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Abstract: The current article describes the biological activity of new biomaterials combining the
“green” properties of humic substances (HSs) and silver nanoparticles. The aim is to investigate
the antioxidant activity (AOA) of HS matrices (macroligands) and AgNPs stabilized with humic
macroligands (HS-AgNPs). The unique chemical feature of HSs makes them very promising ligands
(matrices) for AgNP stabilization. HSs have previously been shown to exert many pharmacological
effects mediated by their AOA. AgNPs stabilized with HS showed a pronounced ability to bind to
reactive oxygen species (ROS) in the test with ABTS. Also, higher AOA was observed for HS-AgNPs
as compared to the HS matrices. In vitro cytotoxicity studies have shown that the stabilization of
AgNPs with the HS matrices reduces the cytotoxicity of AgNPs. As a result of in vitro experiments
with the use of 2,7-dichlorodihydrofluorescein diacetate (DCFDA), it was found that all HS materials
tested and the HS-AgNPs did not exhibit prooxidant effects. Moreover, more pronounced AOA was
shown for HS-AgNP samples as compared to the original HS matrices. Two putative mechanisms
of the pronounced AOA of the tested compositions are proposed: firstly, the pronounced ability
of HSs to inactivate ROS and, secondly, the large surface area and surface-to-volume ratio of HS-
AgNPs, which facilitate electron transfer and mitigate kinetic barriers to the reduction reaction.
As a result, the antioxidant properties of the tested HS-AgNPs might be of particular interest for
biomedical applications aimed at inhibiting the growth of bacteria and viruses and the healing of
purulent wounds.

Keywords: humic substances; silver nanoparticles; antioxidant activity; cytotoxicity; biomedical
applications

1. Introduction

Research on metal nanoparticles has been emphasized over the past decade due to the
controllable size and shape, ease of synthesis, and optical properties of these compounds [1].
Today, metal nanoparticles are used in all fields of science, including physics, chemistry,
computer science, and biomedicine [1–3].

Currently, there is an acute need for new forms of pharmaceutical objects. Nano-
materials exhibit very high surface-area-to-volume ratios and surface energies. Attempts
have been made to combine nanomaterials and modern antimicrobial drugs which exhibit
synergism and improve the effect several times over [4]. In addition, new therapies based
on targeted drug delivery [5] and nanoparticle-activated photothermal therapy are being
actively investigated [6], as well as their potential for use in tissue and tumor imaging
applications [7].
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The most studied and promising candidates for unconventional and effective appli-
cations in pharmaceutical sciences, cosmetic products, antimicrobial coatings, and food
packaging are silver nanoparticles (AgNPs). The particular interest in AgNPs for use in
biomedical applications is based on their extensive antibacterial, antimycotic, and antiviral
properties, biocompatibility, and efficacy against multidrug-resistant microorganisms [8,9].

Processes for the synthesis of AgNPs using chemical or physical methods (by mi-
crowave or γ-radiation, thermal decomposition, and chemical reduction) often require
the use of toxic reducing and stabilizing agents (hydrazine hydrate, sodium borohydride,
ethylene glycol) [10] and involve other environmental and biological risks [11]. Therefore,
“green synthesis” or “biogenic synthesis” is recognized by experts as an eco-adaptive ap-
proach to create a variety of nanomaterials and is now being used to produce nanomaterials
for biomedical applications [11–14]. The biosynthesis of nanoparticles can be achieved by
the reduction of metal cations using extracts of plants, yeast, algae, lichens, fungi, and
bacteria as starting matrices.

One of the most convenient and environmentally friendly ways to synthesize metal
nanoparticles is the reduction of the metal-containing precursor in aqueous medium in
the presence of a stabilizer for the resulting nanoparticles [15,16] (polysaccharides [17],
polyphenols [18,19], etc.).

In addition to the antibacterial activity of AgNPs, other types of activity are possible,
depending on the nature of the stabilization matrix and its properties. For example,
there is evidence for the antioxidant activity (AOA) of silver nanoparticles stabilized with
Achyranthes roughii leaf extract [20].

