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Abstract: Additive manufacturing (AM) through material extrusion (MEX) is becoming increasingly
popular worldwide due to its simple, sustainable and safe technique of material preparation, with
minimal waste generation. This user-friendly technique is currently extensively used in diverse
industries and household applications. Recently, there has been increasing attention on polycapro-
lactone (PCL)-based composites in MEX due to their improved biodegradability. These composites
can be printed at a lower temperature, making them more energy efficient compared to commercial
filaments such as acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA). Although wool is
the leading protein fibre in the world and can be more compatible with PCL due to its inherent hy-
drophobicity, the suitability of MEX using a wool/PCL combination has not been reported previously.
In the current study, waste wool/PCL composite parts were printed using the MEX technique, and
rheology, thermal and tensile properties, and morphology were analysed. The impact of wool loading
(10% and 20%) was investigated in relation to different filling patterns (concentric, rectilinear and
gyroid). Furthermore, the impact of fibre fineness on the final material produced through MEX was
investigated for the first time using two types of wool fibres with diameters of 16 µm and 24 µm. The
yield strength and modulus of PCL increased with the inclusion of 10% wool, although the elongation
was reduced. The crystallinity of the composites was found to be reduced with wool inclusion,
though the melting point of PCL remained mostly unchanged with 10% wool inclusion, indicating
better compatibility. Good miscibility and uniform structure were observed with the inclusion of
10% wool, as evidenced by rheology and morphology analysis. The impact of fibre fineness was
mostly minor, though wool/PCL composites showed improved thermal stability with finer diameter
of wool fibres. The printed specimens exhibited an increasing rate of biodegradation in marine water,
which was correlated to the amount of wool present. Overall, the results demonstrate the practical
applicability of the wool/PCL composition in MEX for the preparation of varied objects, such as
containers, toys and other household and industrial items. Using wool/PCL combinations as regular
plastics would provide a significant environmental advantage over the non-degradable polymers
that are currently used for these purposes.

Keywords: bio-composite; fused deposition modelling; 3D printing; natural wool; filament extrusion;
sustainability

1. Introduction

Material extrusion (MEX), also known as fused deposition modelling (FDM), has
gained significant attention in recent years as a unique and sustainable method of ma-
terials fabrication. It is a simple concept of additive manufacturing (AM) that is free
from hazardous chemicals [1], and allows for the safe fabrication of complex and elegant
structures in a tabletop environment. This method is also recognised for its negligible
waste generation, low production cost [2], and ability to deliver materials with a higher
stress/weight ratio [3]. Over the years, MEX has been adopted in numerous sectors, in-
cluding composites [4], scaffolds [5], energy harvesting [6], pharmaceuticals [7], and home
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applications [8]. Moreover, MEX is playing a significant role in the recycling and recovery
of different thermoplastic composites [9–11].

In the MEX method, a thermoplastic filament is guided through a heated nozzle
that moves in horizontal and vertical directions as per a pre-planned design. The molten
filament extrudes on a print bed in a controlled manner through the nozzle to produce the
final material [12].

Recently, with the increase in global awareness of cleaner manufacturing methods
and sustainable materials, polycaprolactone (PCL) has been gaining significant attention
in MEX due to its confirmed biocompatibility and lower processing temperature com-
pared to common commercial MEX filaments, such as acrylonitrile butadiene styrene
(ABS) and polylactic acid (PLA). PCL has proven biodegradability in the natural envi-
ronment, contrasting the non-degradability of ABS and a temperature requisite of above
50 ◦C for the successful degradation of PLA [13]. Moreover, ABS and PLA need a higher
extrusion temperature (around 200–220 ◦C) [14], whereas PCL can be printed at a lower
temperature (such as 80–150 ◦C) [15] and can be sourced from renewable resources cost-
effectively [16]. Focusing on these advantages, numerous studies have been performed in
recent years on MEX of pure PCL [17] as well as PCL composites, such as PCL/PLA [18],
PCL/hydroxyapatite [5], PCL/thermoplastic polyurethane [19], PCL/polyglycolic acid [20],
PCL/PBAT (poly butyleneadipate-co-terephthalate) [4], PCL/beta-tricalcium phosphate [21],
PCL/gum rosin/beeswax [15], PCL/silk [22], PCL/cocoa shell waste [14] and so on.

Although PCL has shown evidence of biodegradation, its degradation rate is slow.
The complete degradation of PCL may take 4 years or more, while an apparent difference
can be observed at least after a year [23]. To promote the degradation rate of PCL, natural
fillers are often used, which can bring significant differences. However, PCL is extremely
hydrophobic, which results in poor compatibility with most natural fillers that are hy-
drophilic [24]. Even though biodegradation can be accelerated, other important properties
required for the practical application of PCL composite may have a negative impact.

An alternative option to ensure faster degradation of PCL using fillers and maintain
good compatibility in the three-dimensional (3D) printed materials could be the use of
natural hydrophobic fillers, such as protein fibres including wool or silk. Due to the lack of
polarity in these fibres, they are not as repulsive as the natural cellulosic fibres towards PCL,
and can produce a more compatible structure, eluding the efforts for polymer grafting [25]
or compatibilisation [26].

