surface hydrophobicity of silicone rubber (PDMS)
and glass substrates. An accurate method was proposed to determine the contact angle
hysteresis. Nazir et al. [20] added milled glass fires and graphene nanoplatelets as fillers
in silicone rubber and found that the composites have excellent fire retardancy and better
mechanical strength and hydrophobicity while retaining the required electrical breakdown
strength. Zhu [21] believes that the mechanism through which corona discharge weakens
the hydrophobicity of silicone rubber is the particles generated by the discharge continu-
ously impacting the SR surface, on which the hydrophilic hydroxyl group is replaced by a
polar hydrophobic methyl group. Khan et al. [22] prepared room temperature vulcanized
silicone rubber composites, and after 9000-hour aging tests, it was found that the samples
using silica as fillers had better hydrophobicity, and the samples with aluminum trihydrate
as filler had higher dielectric breakdown strengths. Sheng et al. [23] added a glycerol layer
onto the surface of the silicone rubber, and the contact angle of the silicone rubber could be
improved by 19.9% via irradiation treatment with glycerol. Du et al. [24] fluoridated the
silicone rubber using fluorine gas to obtain the sample with a contact angle of 116◦. Surface
modification often requires high costs and is a complicated procedure. And these material
improvement methods can make silicone rubber significantly improved in a certain aspect,
but do not comprehensively consider the purpose of using it at low temperatures. There-
fore, it is recommended to use a fluorosilicone rubber (FSIR) and methyl vinyl silicone
rubber (SIR) blend to take into account the three aspects of hydrophobicity, insulation and
low-temperature resistance.

FSIR has methyl, vinyl and trifluoropropyl side chains, which improve the oil and
solvent resistance of the rubber due to the electronic effect and the good shielding effect
of the C-F bond on the C=C bond [25,26]. It also has a wide operating temperature range
of −60–200 ◦C and can be operated in cold environments [27]. Sun et al. [28] found
that after ultraviolet aging for 2000 h, the FSIR insulators had a larger contact angle.
Wei et al. [29] found that the resistance and breakdown properties of phenyl silicone
rubber (SiR) were better than those of vinyl SiR and fluoro-SiR, and fluoro-SiR has a
higher dielectric constant than the vinyl SiR and phenyl SiR. Polymer blending allows
composites to combine the characteristics of both materials. Metivier et al. [30] found that
silicone/fluorosilicon mixtures are compatible by adding surface hydrophilic silica particles,
and fumed hydrophilic silica can reduce the size of the fluorosilicon phase to 500 nm.
Khanra et al. [31] added modified silica in different ratios to fluoroelastomer and silicone
rubber blends, which exhibited good compatibility and improved mechanical properties.

The good hydrophobicity and low-temperature resistance of FSIR are important factors
conducive to the operation of insulators in harsh environments. Considering the many
advantages of FSIR, in this work, FSIR and SIR were used to prepare composites with
different ratios. The expectation is that the SIR/FSIR composites can be used in high-
voltage insulators in a harsh environment. Scanning electron microscopy (SEM) tests,
tensile tests, dynamic mechanical property tests and contact angle tests were carried out
to analyze the effects of different ratios on the micro-morphology, mechanical properties,
crosslinking density, crystallization temperature and hydrophobicity of the composites. It
is proved that the addition of FSIR can improve the material’s hydrophobicity and enhance
its low-temperature resistance.
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2. Experimental
2.1. Materials

The vinyl content of SIR (XHG-110) was 0.08%, and its molecular weight was 670,000;
the material was produced by Zhejiang Wynca Chemical Group Co., Jiande, Zhejiang,
China. The vinyl content of FSIR (MFVQ 1402) was 0.35%, and its molecular weight
was 730,000; the material was produced by Shenzhen Oufut Rubber Products Co., Ltd.,
Shenzhen, Guangdong, China. Silica adopted HDK®V15 from Wacker, Germany, and its
density was 2.2 g·cm−3, its specific surface area was 130–170 m2·g−1, and its purity was
99.8%. Hydroxy silicone oil (HSO), aluminum hydroxide (ATH), vinyltrimethoxysilane
(VTMS), ferric oxide (Fe2O3), 2,5-dimethyl-2,5-di(tert-butylperoxy) hexane (DBPH) and
other reagents were commercially available. Table 1 shows the experimental formulations
of the composites.