Humic substances (HSs) are supramolecular ensembles of oxidative degradation
products of biomacromolecules and are very promising ligands (matrices) for AgNP sta-
bilization [21]. Engagement in this process involves significant constituents such as plant
lignin and its derivatives, polysaccharides, proteins, lipids, nucleic acids, and other natu-
ral biomacromolecules [22]. This intricate composition imparts HSs with a combination
of both aromatic scaffolding and aliphatic segments within their molecular frameworks.
Humic substances can be divided based on their solubility into humic acids (HAs), which
are not soluble at pH values below 2, and fulvic acids (FAs), which are soluble across
the entire pH range [23]. The unique chemical feature of HS is their extreme structural
heterogeneity, which contributes to their resistance to biodegradation [21,24]. During the
investigation of the HS molecular structure using high-resolution Fourier transform ion
cyclotron resonance (FTICR) mass spectrometry, several tens of thousands of molecular
formulae in the HS structure were identified [25]. The polyfunctionality of HSs acts as a
fundamental property. The structural composition of HSs encompasses a diverse array
of functional groups including, but not limited to, phenolic−OH, quinones, hydroxyls,
methoxyls, and carboxyls. It provides their ability to participate in ligand exchange and
heterogeneous processes, forming a variety of intra- and intermolecular bonds. These
properties can be taken together to determine the redox, chelating, and protolytic potency
of HSs. HSs are characterized as one of the most powerful chelating agents among natural
organic substances. Their zwitter-ionic character allows them to take part in various inter-
actions involving anions and cations. The unique chemical properties of HSs determine the
possibility of their existence as buffer systems to regulate the protolytic balance in various
biospheres, as well as acting as traps for free radicals [26]. The various functional groups
within HS molecules exhibit the potential to function as sites for the reduction of metal
ions. After the formation of AgNPs, HSs can enhance the colloidal stability of AgNPs by
acting as effective capping agents [27,28].

HSs have previously been shown to exert many pharmacological effects mediated
by their AOA and antiradical activity (ARA), such as hepatoprotective [29,30], neuropro-
tective [31], nephroprotective [32], membrane-protective [33], cardioprotective [34], and
antihypoxic actions [35]. Several potential mechanisms of AOA have been described in
the literature: the ability of HSs to act as proton donors; the presence of a large number of
phenolic hydroxyls and quinoid structures in the structure [29,36,37]; the ability to act as
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free radical traps due to their high paramagnetism analogous to semiquinone-type radi-
cals [37,38]; and the chelating of variable valence metals [39,40]. Also, it was shown that
the AOA of HSs can be explained by non-phenolic fragments in the structure, including
carbohydrate fragments [29].

In general, AOA is strongly connected with the manifestation of biological activity
and determines the unique chemical and pharmacological potential of HSs. Today, the
use of HSs as biocompatible matrices is actively developing. Various highly effective
nanoparticles are introduced using HS-based matrices, resulting in highly reactive and
biocompatible “nanocontainers” [41]. The main advantage of using HSs in comparison
with synthetic analogs is their high detoxification activity and biocompatibility [42].

The current article describes a synergetic synthetic approach for obtaining new ef-
fective biomedical products that combine the “green” properties of natural multicharged
polyelectrolytes—HSs and nanosized forms of silver.

The aim of the present work is to investigate the AOA of HS matrices (nanoparticle
forming ligands) and active substances (biomaterials) based on AgNPs ultradispersed in
the medium of these bioligands (HS-AgNPs).

2. Materials and Methods
2.1. Materials

The seven humic materials used in this study included a non-fractionated HS sample
from peat (PHF-T3), humic acids from peat (Peat1 and Peat2), a commercial sample of
fulvic acids (FA), commercial samples of sodium humates isolated from leonardite (CHP),
and oxidized lignites (CHS, CHE). Descriptions of the humic materials used in this study
and the corresponding silver-containing nanocomposites (HS-AgNPs) are given in Table 1.

Table 1. Humic substance (HS) matrix samples and bionanomaterials based on silver nanoparticles
ultradispersed in the original HS matrices (HS-AgNPs).

HS Sample
Codes (Matrix) Descriptions of HS Samples HS-AgNP Sample Codes

(with Silver Nanoparticles)

CHP Humic acids of coal “Powhumus”
(Humintech Ltd., Grevenbroich, Germany) CHP-AgNPs

FA Fulvic acids of fulvagra peat
(Humintech Ltd., Grevenbroich, Germany) FA-AgNPs

CHS
Humic substances of coal

(Sakhalin humates LLC, Sakhalin,
Russia)

CHS-AgNPs

CHE Humic substances of coal
(Genesis LLC, Novosibirsk, Russia) CHE-AgNPs

PHF-T3 Unfractionated preparation from
oligotrophic peat (Moscow, Russia) PHF-T3-AgNPs

Peat1 Humic acids of oligotrophic angustifolium
peat (Tomsk, Russia) Peat1-AgNPs

Peat2 Humic acids of oligotrophic
sphagnum-hollow peat (Tomsk, Russia) Peat2-AgNPs