Wool is the leading protein fibre obtained from animals widely around the world. As
per a recent International Wool Textile Organisation (IWTO) report, worldwide production
of raw wool is currently 1.95 million tonnes, resulting in ~1 million tonnes of clean wool [27].
This is significantly higher than other animal protein fibres, such as down (0.53 million
tonnes), silk (0.11 million tonnes) and cashmere (0.025 million tonnes) [28]. Apart from
the wool waste produced during its cleaning (i.e., the remaining 0.95 million tonnes of the
1.95 million tonnes), wool is collected as waste (12–15% waste) during its processing into
yarn and fabric and as consumed textile waste [29]. Moreover, using wool as a filler in PCL
can improve the biodegradation rate since wool itself is biodegraded within 6 months in
appropriate conditions [30].

The physicochemical structure of wool fibres provides it with some unique properties.
Though chemically, wool mainly consists of keratin [31], it is also composed of cortical
cells, cell-membrane complex and cuticular cells. The inner core of the fibre is shielded
by overlying layers of cuticle cells, i.e., epicuticle, endocuticle and exocuticle. The outer
layer of this fibre is enriched with lipids that are interconnected to surface proteins and
cell-membrane complex [32]. The complex presence of lipids generates hydrophobicity in
wool, which is often retained even after chemical processing, such as Soxhlet extraction [33].
Therefore, wool could be a potential candidate as a natural filler into PCL for MEX, as
the hydrophobicity of wool would be an advantage during blending and extrusion with
hydrophobic PCL, compared to other common natural fillers. Earlier study has confirmed
that the wool/PCL combination exhibits good compatibility, as evidenced by the minor
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change in the position of the melting enthalpy peak in composite with the addition of 10%
wool, compared to pure PCL [34]. Typically, a less compatible combination would result
in a greater shift of the melting peak to a lower temperature, indicating easier melting of
the polymer. Further, the low melting temperature of PCL was proven as an advantage
for keeping the chemical structure of wool intact while extruding. Moreover, both wool
and PCL are biodegradable, thus as a combination more sustainable and environmentally
friendly compared to the common polymers used in 3D printing.

However, to date, there has been no previous study on the combination of wool and
PCL in MEX. Though the properties of the pre-printing material (i.e., wool/PCL filaments)
were reported [34], the changes in the characteristics of the final material after 3D printing
were not assessed. This study aims to demonstrate the impact of different amounts of
wool, wool fibre fineness and filling patterns on the 3D-printed wool/PCL composites.
Worthy of note, this is also the first report that investigates the impact of the initial fineness
of any fibrous filler in MEX. Printing was performed after the preparation of wool/PCL
filaments, and rheology, morphology, and thermal and tensile properties were investigated.
Three different patterns, namely concentric, rectilinear and gyroid, were chosen, as the
former two were reported to produce better tensile strength in the literature [35], and
the latter is preferred by the manufacturer (Prusa Research) and claimed to have a good
strength/weight ratio [36]. The results are discussed in terms of their interrelation as well
as in relation to the properties of filaments discussed in previous study.

2. Materials and Methods

This study adopted a clean production method, minimising the generation of any
in-process residue. The materials used and the methods applied for the wool/PCL 3D
printing are described in the following subsections.

2.1. Materials

Two undyed wool fabric waste products weaved from 16.1 µm and 23.8 µm were
collected from Commonwealth Scientific and Industrial Research Organisation (CSIRO),
Geelong Waurn Ponds Campus, Australia. Commercial polycaprolactone (CAPA6800) poly-
mer granules (Mw 80,000) were purchased from Era Polymers, Banksmeadow, Australia.
Sodium hydroxide (NaOH) pellet was purchased from Chem-Supply, Gillman, Australia.

2.2. Powder Preparation

The particle size of the filler in 3D printing is preferable in micro-level to maintain
good mixing and avoid clogging in the 3D printer nozzle. Therefore, wool fabrics were first
cut into a coarse form by a cutting mill (Pulverisette 19, Fritsch, Idar-Oberstein, Germany)
using a 1 mm mesh. Two different wool coarse powders collected by cutting were then
individually milled for 1.5 h using an S/1 attritor mill (Union Process, Akron, OH, USA)
having ceramic balls of 5 mm diameter. The collected slurries were filtered under a vacuum
to obtain wet powders. The wet powders were then dried in ambient temperature (~20 ◦C),
and the final powders were obtained by grinding in a ring grinder (Pulverisette 14, Fritsch,
Germany). The average particle size (d50), measured using a laser diffraction technique
(Mastersizer 3000, Malvern, PA, USA), for the powders from 16.1 µm was 22.2 µm and
from 23.8 µm wool was 46.3 µm. The detailed volume-based particle size distributions of
these two powders are available in a previous study [34].

2.3. Preparation of Filaments and Printing

Wool powders were separately blended with PCL pellets in a twin-screw extruder
(Wayne, NJ, USA) to formulate wool/PCL pellets. There were two hoppers in the machine,
the main hopper and the side hopper, used for separate input of PCL and wool. The
feeding speed of wool powders was adjusted to 0.22 kg/h and 0.5 kg/h to obtain 10/90
and 20/80 wool/PCL combinations, respectively. A further high amount of wool was
not considered due to breakage and poor results reported in the previous study [34]. The
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temperatures from Zone 1 to 6 were increasingly set from 82 to 93 ◦C and 96 ◦C for the
die zone following previous wool/PCL extrusion work [34]. The extruded wool/PCL was
passed through a water bath for cooling, and wool/PCL pellets were collected through a
pelletiser.