Table 1. Experimental formulations of SIR/FSIR composites (phr).

Ingredients 100/0 95/5 90/10 80/20 70/30 0/100

SIR 100 95 90 80 70 0
FSIR 0 5 10 20 30 100
Silica 30 30 30 30 30 30
ATH 100 100 100 100 100 100

Fe2O3 4 4 4 4 4 4
HSO 5 5 5 5 5 5

VTMS 2 2 2 2 2 2
DBPH 0.5 0.5 0.5 0.5 0.5 0.5

2.2. Preparation

Firstly, SIR was mixed with the reagents of reinforcing agent silica, thermal conduc-
tivity enhanced agent ATH, silane coupling agent VTMS, structural control agent HSO,
coloring agent Fe2O3 and vulcanizing agent DBPH in an open two-roll mill. The fillers were
added in sequence, and the SIR was taken out after uniform mixing. Secondly, FSIR was
prepared following the same procedure. Then, SIR and FSIR were mixed in different ratios
in the opening machine to obtain different ratios of SIR/FSIR compounds. Finally, after the
corresponding optimum curing time(t90) was measured using a vulcanizing instrument
(MDR-2000, Shanghai Dejie Machine Equipment Co., Ltd., Shanghai, China), vulcaniza-
tion was carried out using a flatbed vulcanizing machine (XLB-0350, Zhejiang Huzhou
Dongfang Machinery Co., Ltd., Huzhou, Zhejiang, China) at 170 ◦C.

2.3. Characterization and Measurements

A cold field emission scanning electron microscope (SU8020, Hitachi, Tokyo, Japan)
was used to observe the tensile fracture surface of the samples.

The mechanical properties of the composites were tested using a universal material
tester (GT-TC2000, Gotech Testing Machines Inc., Taizhong, Taiwan, China), which had a
tensile speed of 500 mm·min−1.

The crosslinking density of the composites was tested via the equilibrium swelling
method [32]. The mass of the samples before and after immersion were defined as M1
and M2 (g), which were obtained by immersing the vulcanized rubber in toluene at room
temperature for 72 h. The volume rate of swelling of the rubber, v2, was calculated according
to Equations (1)–(3).

ν2 =
ν1

(ν1 + νsol)
(1)

νsol =
(M2 − M1)

ρsol
(2)

ν1 =
M3

ρ
(3)
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where vsol (cm3·mol−1) is the volume of solvent absorbed by the rubber after swelling, v1
(cm3·mol−1) is the volume of rubber, ρsol (g·mL−1) is the density of solvent, ρ (g·cm−3)
is the density of rubber and M3 (g) is the mass of rubber. The crosslinking density, ve
(×10−4 mol·cm−3), of the composites was calculated using Equation (4).

νe =
ln(1 − νe) + ν2 + χ · ν2

2

2ν · ν
1
3
2

(4)

where χ is the silicone rubber–toluene interaction parameter (0.465) [33], and v (cm3·mol−1)
is the molar volume of solvent.

The dynamic mechanical analysis (DMA) of the silicone rubber composites were tested
using DMA 242 (NETZSCH, Free State of Bavaria, Germany). The tests were carried out at
a frequency of 10 Hz, an amplitude of 0.5% and temperature conditions of −180 to 25 ◦C.

The breakdown strength tests used a voltage breakdown tester manufactured by
Beijing Huaji Instrument Co., Beijing, China. The test was performed at an AC voltage
of 50 Hz. The insulating properties of the composites were analyzed using the Weibull
classical failure model [34]. Equation (5) represents the failure distribution function.

F(x) = 1 − e−( x
α )

β

(5)

where x is the breakdown strength, α is the scale parameter, and β is the shape parameter.
To facilitate the calculation, the above formula can be converted to logarithmic form, as
shown in Equation (6).

lg[− ln(1 − F)] = β(lgα − lgx) (6)

In addition, the failure distribution function can be calculated using Equation (7).

F(x) =
i − 0.5

n + 0.25
(7)

where i is the number of measurements derived by arranging x in ascending order, and n is
the total number of tests for each sample—in this work, n = 12. The relevant parameters α
and β of the Weibull distribution function were calculated using the least squares method
for Equation (6) to derive the Weibull failure model.