2.2. Synthesis and Characterization of Silver Nanoparticles

Seven samples of HS-AgNPs were prepared in accordance with the procedure, concen-
trated solutions of HS (15 g/L) were used as HS matrices, AgNO3 was used as a precursor.
In short, the silvers precursor was added dropwise to the HS solution until a concentration
of 20 mmol/L was reached. The mixture was subsequently heated to 80 ◦C and maintained
at this temperature for 4 h with continuous stirring. The obtained nanocomposites were
investigated by transmission electron microscopy (TEM). TEM images were obtained using
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a JEOL JEM-2100F microscope (JEOL, Akishima, Japan). Image processing was performed
using ImageJ software.

The morphology and particle size were analyzed for all compositions. Based on the
results, the following sample composition was selected: 15 g/L HS and 20 mmol/L silver.

In all obtained samples, the form of silver and its content was calculated and confirmed.
The total silver concentration was determined by the ICP-AES method using the axial ICP-
AES 720-ES spectrometer (Agilent Technologies, Santa Clara, CA, USA). The UV-visible
absorption spectra were measured to confirm the presence and amount of AgNPs by the
maximum position and the surface plasmon resonance (SPR) peak intensity, which for
AgNPs, were observed at wavelengths of 400–430 nm [43]. The UV/Vis spectra were
recorded using a UV/Vis spectrometer (Cary 50 Probe, Varian, Palo Alto, CA, USA).

The data obtained for the nanosized silver content in the preparative samples were
compared with the data for the total silver content to determine the degree of conversion of
ionic silver into AgNPs.

2.3. Investigation of the HS Matrix Structure by 13C-NMR Spectroscopy
13C NMR spectra were recorded for all preparations in 0.3 M NaOD solution in D2O

(99+% isotopic purity, Sigma Aldrich, USA). The spectra were recorded on an Avance-400
NMR spectrometer (Bruker, Berlin, Germany) with a carrier frequency for 13C nuclei of
100 MHz. The INVGATE pulse sequence was used to exclude the nuclear Overhauser effect.
A relaxation delay of 8 s was used for the complete relaxation of quaternary carbon atoms.
To calculate the structure–group composition, the spectra were divided into nine intervals
corresponding to the main structural components of HS, and the intervals were integrated.
The obtained integrals normalized to the whole spectrum represent the quantitative data of
the structure–group composition of the studied HSs [44].

2.4. Total Antioxidant Capacity

The total antioxidant capacity of the HS matrices and HS-AgNPs was evaluated with
the ABTS assay using the Unico 2800 spectrophotometer (Suite E Dayton, NJ, USA). The
absorbance was measured at 734 nm. The studied samples interacted with a stable radical
cation, ABTS•+ (diammonium salt of 2,2’-azino-di-(3-ethylbenzthiazoline sulfonic acid)),
reducing its content in the reaction mixture [45]. The radical neutralization activity was
expressed as the IC50—concentrations of HSs and HS-AgNPs at which the concentration of
the ABTS•+ cation radical was reduced by 2-fold. Trolox (Acros Organics, Slovakia) was
used as a positive control.

2.5. Cytotoxicity Study

The 3T3-L1 fibroblast cell line was obtained from the ATCC, Manassas, Virginia, USA
(CL-173). The effects of the HS matrices and HS-AgNP bionanomaterials on the viability of
the 3T3-L1 line was assessed using the neutral red test, as described previously [46]. Briefly,
3T3-L1 cells were cultured under standard conditions (5% CO2 atmosphere, DMEM/F-12
medium (GibcoTM, Billings, MT, USA) + 10% FBS (GibcoTM, Billings, MT, USA). Aqueous
solutions of the tested HS and HS-AgNP samples were added in the concentration range of
7.8–1000 µg/mL. Cell plates were placed in a CO2 incubator for 24 h. After washing with
1 × PBS, 40 µg/mL of neutral red (Sigma Aldrich, USA) working solution was added to
the wells for 2 h at 37 ◦C. After triple washing, the dye was extracted using neutral red
destain solution (50% ethanol 96%, 49% deionized water, 1% glacial acetic acid (Sigma
Aldrich, USA). The optical density was measured at 540 nm and a reference wavelength
of 650 nm using a Tecan Infinite 200 pro mplex multifunctional plate reader (Tecan Group
Ltd., Mannedorf, Switzerland).
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2.6. Antioxidant/Antiradical Studies In Vitro