The prepared filaments were then extruded through a desktop extruder (Wellzoom,
Shenzhen Mistar Technology Co., Ltd, Shenzhen, China) to obtain the 3D printable filament.
The temperature was maintained at 95 ◦C for preheating and 90 ◦C for extrusion stages [34].
The filaments were prepared at 2000 mm/min speed through a 1.75 mm nozzle, resulting
in the final diameter of 1.40 ± 0.05 mm. A control filament was also prepared using the
same parameter as the pure PCL pellets.

The 3D printing of dog-bone shapes was performed as per ISO 527-2 [37] 5A by an
i3 MK3 3D printer (Prusa Research, Prague, Czech Republic) using a 0.4 mm nozzle. The
printing temperature was tested and adjusted to 130 ◦C to obtain the optimised printability
from the composite filaments. The printing bed temperature was set to 25 ◦C. A 50% infill
was used to print specimens of concentric, rectilinear and gyroid patterns, while top and
bottom fill patterns for all of the samples were monotonic. A 45◦ fill angle was used for
the printing, and the speed of infill was 80 mm/min, though the first layer speed was set
to 20 mm/min. The nomenclature of the printed specimens is shown in Table 1. Figure 1
shows the equipment used from powder preparation to 3D printing along with the designs
used for printing and time, and filament consumption differed across filling patterns.

Table 1. Nomenclature of the 3D-printed specimens based on wool fineness and wool loading.

Wool Fineness (µm) Wool (%) PCL (%) Name

- 0 100 PCL
16 10 90 WP16-10
16 20 80 WP16-20
24 10 90 WP24-10
24 20 80 WP24-20
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2.4. Characterisations

The 3D-printed samples were characterised by their rheology, thermal properties,
tensile properties, morphology, and biodegradation properties. The techniques used for
characterising the produced samples are detailed in the following subsections.

2.4.1. Rheology

The rheology of pure PCL and the wool/PCL printed combination was tested at 130 ◦C,
which was the optimised 3D printing temperature. Samples were tested in a discovery HR3
rheometer (TA instruments, New Castle, DE, USA) using a 40 mm diameter parallel-plate
geometry. The geometry gap was set to 1 mm, and the test was performed from 0.1 to
100 rad/s at 1% strain.

2.4.2. Thermal Properties

Derivative thermogravimetry (DTG) of the samples was measured using a TGA Q50
(TA Instruments, USA) in N2 atmosphere. The test was conducted from 30 to 600 ◦C,
maintaining a 20 ◦C/min heating rate. The graph was plotted using the derivative weight
change (%) of the samples per degree of temperature rise on the y-axis and the change in
the temperature on the x-axis.

Differential scanning calorimetry (DSC) of the samples was performed using a DSC
Q200 (TA Instruments, USA) instrument in N2 atmosphere. The test was conducted from
30 to 600 ◦C using a 20 ◦C/min heating rate. The differences in enthalpy at the endothermic
stages were measured in TA Universal analysis software. The PCL crystallinity index (CI)
was calculated using Equation (1) [34]:

CI = (∆Hx)/(∆H100) × 100 (1)

where ∆Hx and ∆H100 are the enthalpy change of a sample and the theoretical enthalpy
change of 100% crystalline PCL (139 J/g) [38], respectively.

2.4.3. Tensile Properties

The yield strength, yield strain, breaking stress, breaking strain, and modulus of
elasticity of the ISO 527-2 5A-sized printed dog-bone samples were assessed using a
universal tensile testing system (Instron 5967, Norwood, MA, USA) fitting with a 1 kN load
cell and 50 mm/min elongation rate. The specific yield stress, specific breaking stress and
specific modulus of the samples were determined by dividing the yield stress, breaking
stress, and modulus values by the density of the specimen.

Three specimens of each sample were tested, and average and standard deviation
were reported. The significance of the difference between the datasets was determined by
a two-tailed t-test. The confidence level was considered as 95%, and thus, p ≤ 0.05 was
denoted as a significant difference, and p > 0.05 was denoted as no significant difference.

2.4.4. Morphology

The morphology of the cross-section of the samples was examined as normal and after
the tensile experiment (fractured cross-section). Samples were coated with platinum in
an EM ACE600 sputter coater (Leica, Macquarie Park, Australia), and scanning electron
microscope (SEM) images were taken by a Supra 55 VP (Zeiss, Oberkochen, Germany)
instrument.

2.4.5. Biodegradation

The biodegradation of the composites and pure PCL samples was measured in
two methods. In the first method, it was indirectly measured by monitoring the biochemical
oxygen demand (BOD) in marine water following the BS EN 1899-2:1998 protocol [39]. The
marine water collected from Eastern Beach, Geelong, Australia (latitude 38.15◦ S, longitude
144.37◦ E, altitude 21 m) was considered in the experiment. The test was conducted using
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an OxiTop BOD system (WTW, Xylem Analytics, Letchworth, UK.), containing 6 bottles. In
each bottle, 432 mL of marine water was used. Around 50 ± 1 mg of printed sample was
inserted in five bottles and one bottle was left without any sample (only water). The gener-
ated carbon dioxide (CO2) was absorbed by sodium hydroxide from the BOD closed system.
The equipment was placed inside a refrigerated incubator (Thermoline Scientific, Wetherill
Park, Australia), and the temperature was maintained constant at 20 ◦C (Figure 2a), and
experiment ran for 5 days as per the WTW instruction manual for OxiTop instrument. The
actual BOD was calculated by subtracting the value of the blank sample (marine water
without any sample). The test was repeated three times, and average data were considered
for each sample.
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Figure 2. (a) BOD test progressing inside a refrigerated incubator, and (b) a schematic of replication
of marine environment in a saltwater fish tank.