The static contact angle (SCA) and hydrophobic migration of the composites were
measured using a contact angle meter manufactured by Shanghai Zhongchen Technical
Equipment Co., Shanghai, China. Before the test took place, the samples were sequentially
wiped with ethanol and ultrapure water and left for 24 h. The SCA test was carried out
after the natural evaporation of the water on the surface. A droplet of water with a volume
of about 20 µL was dropped on the surface of the sample using a microsyringe. After taking
pictures to record the shape of the droplet, five points on the boundary were selected, and
the coordinates were recorded. SCA was obtained via fitting. The final result was the
average value of five measurements that were taken for each group. For the hydrophobic
migration test, the samples were immersed in ultrapure water for 96 h, after which stage
the SCA test was performed.

3. Results and Discussion
3.1. Mechanical Properties

SEM testing can be used to observe the dispersion of fillers in the matrix. To observe
the microscopic topography of the prepared sample, the cross-section after fracture in the
tensile test was observed, and the compatibility of the fillers with rubber was analyzed
to carry out the blending scheme. Figure 1a shows micron-sized ATH, which can be
seen to have a layered structure. ATH has good adsorption and dispersion, which can
improve the thermal conductivity of rubber, enhance the anti-aging effect and strengthen
the vulcanization process. However, the addition of FSIR will affect the compatibility of
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ATH and the rubber matrix, and the tensile section of the sample was analyzed via SEM.
Figure 1b shows the SIR composite. The ATH, which is exposed in the outer layer of
the silicone rubber matrix, cannot be observed. Figure 1f shows the fracture in the FSIR
composites. The section is smoother and flatter than that of the SIR composites, indicating
that its compatibility is better. In Figure 1c–e, unwrapped ATH and tiny cracks can be
observed in SEM. Significant bulges and depressions due to material agglomeration can be
observed compared to pure FSIR or pure SIR composites. The scheme in which SIR/FSIR is
70/30 shows better compatibility, and the reason for this phenomenon is that the increase
in the FSIR content promotes the fusion of ATH and rubber. Therefore, for SIR/FSIR, the
interfacial interaction between the matrix and the filler is weaker, resulting in the mechanical
properties of the materials being lower than those of the SIR composite materials.
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Figure 2 shows the stress–strain curves of the SIR/FSIR composites. The elongation
at break undergoes very little change with the increase in FSIR contents, which were all
around 205%. Table 2 lists the mechanical properties of the SIR/FSIR composites. The
tensile strength of the SIR composite is up to 7.3 MPa, while the tensile strength decreases
to 5.9 MPa when the content of FSIR is increased to 30 phr. In JB/T 10945-2010, the silicone
rubber applied to composite insulators requires the tensile strength to be higher than 3 MPa.
Therefore, even if the tensile strengths of the blend composites are reduced via the addition
of FSIR, it still meets the industry standard for silicone rubber insulators. The elongation at
break of the FSIR composite is only 138%, and the tensile strength is 4.5 MPa, which are
much lower than those of the SIR/FSIR composites. When the stress is less than 1.5 MPa,
the modulus of elasticity of the composites tends to increase with the increase in the FSIR
content. This outcome occurs due to the fact that the FSIR side chain contains a small
amount of trifluoropropyl, and the presence of fluorine atoms makes the molecule more
polar. This process results in larger intermolecular forces and reduced molecular chain
motility. In addition, for SIR/FSIR composites, the hardness of the composites increases,
and the stress at 100% strain remains stable, which is about 3.6 MPa with the increase in the
FSIR content. Since the percentage of SIR is higher than that of FSIR in the four composites
analyzed in this work, the properties of the samples are more similar to those of SIR.
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Table 2. Mechanical properties of SIR/FSIR composites.