The production of intracellular reactive oxygen species (ROS) was assessed using the
fluorescent probe 2,7-dichlorodihydrofluorescein diacetate (DCFDA). Intracellular ROS
production was induced by hydrogen peroxide (H2O2). The 3T3-L1 cells were cultured
under standard conditions and seeded onto black 96-well culture plates for fluorescence
measurements (1 × 104 cells/well). HS matrices and HS-AgNPs (12.5 µM) or Trolox
(10 µM) were added to the respective wells and incubated for 24 h. Cells were then
washed from samples. DCFDA working solution (10 µM) (Sigma-Aldrich, USA) was added
to the corresponding wells. The plates were incubated in the thermostat for 20 min at
37 ◦C, washed to remove the DCFDA, and stimulated with 100 µM H2O2 prooxidant.
After incubation for 60 min at 37 ◦C, the fluorescence in the wells was determined at
λex = 485 nm and λem = 530 nm using a Tecan Infinite200 pro mplex multifunctional plate
reader (Switzerland) [47].

3. Results

3.1. 13C NMR Spectroscopy

The HS structure–group compositional data obtained by integrating the co-quantitative
13C NMR spectra over the spectral bands are summarized in Table 2.

Table 2. Carbon distribution in the molecular structures of HS samples (matrices used in the synthesis
of silver-containing bionanomaterials) according to the 13C NMR data.

Sample
Carbon Distribution (from 13C NMR), %

CHn CHnO OCO Car CarO COO C=O

CHP 15.4 6.5 5.4 41.1 10.5 14.2 7.0

FA 27.7 14.4 3.4 21.6 7.7 20.1 5.1

CHS 11.4 6.4 4.5 41.8 10.5 19.4 6.0

CHE 17.5 11.0 5.0 33.8 9.7 17.0 6.1

PHF-T3 16.9 19.6 6.7 32.9 9.8 10.6 3.4

Peat1 27.2 23.2 6.3 21.2 7.1 12.0 2.9

Peat2 26.8 19.8 7.2 24.1 7.7 11.6 2.8

Peat fulvic acids (FAs) and humic acids (HAs) of peat (Peat1, Peat2) are the types of
natural organic matter that are the least biotransformed. These samples are characterized
by having the highest contents of alkyl chain carbon (CHn): 27–28%. For more humified
lowland peat HSs (PHF-T3), this parameter is in the same range of values as for HSs of coal:
11.5–17.5%. For all peat HSs, the carbon content of alkoxy groups (CHnO: polysaccharides,
esters of aliphatic alcohols) is 14.5–23%, which, as expected, is higher than this parameter
for HSs of coal, which has a value of 6.5–11%. According to the carbon contents of the
aromatic rings for Car and CarO (and the total content for both Car and CarO), HSs can
be divided into three groups: HSs of coal (CHP and CHS)—41–42% Car and 10.5% CarO;
HSs of coal and lowland peat (CHE and PHF-T3)—33–34% Car and 9.7–9.8% CarO; and
HSs of upland peat (Peat1, Peat2, FA)—21–24% Car and 7–8% CarO. The highest content
of carboxylic and ester groups (20%) is expected for FA peat, as well as for HS samples of
CHS (19.4%) and CHE (17%). For the CHS sample, the COO content was 14.2%, and for
peat HS and HA, it was 10.5–12%. The carbon content in carbonyl groups (C=O) for HS
coal was 6–7%, and for HS peat, it was 3–5%. According to the total content of carboxyl
and carbonyl carbon atoms, the studied HSs can be divided into two groups: HSs of coal
and peat FAs (21–25.5% COO together with C=O) and peat HSs (14–15%). The spectral
bands of acetal carbon atoms of HSs (CCA) are characterized by low signal intensities and
significant overlap with the spectral band of Cag, which does not allow us to identify any
stable patterns for the carbon content of CCA groups in the studied HSs (Table 2).
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For better visualization of the data, they were plotted into the diagram at the coor-
dinates “CHn vs. ΣCar/CHnO”, where ΣCar is the total carbon content of Car and CarO
(Figure 1). In the diagram, the analyzed HSs form three clusters: HSs of coal (CHP and
CHS); HSs of coal and lowland peat (CHE and PHF-T3); HAs (Peat1, Peat2), and FAs of
upland peat.
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3.2. Characterization of Silver Nanoparticles Obtained by Transmission Electron Microscopy

From the obtained TEM images (Figure 2), the average size of the HS-AgNPs was
calculated, and the results are summarized in Table 3. The content presented in Table 3
shows that HS-AgNPs synthesized in FA medium (FA-AgNPs) have the largest average
particle diameters.