In the second method, the marine environment was replicated in a domestic saltwater
fish tank as an established ecosystem. The volume of water was 140 L, constantly circulated
at a 2000 L/h flow rate (Figure 2b). The temperature, pH and specific gravity of the water
were maintained at 25 ◦C, 8.1–8.3, and 1.025, respectively. The ammonia and nitrite contents
were 0 mg/L, and the nitrate content in water was <10 mg/L (measured using API marine
test kit, Mars, Chalfont, PA, USA). The samples were placed inside the tank in a perforated
container so that the water could pass through the samples. After 5 months, the samples
were taken out, and the loss of weight was measured in relation to their initial weight.

3. Results

The results obtained from the tests were found interlinked with each other and were
affected by the wool amount in the composites, the initial fineness of wool, as well as the
3D printing patterns. The findings are detailed in the following subsections.

3.1. Rheology

Figure 3a shows the storage modulus (G′) of PCL and wool/PCL composites at
130 ◦C. Commonly, a higher storage modulus is associated with higher stiffness of a
material [40]. The G′ value of the samples was seen increasing with the increase in angular
frequencies. For example, G′ of PCL ranged around 6.3 to 61.4 Pa at lower frequencies
(i.e., 0.1–0.4 rad/s), though at higher frequencies it was around 10,210–63,280 Pa (i.e.,
15–100 rad/s). This behaviour is due to the reduced amount of time to respond to the stress
at higher frequencies, and the material tends to show more stiff behaviour than viscous [34].
The changes in the viscoelastic behaviour of PCL and wool/PCL composites were more
apparent at lower frequencies.
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At frequencies around 0.1–0.4 rad/s, G′ of the composites prepared with 10% wool
ranged around 179–442 Pa, though a significantly higher amount of G′ was found (around
1678–4220 Pa) for the samples loaded with 20% wool. This showed the increased amount of
stiffness produced in the PCL polymer chain by the influence of the increased wool amount.
The curves for the composites were more flat compared to the pure PCL, demonstrating
more frequency-independent characteristics as the wool/PCL interactions probably re-
stricted the chain mobility [40]. For MEX, this behaviour is also linked to the improved
ability of the extruded material to hold its shape as printed [15].

Figure 3b illustrates the loss modulus (G′′) of the samples. The loss modulus is
mainly linked to the dissipation of energy from a material when stress is applied. At lower
frequencies, there was a clear difference observed between samples prepared with 10%
and 20% wool. Even though pure PCL showed a radical increase in the loss modulus
with increasing frequencies, at a lower frequency (0.1 rad/s) the value (269 Pa) was mostly
identical to those of samples prepared from 10% wool (223–236 Pa) and very different from
the samples prepared from 20% wool (1372–1955 Pa). This indicated that up to 10% wool
was enough to preserve the energy, maintaining appropriate miscibility between wool and
PCL [34], though when 20% wool was included, friction among the particles increased, and
more vacant spots were produced in the interfaces; this helped the energy dissipation [40].
At the higher frequencies, more energy dissipated from all of the samples, probably more
related to the PCL chain behaviour (as seen from the pure PCL curve), rather than the wool
particles. In cases of both storage and loss moduli, the percentage of wool particles showed
a major impact on the viscoelastic characteristics of the composites, though the fineness of
the initial wool showed a minor influence.

Figure 3c shows the phase angle (δ) value of the samples. The tangent of phase angle
is known as the loss factor, which is the slope of the G′-G′′ curve. When δ > 45◦ (tan δ > 1),
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the material behaviour is more inclined to be viscous, and if δ < 45◦ (tan δ < 1), the material
behaviour is more inclined to be solid-like. A clear influence of the wool reinforcement was
seen on tan δ, compared with pure PCL, which showed a complete viscous characteristic
(δ = 48.5–88.6◦) at the tested frequencies, under 130 ◦C. This was probably because of the
stiffness of the wool itself compared to PCL, which significantly affected the δ values. A
lower δ value, of mostly around 45◦ or below, was persistent up to ~1 rad/s for samples
with 10% wool, and up to ~10 rad/s for samples with 20% wool. This aligns with the
improved and consistent storage modulus seen earlier in the composite samples, higher for
samples with the higher percentage of wool. The change in δ from <45◦ to >45◦ in most of
the composite samples was mainly related to the transition from the viscoelastic plateau to
the transition region of a typical viscoelastic curve [41].

