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Abstract: In this work, we report a two-step methodology for the synthesis of small silver nanoparti-
cles embedded into hydrogels based on chitosan (CS) and hydroxypropyl methylcellulose (HPMC)
biopolymers. This method uses d-glucose as an external green reducing agent and purified water as
a solvent, leading to an eco-friendly, cost-effective, and biocompatible process for the synthesis of
silver nanocomposite hydrogels. Their characterization comprises ultraviolet-visible spectroscopy,
Fourier-transform infrared spectra, differential scanning calorimetry, scanning electron microscopy
with energy-dispersive spectroscopy, and transmission electron microscopy assays. Moreover, the
structural stability of the hydrogels was investigated through sequential swelling–deswelling cycles.
The nanomaterials showed good mechanical properties in terms of their structural stability and
revealed prominent antibacterial properties due to the reduced-size particles that promote their use
as new advanced antimicrobial agents, an advantage compared to conventional particles in aqueous
suspension that lose stability and effectiveness. Finally, theoretical analyses provided insights into
the possible interactions, charge transfer, and stabilization process of nanoclusters mediated by the
high-electron-density groups belonging to CS and HPMC, revealing their unique structural properties
in the preparation of nano-scaled materials.

Keywords: biopolymers; hydrogels; silver nanoparticles; antibacterial agents; density functional
theory

1. Introduction

Metal nanoparticles (NPs) are size- and shape-dependent atom clusters (1–100 nm)
that stand out for their large specific surface area to volume ratio [1]. In recent years,
the use of NPs has gained importance due to their attractive properties, high efficiency,
and low cost, which has led to the use of these materials in a broad range of applications,
such as antibacterial, biomedical, pharmaceutical, cosmetic, electronics, and drug delivery
systems [2,3]. In the synthesis of reduced-size NPs, nanotechnology plays an integral role.
A typical and straightforward method is the chemical reduction of a metal precursor in
aqueous solution [4,5]. However, the tendency to agglomerate is a common problem in the
synthesis of nanosized particles, negatively impacting their effectiveness for antibacterial
applications. In this regard, stabilizers or capping agents are broadly used to inhibit the
overgrowth and aggregation of metal atoms during the nucleation of NPs, governing their
shape and size [5–7]. Typically, stabilizers are derived from either natural or synthetic
polymers with chelating ability, acting through intermolecular polymer–metal interactions,
especially relevant for biopolymers [8,9].

Among natural polymers, chitosan (CS) and hydroxypropyl methylcellulose (HPMC)
are two polysaccharide-type macromolecules that have received significant attention in
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recent times, due to their biodegradability, biocompatibility, low cost, and interesting
structural properties in the preparation of metallic particles [10,11]. In particular, CS is
a biodegradable and non-toxic biopolymer derived from the partial (or total) deacety-
lation of chitin under alkaline conditions [12], composed of β-(1→4)-linked 2-amino-D-
glucopyranose and 2-acetamido-D-glucopyranose units. Thus, CS possesses hydroxyl
and amino polar groups, which are available for electrostatic interactions and provides a
polycationic behavior to its structure [10], offering an attractive dual role as a reductant or
stabilizer agent in the synthesis of NPs [13,14]. On the other hand, HPMC is a natural and
biodegradable polymer derived from cellulose, which contains several hydroxyl groups
and is highly soluble in aqueous solution [11,15]. HPMC has excellent intrinsic properties
(e.g., good adhesion, film-forming ability, non-toxicity), and it can also reduce metal ions to
metallic NPs in the presence of an external reducing agent [16,17].

Furthermore, biopolymeric materials such as CS and HPMC deserve special attention
in the preparation of organic hydrogels a three-dimensional and crosslinked network of
polymers needed for antimicrobial applications [18]. During the last decade, advances in
this field have been considerable, recognizing hydrogels as suitable matrices to incorporate
other materials like metallic NPs to acquire control of their morphology and size [19,20].
Particularly for antibacterial applications, the development of biopolymer-based hybrid
hydrogels containing metal NPs arises as an alternative in seeking new materials for the
global rise of antibiotics overuse and resistance [21–23]. Moreover, the addition of metallic
particles into hydrogels can improve their antimicrobial activity [24]. Among metals, sil-
ver (Ag) with well-known bactericidal properties [25,26] has been selected to synthesize
silver nanoparticles (AgNPs) for advanced antibacterial purposes. At this point, it must
be considered that, compared to conventional particles in aqueous suspension, hydrogels
embedded with AgNPs provide better binding during antibacterial assays, directly im-
pacting their effectiveness as antimicrobial agents [24]. Nevertheless, despite numerous
investigations regarding the use of CS, it is still a challenge to explore its utility along with
other polysaccharides like HPMC in the preparation of organic hydrogel matrices and the
synthesis of reduced-size AgNPs for further antimicrobial practices [27].