Table 3. Mean diameter of HS-AgNPs synthesized in different humic matrices calculated from TEM
image processing.

Sample d ± SD, nm n

CHP-AgNPs 10.1 ± 4.4 259

FA-AgNPs 13.5 ± 6.8 190

CHS-AgNPs 8.7 ± 6.1 284

CHE-AgNPs 7.7 ± 2.9 60

PHF-T3-AgNPs 9.5 ± 6.3 147

Peat1-AgNPs 4.6 ± 1.7 203

Peat2-AgNPs 4.0 ± 2.1 222

This fact may be due to the lower content of phenolic (CarO), quinone, and semiquinone
groups, which are responsible for the reduction of silver ions to HS-AgNPs. For a number
of HSs isolated from coal, the diameters of the formed HS-AgNPs are in the range of
8–10 nm and their size does not differ significantly depending on the HS matrices used
for synthesis. HS-AgNPs synthesized in the matrix of HAs isolated from peat (samples
Peat1 and Peat2) have the smallest average diameter. Their sizes are significantly different
from those of HS-AgNPs synthesized in other HS matrices. It should be noted that the
morphology of the formed HS-AgNPs does not change regardless of the HS matrix used.
All samples are characterized by the formation of spherical nanoparticles.
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Figure 2. TEM images of AgNPs obtained from HS medium.

3.3. Investigation of the Total Antioxidant Capacity of HS Matrices and HS-AgNP
Bionanomaterials Using the Stable Cation Radical ABTS•+

The current method is based on the ability of antioxidants to inhibit the ABTS•+

cation radical through proton recoil and electron transfer, resulting in a decrease in the
concentration of the ABTS•+ cation and, consequently, in the optical density of the solution
in the model system [48]. The ABTS•+ method is simple, accessible, and informative. It
allows rapid estimation of the AOA over a wide pH range. Due to the fact that the ABTS•+

cation radical is a single-charge positive radical, it is soluble in both aqueous and organic
solvents, and it is not affected by the ionic strength of the solution.

The obtained results are presented in Figure 3 as IC50 values. It was shown that the
original HS matrices effectively inhibited the ABTS•+ cation radical across a wide range of
concentrations from 3.9 to 31.2 µg/mL. CHE and PHF-T3 matrix samples were the most
effective (IC50 values of 6.8 ± 0.1 µg/mL and 7.6 ± 0.2 µg/mL, respectively). Three HS
matrices, FA (8.6 ± 0.2 µg/mL), CHP (9.0 ± 0.1 µg/mL), and CHS (9.3 ± 0.3 µg/mL),
showed less activity. The Peat1 and Peat2 matrices were the least effective and were not
significantly different from each other in terms of IC50 values (10.1 ± 0.3 µg/mL and
10.5 ± 0.3 µg/mL, respectively).
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The HS-AgNP samples showed higher AOA in comparison with the original HS
matrices. CHS-AgNPs and FA-AgNPs were the most active samples against the ABTS•+

cation radical (IC50 values of 4.1 ± 0.1 µg/mL and 4.3 ± 0.1 µg/mL, respectively). Three
samples, CHP-AgNPs (4.7 ± 0.2 µg/mL), PHF-T3-AgNPs (5.0 ± 0.1 µg/mL), and CHE-
AgNPs (5.9 ± 0.1 µg/mL), showed slightly lower efficacies. Peat2-AgNP and Peat1-AgNP
samples showed the lowest ability to inhibit the ABTS•+ cation radical (IC50 values of
6.8 ± 0.1 µg/mL and 7.1 ± 0.1 µg/mL, respectively).

3.4. Investigation of the Cytotoxic Properties of HS Matrices and HS-AgNP Bionanomaterials
In Vitro

A cytotoxicity test with the vital neutral red dye was used to evaluate the viability of
3T3-L1 after incubation with the tested samples across a wide range of concentrations (from
7.8 µg/mL to 1000 µg/mL). The cytotoxic effect of the original HS matrices was negligible,
which did not allow us to calculate the IC50.

The ultradispersal of AgNPs in the original HS matrix resulted in a significant increase
in the toxicity of composite bionanomaterials compared to the original unconjugated
HS matrix. Thus, HS-AgNPs can be arranged by decreasing cytotoxic properties in the
following order: CHP-AgNPs, Peat2-AgNPs, FA-AgNPs, CHS-AgNPs, CHE-AgNPs, Peat1-
AgNPs, and then PHF-T3-AgNPs (Figure 4).
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It is known that AgNPs often exhibit pronounced cytotoxic properties [49]. When
compared with the literature data, it can be concluded that conjugation of AgNPs with the
original HS matrices avoids nanoscale silver compositions with excessive cytotoxicity [49].