Figure 3d represents the complex viscosity (η*) of the samples, again showing a major
influence from the amount of wool loading, i.e., higher η* from greater wool loading. The
overall decrease in η* with rising frequencies indicated the shear thinning behaviour in
all of the samples [22]. The drop in η* for pure PCL was from 2691 to 990 Pa.s, while it
was from around 2861–3489 Pa.s to around 172–174 Pa.s for 10% wool-loaded samples and
from around 21,684–28,590 Pa.s to around 287–310 Pa.s for 20% wool-included composite
samples. The massive drop in the η* in the 20% wool-included samples was probably
related to their less consistent structure due to the presence of more fillers. This is discussed
further in the morphology section. The higher η* value of these samples compared to other
samples at lower frequencies was probably related to the structural interruption in PCL
by wool, producing more voids (can be observed from the morphology discussions later),
making the overall system less resistant to flow [22]. At lower frequency (0.1 rad/s), the
values of η* were mostly similar among PCL and composites with 10% wool, indicating
good miscibility. In terms of initial fibre fineness of wool, a finer fibre mostly showed
a higher η*, probably associated with a lower particle size of WP16 compared to WP24
in a similar mass of powder, and the distribution of particles was more uniform in PCL,
resulting in more resistance to PCL flow.

Overall, the rheological behaviour of wool/PCL (particularly with 10% wool) in this
study (130 ◦C) was in some cases closer to that of pure PCL. This was not observed in
the previous study with wool/PCL, where only the filament property was investigated at
90 ◦C [34]. The higher temperature used in the current study (adjusted as per the actual
printing requirement) reasonably improved the flowability of the wool/PCL system and
reduced the difference in rheological behaviour with pure PCL.

3.2. Thermal Properties

The DTG spectra of pure PCL and the wool/PCL composite samples are shown in
Figure 4a. Both PCL and wool/PCL composites showed minor weight loss up to 200 ◦C,
confirming their strong hydrophobic nature. The position of the major DTG peak was
shifted to a higher degree when wool was included with PCL; the DTG peak was seen
for pure PCL at 379 ◦C, and then the peak of wool/ PCL composites shifted to 394 ◦C for
coarser and 404 ◦C for finer wool. The onset of the peak was around 270 ◦C for PCL, while
the onset peak of the composites was around 350 ◦C. These are clear indications of the
improvement in thermal stability of PCL when wool particles have been included.

Between the wools with different fineness, the position of the main peak was higher for
the finer diameter of wool (WP16), compared to the coarser diameter of wool (WP24). This
indicates that the distribution of finer wool in the PCL matrix was probably more uniform,
due to the smaller size of the particles [34]. This can also be verified by the percentages of
weight loss of these samples from 270 ◦C to 450 ◦C (Table 2), showing a higher weight loss
for the WP24 composite samples. The thermal degradation of WP16 samples started earlier
than that of WP24 samples, which also showed a shoulder peak before the final peak. This
early degradation could be related to cysteine degradation, as this is associated with the
cuticle content in the outer layer of wool, and finer wool commonly possesses a higher
cuticle proportion than coarser wool [42].
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Table 2. DTG and DSC data for the printed PCL and wool/PCL samples at different temperature
stages.

PCL WP16-10 WP16-20 WP24-10 WP24-20

Degradation
(270–450 ◦C)

Peak (◦C) 379 404 404 394 394

Weight loss (%) 93.3 86.8 87.1 91.5 91.9

Residue (%) 600 ◦C 0.09 1.7 1.9 1.5 1.8

Evaporation
Peak (◦C) 70.9 70.3 68.4 70.2 67.5

Enthalpy (J/g) 66.9 63.4 59.2 63.1 57.1

Crystallinity index (%) 48.1 45.6 42.6 45.4 41.1

Denaturation
Peak (◦C) - 258.8 258.3 258.5 258.1

Enthalpy (J/g) - 0.47 2.51 0.49 2.66

The thermal degradation behaviour of the composites was also related to the wool
amount in the composite samples, as higher stability (lower peak height) was seen with
10% wool rather than 20% wool. This indicates that the effectivity of wool in increasing the
thermal stability of PCL is better with a lower loading, as the distribution of particles is
likely to be more uniform. Though a minor weight loss difference was seen in the overall
region (270 to 450 ◦C), the residue left at 600 ◦C was higher for the 20% wool-loaded
samples, as this residue was more related to wool rather than pure PCL (0.09%).

The DSC spectra of PCL and wool/PCL composites are shown in Figure 4b. The
melting peak of pure PCL was seen at 70.9 ◦C, which was almost unchanged by 10% wool
loading (70.3 ◦C for WP16 and 70.2 ◦C for WP24). The melting peak shifted towards a
lower temperature (~68 ◦C) when 20% wool was reinforced (Table 1). This indicates that the
compatibility between 10% wool and PCL was adequate to retain the melting behaviour of
PCL, though a higher amount of wool (20%) produced more imperfections and vacant spots
in the interfaces [43]. The intermolecular interactions within the system were obstructed,
and PCL started to melt at a lower temperature [44]. The values of melting enthalpy, as
well as crystallinity index, showed that the overall crystalline property of PCL was reduced
by wool inclusion. The crystallinity index of pure PCL was found in the range of values
reported in the literature (nearly 48%) [45]. Crystallinity was decreased around 5.2–5.6% by
10% wool and around 11.4–14.5% by 20% wool. This was similar to findings in previous
wool/PCL studies, such as for wool/PCL filaments [34] and wool/PCL nano nets from
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electrospinning [46]. This is related to the increase in irregular spots in the PCL matrix due
to the inclusion of wool, affecting the PCL orientation.

The denaturation peak of wool due to its α-helix was seen in all of the composites near
258 ◦C, proving the presence of wool in the structure [29]. Both the wool/PCL composite
samples with 20% wool (regardless of the fibre fineness), resulted in a higher value of
enthalpy (2.51–2.66 J/g) compared to the samples prepared with 10% wool (0.47–0.49 J/g).
This was expected, as more wool was present in those samples, showing a higher denatura-
tion from the wool structure.