Properties 100/0 95/5 90/10 80/20 70/30 0/100

Shore A hardness 70 71 70 72 74 77
Tensile strength (MPa) 7.3 6.9 6.6 6.5 5.9 4.5
Elongation at break (%) 204 210 199 204 200 138

Stress at 100% strain (MPa) 3.7 3.6 3.5 3.7 3.6 4.0
Elasticity modulus (MPa) 13.3 14.1 14.1 15.0 16.3 21.1

3.2. Crosslinking Density

After the blending rubber is vulcanized, a cross-linked network is formed inside of
the structure. When the crosslinking density increases, it represents the weakening of
the motility of the macromolecular chain. Therefore, this test can provide a theoretical
analysis from a microscopic perspective for tensile testing. The crosslinking density of the
SIR/FSIR composites is given in Figure 3. It is found that the crosslinking density of FSIR
composite is 1.55 times that of SIR composite. For the SIR/FSIR composites, the crosslinking
density gradually increases with the increase in FSIR content. When the proportion of
FSIR increased from 5 to 20 phr, the crosslinking density increased from 2.63 × 10−4 to
3.34 × 10−4 mol·cm−3. The increased crosslinking density indicates that the connection
between the macromolecular chains is more compact, and the flexibility of the composite
material is reduced and the elastic modulus will increase. In Table 1, the elasticity modulus
of FSIR composite is 7.8 MPa higher than that of SIR composites. The macromolecular
chain of FSIR contains a small amount of trifluoropropyl, and the electron-absorbing effect
of fluorine atoms is stronger and, thus, the free radical reactions are more likely to occur
with the vulcanizing agent. As a result, compared to the SIR composite, the SIR/FSIR
composites with higher FSIR contents show higher crosslinking densities. However, the
crosslinking density of the scheme with an SIR/FSIR ratio of 70/30 is higher than that of
the pure FSIR composites. The reason for this outcome is that silica is more likely to interact
with non-polar molecules to form crosslinking networks. Therefore, there is an optimal
value between the proportions of SIR composites and FSIR composites that maximizes the
crosslinking density.
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3.3. Dynamic Mechanical Properties

Figure 4a shows the storage modulus–temperature curve of the SIR/FSIR composites.
The storage modulus of pure SIR is higher than that of pure FSIR under all of the test
temperatures. Figure 4b shows the tan delta–temperature curve of SIR/FSIR composites
obtained from DMA. The glass-transition temperatures are about −130 ◦C for all of the
blending schemes. When the SIR/FSIR composites are in a glassy state, the storage modulus
of the composites gradually decreases as the proportion of FSIR increases.
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It can be seen that there are two damping peaks in FSIR, in which the temperature of
the crystallization peak is about −50 ◦C, as shown in Figure 4b. The temperature of the
crystallization peak of SIR is about −30 ◦C. Therefore, FSIR has a superior low-temperature
resistance. When SIR/FSIR is 95/5, there is only one crystallization peak, indicating that
the compatibility of the two matrices is better at this time. When SIR/FSIR is 70/30, two
crystalline peaks are observed, which means that two crystalline phases have been included
in the composites. The crystallization peak of FSIR is obviously larger than that of SIR,
which occurs because the increase in trifluoropropyl makes the internal polarity of the
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material larger. The reduction in the crystallization temperature can extend the operating
temperature range of the composite. The crystallization temperatures of the larger peaks
are concentrated at around −45 ◦C, indicating that the low-temperature resistance of the
composites is significantly improved by the addition of FSIR.

3.4. Breakdown Strength

As an insulator umbrella sleeve material, its insulation performance is one of the
most important indicators. The breakdown strength of the composites was investigated,
and the Weibull distribution was obtained. Figure 5 shows the Weibull distribution of
SIR/FSIR composites. It can be seen that the SIR composite material has excellent insulation
properties. The presence of trifluoropropyl makes the molecule polar, which makes the
breakdown field strength of the sample smaller and easier to breakdown. SIR/FSIR
composites contain two crystalline phases, resulting in more structural defects and reduced
insulation properties. Therefore, based on the characterization data, it can also be confirmed
that the breakdown strength of the material decreases as the proportion of FSIR in the
composites increases. When the content of FSIR is lower, the compatibility between SIR
and FSIR is greater, and the decrease in breakdown strength is smaller. Therefore, for the
SIR/FSIR composite with 5 phr FSIR, the breakdown strength is comparable to that of SIR
composite. However, as the blending ratio of FSIR continues to increase, the breakdown
strength continues to decrease. It can be seen that adding excess FSIR will lead to a decrease
in the insulation performance of the SIR/FSIR composite.
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3.5. Static Contact Angle