The novelty of the current work Is the fabrication of functional hydrogel–AgNPs ma-
terials using biopolymers (CS and HPMC) in environmentally friendly conditions without
any organic solvents in order to set a simple protocol to reproduce. These hybrid composites
were characterized with experimental techniques and then evaluated for their promising
antibacterial applications, against both Gram-negative and Gram-positive bacteria. Addi-
tionally, a theoretical approach consisting of polymer–metal complexes was considered
to gain insights into the interaction and stabilization mechanisms of selected nanocluster
models, resulting in one of a few studies that complement experimental findings with
computational analyses.

2. Materials and Methods
2.1. Chemical Reagents

Chitosan (CS, medium molecular weight, deacetylation degree: 75–85%), hydrox-
ypropyl methylcellulose (HPMC, hydroxylpropoxyl content: ~9%), silver nitrate (AgNO3),
N,N’-methylenebisacrylamide (MBA), tetramethylethylenediamine (TMEDA), ammonium
persulfate (APS), and d-glucose were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Acrylamide (AAm) was obtained from Fischer Scientific (Toronto, ON, Canada). All chemi-
cals were used without further purification. The water used in all experiments was purified
using a Millipore Milli-Q system. Luria-Bertani broth (LB) and select agar were acquired
from Invitrogen (Carlsbad, CA, USA).

2.2. Preparation of Polysaccharide-Based Hydrogels

Initially, stock solutions of CS were prepared in falcon tubes by dissolving different
amounts of CS (2 mg/mL and 6.92 mg/mL) in 1% acetic acid solution (40 mL). Similarly,
in the case of HPMC polymer, stock solutions were dissolved in 40 mL of Milli-Q water
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(0.5% w/v and 3% w/v). Later, CS and HPMC hydrogels were prepared in a 50 mL beaker
by mixing 1 mL Milli-Q water and 1 mL of the polymer solution; then, the mixture was
slowly stirred at ambient temperature before adding and dissolving the monomer (AAm,
1 g). Next, the temperature was increased to 50 ◦C, and subsequently 1 mL of crosslinker
MBA, 1 mL of activator TMEDA, and 1 mL of initiator APS were added. The free-radical
polymerization (FRP) was carried out for 30 min until gelation was observed. Finally,
hydrogel species were immersed in Milli-Q water to remove all the unreacted materials
from the surface and inside the polymer matrix. The water was changed repeatedly every
6 h for 2 days. All gels were dried at ambient temperature for 2–3 days. The composition of
the prepared hydrogels is depicted in Table 1 below.

Table 1. The feed composition of the CS and HPMC hydrogels.

Hydrogel Polymer AAm (g) MBA (mM) TMEDA (mM) APS (mM) Sg/g

H-0
(control) – 1.0 6.48 8.62 21.91 13.2

CS-2 2.0 mg/ml 1.0 6.48 8.62 21.91 18.9
CS-6.92 6.92 mg/ml 1.0 6.48 8.62 21.91 23.2
HPMC-0.5 0.5% (w/v) 1.0 6.48 8.62 21.91 21.5
HPMC-3 3.0% (w/v) 1.0 6.48 8.62 21.91 22.7

2.3. Synthesis of Silver Nanocomposite Hydrogels

Firstly, 100 mg of dry gels were transferred to a 50 mL beaker and equilibrated
overnight by adding 25 mL of AgNO3 solution (52 mM) at room temperature. During
this stage, silver ions are exchanged from the solution to inside the hydrogel network.
Beakers were covered with aluminum foil to avoid silver salt decomposition by light.
Afterward, the precursor solution was removed, and the gels were wiped off with tissue
paper. The hydrogels were transferred to a beaker containing 25 mL of 1% d-glucose for 12 h
at 60 ◦C. In this step, Ag+ ions are reduced into metallic silver (Ag) and are also stabilized
by the internal structure of hydrogels [4,16]. Finally, the obtained CS and HPMC hydrogels
embedding silver nanoparticles (termed as CS/AgNPs and HPMC/AgNPs, respectively)
were allowed to dry at ambient temperature for the subsequent characterization studies.

2.4. Characterization of Nanomaterials

UV-vis measurements of the silver nanocomposites were carried out on a SpectraMax
M2 Microplate Reader (Molecular Devices, Sunnyvale, CA, USA), operated in a range of
300–700 nm at a resolution of 1 nm. SoftMax Pro 7.0.3 was used for data acquisition and
analysis. All graphs were plotted using Gnuplot 5.2 software [28].