Overall, the thermal degradation and crystalline behaviour of the samples in this study
were mostly similar to those observed in the previous study with wool/PCL filaments [34].
This indicates that the thermal property was not altered much after 3D printing, even
though the material passed through a slightly higher temperature (130 ◦C) during the
printing operation.

3.3. Tensile Properties

The tensile behaviour of the 3D-printed samples printed in three different patterns
(concentric, gyroid and rectilinear) can be divided into three sections. These include the
impact on the samples up to the yield point, the impact on the samples up to the breaking
point, and the overall impact on their modulus. These are discussed in the following
subsections.

3.3.1. Impact on Yield

The yield point is the first point on a stress–strain curve of a material where strain
increases without a rise in stress [47]. This is also known as the elastic limit of the material
after which plastic deformation starts and the material cannot come back to its original
shape if stress is removed. Figure 5a shows that the yield strength of pure PCL specimens
was around 13.9–14.5 MPa, which aligns with commercial PCL (CAPA6800) (yield strength
of 14–16 MPa) [48]. The strength was significantly increased (around 15.8–20.6%) when
10% wool was included with PCL, regardless of the fibre fineness [49]. A further increase
in wool loading, i.e., 20%, slightly reduced the yield strength, which became more evident
with the coarser wool fibre (W24-20). This effect was found to be similar to previously
reported tensile properties of wool/PCL filaments of similar loading [34]. The impact of
filling patterns was observed as marginal and showed mostly insignificant differences
(p > 0.05) when loading percentage and fibre fineness were kept constant. The average
values were observed to be mostly higher for concentric infill compared to the other two,
probably due to its orientation with the tensile loading direction [35].

The 3D-printed parts included in the current study were structures within the speci-
men, having differences in their internal gaps, influencing density. This can also be seen in
Figure 1i, where the filament weights and lengths were measured differently for different
infill patterns, as they follow different paths to produce the infill. The strength in relation to
the respective density of the material can provide further confirmation of the yield strength
results, which are shown in Figure 5b. A general increase in the specific yield strength
values by wool loading compared to that of pure PCL, as well as a higher strength for
concentric patterns, was evident, validating the results in Figure 4a.

The yield strain values showed sporadic results among the composite samples (Figure 5c),
though when wool was loaded, the decrease in elongation was consistent compared to pure
PCL. This was because of the decrease in chain deformability of PCL due to the barriers
produced in the PCL chain by the addition of wool particles [50]. Though the average yield
strain of the concentric-filled specimens was often lower than that of the corresponding
samples, differences were often not significant (p > 0.05). Figure 5d shows representative
stress–strain curves for the samples, the higher elongation property of the pure PCL, but a
higher yield stress value for most of the composites.
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curves of the samples up to the yield point. Different alphabetic letters in italics showing data are
significantly different from each other (p ≤ 0.05).

Overall, the yield strength of the PCL and wool/PCL 3D-printed specimens in this
study showed statistically insignificant differences (p > 0.05) compared to that of the
filaments (15 MPa for PCL filaments and 15.1 to 17.1 MPa for the composites) reported in
the previous study [34]. Moreover, the impact of wool loading and fibre fineness observed
in this study was mostly consistent with the trends obtained in the case of filaments [34].

3.3.2. Impact on Ultimate Break

In contrast to the yield point, the impact of wool on the breaking strength and break-
ing elongation was perceived differently. Figure 6a shows representative curves for the
PCL-only samples and the composite samples, indicating a huge alteration in the elastic
property of PCL by wool inclusion. After the yield point, PCL showed a high extensibility
(1149–1237%) (Figure 6b), similar to that observed in a previous study (>1000%) [51]. The
breaking elongation of PCL was observed to be lower than that of a previously reported
PCL filament (1780%), probably due to the printed infill that produced void spaces inside
the structure. Impacted by the interruption of PCL chain mobility by wool powders, the
composite samples showed a drastic reduction in the breaking elongation, to only about
9.9–40% across all samples. Among the composites, composite samples with 10% wool
showed higher elongation compared to the samples prepared with 20% wool. This was
because of the higher amount of particles present in the 20% wool-loaded samples, creating
more disruptions and voids in the PCL chain. The concentric infill showed a lower elonga-
tion behaviour, mostly statistically significant (p < 0.05) compared to the other patterns in
at least three of the four composite samples. A lower elongation in the concentric pattern
was found to be similar to that in the previous study with different infill patterns through
MEX [52].
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showing data are significantly different from each other (p ≤ 0.05).

The breaking strength of pure PCL was 26.1–29.7 MPa (Figure 6c), which was also
higher than that of the composite samples (12–15.1 MPa) and explained by the specific
breaking strength results (Figure 6d). The breaking strength values of PCL-only samples
were higher than their corresponding yield strength values, while the opposite was seen
for the wool/PCL composites. Though the breaking strength of the PCL was significantly
higher due to the inherent extensibility of the PCL chain, the calculation for the breaking
strength may not be meaningful past their yield point, as a massive reduction in the
cross-section occurred due to stress after yield (also known as the necking behaviour) [53].
Further, as per the ASTM guide, these values only have a qualitative function after the yield
point, as the impact of necking on the entire gauge length before the break is uncertain [47].
This necking behaviour was not seen in any of the composites, while they mostly broke
just after the yield point. In cases of both breaking strength and specific breaking strength,
the differences among the composites were mostly insignificant with some exceptions,
such as a higher strength obtained by concentric infill with 10% wool, which is consistent
with the yield strength result for the same sample in this study as well as reported in the
literature [35].