The hydrophobicity of composites is characterized by contact angle testing. When
the SCA is larger, the sample surface has better hydrophobicity. Sun et al. [28] tested the
contact angle of the two insulator materials of SIR composites and FSIR composites, which
were 112.4◦ and 117.8◦. Figure 6 shows the SCA of SIR/FSIR composites. The SCAs are
108.9◦ and 115.5◦ for SIR composite and FSIR composite, respectively. The difference in the
hydrophobicity of this paper and the work of Sun may be due to experimental formulations
and test methods. FSIR has a lower surface free energy, meaning that its hydrophobicity
is stronger than that of SIR. In addition, for the SIR/SIR composites, the SCA gradually
increases with the increase in the FSIR content. This finding indicates that the higher the
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content of FSIR, the greater the hydrophobicity of the composites. When the proportion of
FSIR is increased to 5 phr, the SCA can be significantly increased by 3.9◦. With the SIR/FSIR
increasing to 90/10 and 80/20, the SCA is about 113.6◦ and shows a smooth trend. For the
scheme of 70/30, the SCA is slightly higher than the FSIR composites. This observation
is the same as the change law of crosslinking density, meaning that the intertwining of
molecular chains inside of the material to form a dense crosslinking network is conducive
to improving hydrophobicity.
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When the sample is served in a humid environment for a long time, its hydrophobicity
changes. Therefore, hydrophobic migration was analyzed. Figure 7 shows the variation
in SCA for SIR/FSIR composites measured after 96 h of immersion in water. After 96 h
of immersion, the SCA of FSIR composite decreases more significantly than that of SIR
composite. For the SIR/FSIR composites, the decreasing trend of SCA is more significant
for the increased proportion of FSIR. When SIR/FSIR is 95/5, the SCA decreases by 0.5◦

after 96 h immersion, while the SCA decreases by 3.6◦ when SIR/FSIR is 70/30. This
phenomenon indicates that the FSIR material has good surface hydrophobicity, but the
hydrophobicity migration occurred after internal water immersion. In addition, the SCA
of the blended material with FSIR composites after immersion is higher than that of the
un-immersed SIR composites. For example, the smallest SCA measured after immersion
of all SIR/FSIR blending composites was 112◦ for the scheme 90/10, but it is still larger
than the un-immersed SIR composite. Based on this result, we can further illustrate the
effectiveness of FSIR composite in improving hydrophobicity. Insulators made of SIR/FSIR
can have better hydrophobic stability in humid environments.
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4. Conclusions

In this paper, SIR/FSIR composites with different proportions of matrix materials were
prepared and found to have good compatibility. Firstly, the tensile strength decreased from
7.3 to 5.9 MPa when the content of FSIR was increased to 30 phr. The elongation at break and
the stress at 100% strain did not significantly change. When the stress was less than 1.5 MPa,
the modulus of elasticity of the composites tended to increase with the increase in FSIR
content. Secondly, the low-temperature resistance of the composites can be significantly
improved when the proportion of FSIR in the composites is relatively small. Compared to
SIR composite materials, the crystallization temperature of the composites is reduced from
−30 to −45 ◦C. Thirdly, the breakdown strength test reveals that when the FSIR content
is increased, it leads to a decrease in the overall insulating properties of the composites.
Finally, the SCA increases as the FSIR content increases for blending composites, and
the material hydrophobicity increases. When the samples were immersed for 96 h, the
hydrophobicity migration phenomenon occurred. As the proportion of FSIR increased, the
SCA decreased more significantly, which indicated that hydrophobicity weakened.

This research provides a reference point for the material formulation of SIR high-
voltage insulators. The huge demand for composite insulators has been shown in power
transportation, especially in cold weather or harsh environments. Insulators composed
of SIR/FSIR composites exhibit the advantage of having wider temperature application
range. In addition, owing to the increased hydrophobicity, the insulators using SIR/FSIR
composites as an umbrella sleeve material are expected to efficiently avoid flashover, which
could prolong the service life of the insulator and reduce the probability of the need to
replace the disabled insulator.
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Nomenclature

SIR Silicone rubber
FSIR Fluorosilicone rubber
HSO Hydroxy silicone oil
ATH Aluminum hydroxide
VTMS Vinyltrimethoxysilane
DBPH 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane
SEM Scanning electron microscope
DMA Dynamic mechanical properties
SCA Static contact angle
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