An analysis of the obtained data on the cytotoxicity of the original HS matrices
and their nanostructured compositions containing ultradispersed silver allowed us to
formulate general recommendations for the design of biologically active nanomaterials
with an improved safety profile. In the future, these recommendations can be used in the
development of laboratory regulations for the study of AgNP pharmacological activity.

3.5. Investigation of the Antioxidant/Antiradical Activity of HS Matrices and HS-AgNP
Bionanomaterials In Vitro

The in vitro study of AOA/ARA was carried out on 3T3-L1 cells. The main goal was
to establish the ability of HS matrices and HS-AgNPs to reduce the intracellular level of
reactive oxygen species (ROS) in the presence of the prooxidant H2O2.

In vitro AOA estimation is based on the ability of DCFDA to easily penetrate into the cell cy-
toplasm and de-esterify under the action of intracellular esterases. 2,7-Dichlorodihydrofluorescein
cannot be transported out of cells and is a weakly fluorescent agent, but in reactions with
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oxidants, it transforms into a strongly fluorescent product—dichlorofluorescein. When
intracellular oxidant levels grow, the rate of oxidation of 2,7-dichlorodihydrofluorescein
increases. Thus, the activation of intracellular oxidation is accompanied by an increase
in fluorescence.

H2O2 is a reactive form of oxygen and is a strong chemical oxidizer. In the human
body, H2O2 is rapidly converted to a non-selectively reactive hydroxyl radical (HO•) by
interaction with a number of transition metal ions, of which iron is the most important
in vivo [50].

As a result of the experiments, it was found that all original HS matrix samples as
well as biomaterials with silver nanoparticles HS-AgNPs do not exhibit prooxidant effects
in vitro. At the same time, for the basal AOA (without the addition of the prooxidant) and
the AOA after stimulation by H2O2, the level of intracellular ROS production significantly
differed between the studied samples (Figure 5).
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and hydrogen peroxide (H2O2)-stimulated intracellular ROS production in a cell culture of the 3T3-L1
cell line.

In the row of the initial HS matrices used in the experiment showing the evaluation
of the effect on the basal level of ROS production, the most active sample is CHE, which
reduced the fluorescence intensity of DCFDA by 18.9 ± 8.1%. Then, four samples of the
original HS matrices showed fairly similar levels of activity: CHP (6.7 ± 4.7%), PHF-T3
(4.9 ± 7.1%), Peat1 (4.9 ± 4.6%), and FA (4.8 ± 4.7%). The CHS and Peat2 samples were
characterized by low intrinsic AOA (Figure 5). When H2O2 was used as a prooxidant, the
FA (27.8± 3.1%), Peat1 (22.6± 5.7%), PHF-T3 (20.5± 5.3%), and CHS (17.2± 5.1%) samples
possessed the highest AOA (Figure 5). The remaining samples had less pronounced activity
against H2O2-stimulated oxidative stress.

The ranking of the HS-AgNP samples in order of decreased antioxidant properties
with respect to the basal level of ROS production is as follows: CHP-AgNPs (49.8 ± 2.2%),
CHE-AgNPs (38.6 ± 8.9%), PHF-T3-AgNPs (22.5 ± 6.1%), CHS-AgNPs (20.8 ± 9.6%),
FA-AgNPs (20.6 ± 4.4%), Peat2 (14.3 ± 6.1%), and Peat1 (1.1 ± 8.1%) (Figure 5).

Finally, the results on the effect of HS-AgNPs against H2O2-stimulated ROS production
in cells were of great interest. Here, the following samples of HS-AgNPs showed the highest
antiradical activity: FA-AgNPs (47.8 ± 4.1%), CHS-AgNPs (48.5 ± 4.7%), CHP-AgNPs
(32.4 ± 2.4%). PHF-T3-AgNPs (28.5 ± 3.6%), CHE-AgNPs (27.9 ± 2.9%), and then Peat1-
AgNPs (26.1 ± 4.6%), which were somewhat less active in inhibiting H2O2-stimulated ROS
production. And, the least pronounced activity was shown for the Peat2-AgNP sample
(6.4 ± 6.3%) (Figure 5).

In general, for HS-AgNPs, a higher AOA was observed, compared to the original
HS matrices.