3.3.3. Impact on Modulus

The modulus and specific modulus of all samples are shown in Figure 7a,b, respectively.
The increase in the modulus and specific modulus by wool inclusion in PCL was evident.
This was because of a higher modulus of the wool itself (3.9–5.9 GPa) [54] compared to
PCL (i.e., 144–156 MPa in the current study), which increased the rigidity of the composite
specimens and is consistent with the literature [55]. The modulus value tended to further
increase with the increased filler amount. For example, for the concentric patterns, the
modulus increased from 275–304 MPa to 313–322 MPa, in cases of 10% and 20% wool,
respectively. The gyroid-infilled specimens showed consistently lower average values
for all of the samples, which could be related to the structure of the gyroid infill, which



Polymers 2023, 15, 3439 13 of 19

consumed a lower amount of materials and had a reduced amount of mass to resist the
force [56]. Except for the general impact of wool on PCL, the differences in the modulus
or specific modulus values were often not statistically significant and showed mostly a
sporadic result.
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Overall, the tensile strength of PCL composites was comparatively lower than that of
the commercial products, such as PLA and ABS (52.5 MPa and 38.1, respectively); however,
through the specimen preparation, it was proven that they were stiff enough to retain their
designed structure. The composites also showed a lower modulus behaviour compared
to commercial PLA and ABS (3250 MPa and 1962 MPa, respectively), which indicates the
higher flexibility of the wool/PCL combination, which is also vital for 3D printing [34].

3.4. Morphology

The morphology of cross-sections of the samples was investigated. This was tested in
two phases, after the printing and after the tensile tests (fractured point). The findings are
detailed in the following subsections.

3.4.1. Cross-Sections of Printed Specimens

The cross-section morphology of the 3D-printed PCL and wool/PCL combinations is
shown in Figure 8. Pure PCL showed mostly smooth orientation, and layers were visible
in the z direction in all infill patterns. All of the wool/PCL samples showed roughness in
their structure due to the reinforcement with wool, though the distribution of wool was
perceived to be uniform. This was probably due to good compatibility between wool and
PCL, as mentioned during the discussions of rheological and thermal behaviour of these
samples. Interestingly, though the presence of the layers was sometimes evident in the
composite samples, they were often not as visible as in the pure PCL. This could be due to
grasping among the layers, interlocking with each other.

The patterns of infill were clearer in the PCL samples, though not exactly retained
after the printing in the cases of both PCL and the composites. The concentric infill patterns
appeared steadier compared to the other two patterns, while PCL composites with 10%
wool showed more shape retention ability than those with 20% wool. Even though a higher
amount of wool enhanced the rigidity of the composites (a higher modulus), the shape
retention ability appeared to be more related to a balanced mixing of wool (i.e., 10%) with
PCL, which did not produce many voids inside the matrix [34]. Further, a higher wool
loading, as well as coarser wool (i.e., W24-20), showed more inconsistent structures, related
to more disturbances in PCL by wool inclusion.



Polymers 2023, 15, 3439 14 of 19

Polymers 2023, 15, x FOR PEER REVIEW  14  of  20 
 

 

PCL, as mentioned during the discussions of rheological and thermal behaviour of these 

samples. Interestingly,  though  the presence of  the  layers was sometimes evident  in the 

composite samples, they were often not as visible as in the pure PCL. This could be due 

to grasping among the layers, interlocking with each other.   

 

Figure 8. Cross-sections of the 3D-printed specimens, polycaprolactone (PCL), wool/PCL (WP) compo-

sites prepared from 16 and 24 µm wool using concentric (C), gyroid (G) and rectilinear (R) infill patterns. 

Direction of arrows indicating direction of z axis during printing. 

The patterns of  infill were clearer in the PCL samples, though not exactly retained 

after the printing in the cases of both PCL and the composites. The concentric infill pat-

terns appeared steadier compared to the other two patterns, while PCL composites with 

10% wool showed more shape retention ability than those with 20% wool. Even though a 

higher amount of wool enhanced the rigidity of the composites (a higher modulus), the 

shape retention ability appeared  to be more related  to a balanced mixing of wool  (i.e., 

10%) with PCL, which did not produce many voids  inside  the matrix  [34]. Further,  a 

higher wool  loading, as well as  coarser wool  (i.e., W24-20), showed more  inconsistent 

structures, related to more disturbances in PCL by wool inclusion.   