4. Discussion

The undeniable advantages of “green synthesis” in obtaining nanoparticles have been
noted previously. In addition to the obvious environmental advantages, “green synthesis”
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can also provide more pronounced biological properties (antioxidant, antitumor activity,
etc.), which is due to the intrinsic properties of natural matrices [51,52]. In other words, the
“green synthesis” of AgNPs can be particularly useful for creating biomedical nanomaterials
with improved properties and high potential for use in medical applications.

In this paper, we present and investigate a new class of AgNPs obtained by the “green
synthesis” method based on natural HSs—high-molecular-weight organic compounds that
are formed, transformed, and decomposed at intermediate stages of the organic matter
mineralization process [53]. The use of HSs as a matrix allows the introduction of highly
efficient nanoparticles, which allows highly reactive and biocompatible “nanocontainers”
to be obtained. One of the main advantages of using HSs is their high detoxification activity
and biocompatibility, which makes them preferable to synthetic analogs [42].

The obtained results show that the size of the AgNP depends on the structure–group
composition of the HS used for the NP synthesis. Particularly, FAs yielded the largest
AgNPs, with an average diameter of 13.5 ± 6.8 nm. This outcome is attributed to FAs’
characteristics, including a reduced content of Car fragments and a diminished presence
of polysaccharide fragments responsible for Ag+ reduction in comparison to other HSs
used in this study. Conversely, Peat1 and Peat2 samples displayed the smallest AgNPs,
characterized by average diameters of 4.6 ± 1.7 nm and 4.0 ± 2.1 nm, respectively. These
samples are characterized by notably elevated levels of polysaccharide fragments that are
responsible for Ag+ reduction, underscoring their role in the synthesis of smaller AgNPs.

It is known that antioxidant properties make a critical contribution to the major
biological activities of HSs. Therefore, it is of particular interest to study the ability of
AgNP derivatives to influence the production, biological action, and elimination of ROS in
comparison with the original HSs.

The literature provides mixed evidence, as some authors have reported a higher an-
tioxidant capacity for AgNPs compared to the original matrices [54,55]. On the other hand,
many authors agree that the production of AgNPs, on the contrary, leads to pronounced
prooxidant properties, and such nanoparticles can induce oxidative stress in vitro and
in vivo [56,57]. The interest in this area is confirmed by the fact that a significant number
of papers have been published in recent years on the study of the prooxidant/antioxidant
properties of AgNPs [58].

In general, an overwhelming number of researchers agree that the ability of AgNPs to
bind to free radicals and interrupt oxidation chain processes is primarily due to the antioxi-
dant and, in particular, antiradical activity of the initial matrices used for synthesis [58].
HSs have their own pronounced AOA due to the presence of certain structural determi-
nants in their molecular structures [29,37]. They contain a large number of fragments
that are capable of oxidation. Phenolic groups are among the most important ionizable
centers in the structure of HSs, determining the AOA of these compounds [59]. The antioxi-
dant/antiradical properties of HSs are also attributed to the presence of semiquinone-type
radicals in their structures [60], the stability of which is maintained by intramolecular
polyconjugated aromatic systems [37] and may also be due to non-phenolic fragments in
the structure, including carbohydrate fragments [29].

Many methods used to determine the antioxidant capacity of nanoparticles have been
described in the literature [58]. One of the standard and generally accepted methods is the
ABTS free radical scavenging method [58,61]. However, this method does not reflect the
AOA of substances at the cellular level, because it does not take physiological conditions
such as the pH, temperature, and bioavailability into account. Therefore, in our work, we
supplemented the standard ABTS test with in vitro experiments using cell culture and the
fluorescent DCFDA probe.

In our experiments, the studied AgNPs obtained using bioligands such as HSs showed
a pronounced ability to bind to ROS in the test with ABTS. Moreover, in vitro tests using
DHFDA showed more pronounced AOA for HS-AgNP samples compared to the original
HS matrices. Silver is a catalyst of reductive reactions underlying the realization of antioxi-
dant effects, and giving silver a nanoscale form increases its reactivity due to the dispersion



Polymers 2023, 15, 3386 13 of 17

properties of particles and the high ratio of their surface area to particle volume [62,63].
It was previously demonstrated that AgNPs can be used as catalytic agents in reduction
reactions of methylene blue [63], the azo dyes Direct Orange 26 (DO26) and Direct Blue 15
(DB15) [64], as well as 4-nitrophenol [65]. The process of ROS inactivation using catalysts is
based on electron transfer from the donor (HS matrix) to the acceptor (active oxygen radi-
cal). Silver nanocatalysts facilitate electron transfer between the nucleophilic HS molecule
and the electrophilic free radical [66].

The antioxidant activity of HSs was lower than that obtained for HS-AgNPs in all
ranges of HSs used for AgNP synthesis. Particularly noteworthy was the elevated AOA
observed in HS-AgNPs derived from more aromatic and less oxidized coal HSs (CHP and
CHS samples), as well as PHF-T3. These HS variants showcased the highest phenolic
components within their structural compositions. Furthermore, FA, characterized by an
increased content of -COOH groups in its molecular composition, displayed enhanced
AOA. This augmentation in antioxidant potential can be attributed to the promotion of
AOA in phenolic acids (especially by -CH2COOH and -CH=CHCOOH groups). Moreover,
FA-AgNPs have a higher average diameter, which could also affect the AOA.

Thus, the high AOA of the tested novel HS-AgNPs bionanomaterials is most likely
due to (1) the intrinsic pronounced ability of HS to inactivate ROS, (2) the large surface
area of HS-AgNPs and the large surface-to-volume ratio, which make electron transfer
possible and allow the kinetic barrier to be overcome for the reduction reaction. Since the
reaction occurs on the surface of the nanoparticle, the increase in the surface area increases
the efficiency of ROS elimination [67].

The state of imbalance between ROS formation in the body and antioxidant defense
mechanisms is named “oxidative stress” and is associated with an overwhelming number
of pathologies in modern humans [68]. Oxidative stress has been found to be associated
with endothelial dysfunction, inflammation, hypertrophy, apoptosis, cell migration, fibrosis,
angiogenesis, oncology, and neurodegenerative diseases [69–71].

The role of ROS and oxidative stress in the process of changing stages in wound healing
deserves special attention [72]. Excessive and uncontrolled oxidative stress contributes
to the dysregulation of inflammatory processes due to the oxidative modification of cell
biomolecules and the induction of apoptosis, which leads to the formation of chronic non-
healing wounds [73]. AgNPs are often used for the treatment of purulent and non-healing
wounds infected with antibiotic-resistant microorganisms [74,75].

Considering that pronounced immunomodulatory, antiviral, and antimicrobial prop-
erties have been shown for HSs [76,77] and antimicrobial and wound healing properties
of nanosized silver are well known in practical medicine, the samples of new HS-AgNP
bionanomaterials based on natural HSs presented in this work could be used as wound
healing agents in the future because of their non-toxicity, affordability, environmental
friendliness, and high efficacy against bacteria. Therefore, the antioxidant properties of
HS-AgNPs synthesized using biogenic humic matrices that we have discovered are of par-
ticular interest for studies of biological activity aimed at inhibiting the growth of bacteria
and viruses and healing purulent wounds.

5. Conclusions

In the current article, we described the synthesis of novel silver nanoparticles, stabi-
lized with humic macroligands (HS-AgNPs). The main aim was to evaluate the AOA of
HS matrices (macroligands) and HS-AgNPs. The presented approach to obtain HS-AgNPs
allows us to significantly improve the biological activity of new biomaterials by involving
the “green” properties of HS. The synthesized HS-AgNPs were studied by 13C NMR and
TEM. AOA plays a central and critical role in realizing the numerous beneficial biological
properties of HSs. In our study, the stabilization of AgNPs with the HS matrices reduced the
cytotoxicity of AgNPs in vitro. Also, HS-AgNPs demonstrated a pronounced ability to bind
to ROS in an ABTS-based test of the total antioxidant capacity. It is very interesting that
higher AOA was observed for HS-AgNPs versus the initial HS matrices. Another cluster
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of in vitro experiments involved an AOA evaluation through the DCFDA test. Similar to
the ABTS test, it was found that HS materials and HS-AgNPs did not demonstrate any
prooxidant effects. More pronounced AOA was shown for HS-AgNP samples. Finally,
we hypothesize the involvement of two closely related mechanisms that may explain the
observed phenomenon of the higher AOA activity of HS-AgNPs versus the initial matrices
in both ABTS and in vitro tests. Firstly, HSs possess pronounced AOA due to the presence
of fragments that are capable of oxidation. Phenolic group semiquinone-type radicals are
involved in the AOA of these compounds. Secondly, the large surface area and surface-to-
volume ratio of HS-AgNPs facilitate electron transfer and mitigate kinetic barriers for the
reduction reaction. The examined antioxidant properties of the HS-AgNPs are of particular
interest for biomedical applications in different areas.
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