3.4.2. Cross-Sections of Fractured Specimens 

The cross-sections at the breaking points of the specimens after the tensile tests are shown 

in Figure 9. Pure PCL showed a smooth surface and a compact structure of the matrix. As 

expected, wool/PCL samples showed rougher structure due to the inclusion of fibres that dis-

rupted the matrix orientation and produced voids inside the PCL. This was more observed 

Figure 8. Cross-sections of the 3D-printed specimens, polycaprolactone (PCL), wool/PCL (WP)
composites prepared from 16 and 24 µm wool using concentric (C), gyroid (G) and rectilinear (R)
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3.4.2. Cross-Sections of Fractured Specimens

The cross-sections at the breaking points of the specimens after the tensile tests are
shown in Figure 9. Pure PCL showed a smooth surface and a compact structure of the
matrix. As expected, wool/PCL samples showed rougher structure due to the inclusion of
fibres that disrupted the matrix orientation and produced voids inside the PCL. This was
more observed with 20% wool compared to 10% wool. Two different fineness grades of
wool were visible from the scalebar of the samples prepared with 16 µm and 24 µm wool;
both preserved their surface scales, indicating the retention of their hydrophobic nature.
Other than the fineness, the appearance was mostly identical for these samples, though
a greater void area was perceived for the WP24-20 samples, which aligned with a lower
yield strength (Figure 4a) observed in the sample, compared to other composite samples.
The morphology was not affected much by fibre fineness when a lower loading was used
(e.g., 10%), but the differences became more prominent when 20% wool was used instead.
This was likely as more fillers produced greater instability in the matrix, and the structure
embraced more voids in the wool/PCL interfaces. These trends in the findings were similar
to those observed for the morphology of wool/PCL filaments [34], showing unchanged
behaviour after printing. Among the infill patterns, the morphology of the fractured gyroid
infilled samples showed slightly more void areas. This also aligned with a slightly lower
strength value observed in those samples. The possible reason could be a lower density
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of these samples, which was related to a lower filament consumption (Figure 1h) by the
gyroid infill when producing a similarly sized specimen. Overall, comparatively fewer
voids in the fractured areas of concentric patterns is consistent with earlier studies with
different infill patterns [35].
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Figure 9. Cross-sections of the tensile tested specimens at the breaking point, polycaprolactone (PCL),
wool/PCL (WP) composites prepared from 16 and 24 µm wool using concentric (C), gyroid (G) and
rectilinear (R) infill patterns.

3.5. Biodegradation

In the previous study of wool/PCL filament [34], biodegradation was tested through
soil burial. However, to promote widespread use of biodegradable plastics, it is important
to study their degradation behaviour in marine environments since significant percentages
of plastic waste and microplastics end up in the ocean [57]. The increase in BOD value is
an indication of the biodegradation of a sample, as BOD represents the amount of oxygen
that microorganisms require to break down a biodegradable material. Figure 10a shows a
trend of increasing BOD values related to composite samples compared to pure PCL during
the initial 5 days. This indicates that the inclusion of wool with PCL was advantageous
for promoting biodegradation. The difference between WP16 and WP24 samples was
minor when using the same loading of wool. BOD values were observed to be higher with
a higher amount of wool, which further indicated wool’s involvement in fostering the
biodegradation property of the composite.
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composites prepared from 16 and 24 µm wool, (b) loss of weight of the samples during 5 month
biodegradation, and (c) biodegraded samples in the marine tank.

Figure 10b shows the loss of weight of the sample during a 5 month biodegradation
period. All of the samples showed a similar trend, as found in BOD testing; a higher
weight loss was related to a higher reinforcement with wool. Coarser wool showed a
higher rate of degradation, probably related to the presence of a lower amount of cuticles,
as reported in the literature [42]. Figure 10c shows the physical changes in the samples
during this degradation, with more black spots observed when coarser wool was used in
a higher amount (i.e., WP24-20). It was also clear that the printed pattern on the surface
was entirely changed during this degradation (higher magnification). The surfaces of the
samples became rougher, and random beads were developed, indicating the operation of
microorganisms through the sample. Overall biodegradation results confirmed that outside
the soil environment, the wool/PCL combination is also biodegradable in the marine
environment, which could be an additional advantage of using wool/PCL composites in
regular applications.

4. Conclusions

In this study, 3D printing of waste wool/PCL combinations is proposed as a viable
alternative to current commercial polymers. The influence of two different grades of wool
fineness (16 µm and 24 µm) was observed on different wool/PCL combinations (10/90 and
20/80), while the impact of filling patterns was also analysed. The overall findings could
be summarised as follows-
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• The crystallinity index of PCL decreased from 48.1% to around 45.4–45.6% and
41.1–42.6% with 10% and 20% wool, respectively.

• The melting peak position of PCL and composites remained similar for 10% wool
inclusion, indicating good compatibility. A finer diameter of initial wool was found to
be responsible for producing better thermal stability in the composites.

• The complex viscosity of the samples with 10/90 wool/PCL was identical to that of
pure PCL at a lower angular frequency. The cross-sectional morphology of the samples
showed that the disruption in the PCL matrix was more related to the loading amount,
rather than fibre fineness.

• Among different infill patterns (concentric, rectilinear, gyroid), overall, the concentric
infill resulted in higher average strength and lower average elongation, while gyroid
infill showed higher average elongation and lower average strength, though often
these differences were not significant (p > 0.05). Higher yield strength and breaking
strength were consistent across the samples reinforced with 10% wool, compared to
pure PCL.

• The printed materials showed an increasing trend of BOD and loss of weight in marine
water due to biodegradation, corresponding to the amount of wool in the samples.

The results indicate the possible practical use of wool/PCL combinations for MEX of
numerous materials, such as household and industrial tools, boxes, containers and more.
Future research could be focused on the performance of the developed materials in real-life
applications and further improve the sustainability of the process through optimisation,
starting from powder preparation to final printing.
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