Fourier transform infrared (FTIR) spectroscopy was used to record the spectra of pure
CS and HPMC hydrogels and their silver nanocomposite counterparts. The samples were
completely dried at 60 ◦C in an electric oven for 6 h before analysis and then were explored
in a wavenumber range of 4000–500 cm−1, on a Thermo Nicolet iS5 (Thermo Scientific,
Madison, WI, USA) equipped with an iD7 ATR accessory (attenuated total reflectance
mode), accumulating 300 scans per sample.

Differential scanning calorimetry (DSC) was performed to evaluate the thermal sta-
bility of the CS and HPMC matrices. The denaturation temperature (Td) of the samples
was established from the curve of heat flow vs. temperature using a Q2000 DSC (TA
Instruments, New Castle, DE, USA). Heating scans were recorded between 5–200 ◦C at a
scan rate of 10 ◦C/min under N2 flow (20 mL/min).

The internal structure exploration of all prepared hydrogels was assessed using low-
temperature cryo-scanning electron microscopy (cryo-SEM) (Tescan VEGA-II XMU VPSEM,
Brno, Czech Republic). Samples were firstly frozen at−50 ◦C and coated with a 5.0 nm-thick
carbon film using a low vacuum coater Leica EM-ACE200 (Wetzlar, Germany) and imaged
with a secondary emission detector in a JSM-7500F FESEM (JEOL USA Inc., Peabody,
MA, USA) operated at 20 kV. Additional energy-dispersive spectroscopy (EDS) (Oxford
X-ray INCA-EDS) analysis was also performed to study the elemental composition of the
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nanostructures. ImageJ 1.52 (National Institute of Health, Bethesda, MD, USA) [29] was
used to measure the cavity sizes on the hydrogels.

Transmission electron microscope (TEM) images were collected to obtain insights
about the size and morphology of the AgNPs embedded in CS and HPMC hydrogels. The
samples were prepared by placing a drop of NPs resuspended from the composite hydrogels
on a carbon-coated copper grid and subsequently drying in air, before transferring them
to a JEM-2100F FETEM (JEOL Inc., Tokyo, Japan) microscope, operated at an accelerated
voltage of 120 kV.

2.5. Swelling–Deswelling Studies

The water-absorbing capacity of the prepared hydrogels was evaluated through
swelling ratio (Sg/g), according to a previously reported method [30]. Gravimetrically,
100 mg of dried hydrogels were immersed in Milli-Q water at ambient temperature for
24 h to reach swelling equilibrium. Then, samples were accurately re-weighted, using a
Mettler Toledo XS105 precision balance (Mississauga, ON, Canada), in order to calculate
their ratios by applying Equation (1) below:

Sg/g =
Ms −Md

Md
(1)

where Ms = mass of the swollen hydrogel, and Md = initial mass of the dry gel. After
deswelling the hydrogels at room temperature for 48 h until a constant weight was obtained,
the above process was repeated three times under the same conditions, where the samples
were allowed to swell again in water for the evaluation of their mechanical behavior
through successive swelling–deswelling cycles. The given values are an average of three
individual sample readings.

2.6. Antibacterial Activity Assay

The antimicrobial properties of the silver nanocomposite hydrogels were qualita-
tively assessed through the agar diffusion test, using the standard method reported else-
where [31,32]. Nutrient agar medium was prepared by mixing LB broth (10 g/500 mL)
and select agar (7.5 g/500 mL) in double-distilled water. This agar medium was sterilized
in an autoclave prior to use (121 ◦C for 20 min) and then was passed into glass Petri
dishes (15 mL) in a laminar airflow chamber at ambient temperature. The activity was
evaluated against the Gram-positive bacteria Staphylococcus aureus (ATCC 25923), as well
as Gram-negative Pseudomonas aeruginosa (PAO1) and Escherichia coli (DH5α). Each strain
was spread (100 µL) on the solid surface of the medium, containing around 106 CFU/mL.
Afterward, swollen hydrogels (20 mg/1 mL) were cut into circular pieces (6.0 mm in diam-
eter) before to being placed into the inoculated Petri dish and then incubated for 24 h at
37 ◦C. Hydrogels without AgNPs served as controls (pure CS and HPMC gels). At the end,
the inhibition zones were measured and photographed.

2.7. Computational Details

In the first stage, the initial geometries of selected silver nanoclusters, Agn (n = 2, 4,
6, and 8 atoms), taking as starting conformations those reported by Bonačić [33], as well
as 5 monomeric units of CS and HPMC linear polymers (118 and 121 atoms, respectively),
were drawn using GaussView 5 software [34] and then were fully optimized at the density
functional theory (DFT) level. DFT spin-restricted calculations were performed using
the Gaussian 09 computational package [35]. Full geometry optimization of all systems
was achieved by means of employing the hybrid exchange-correlation functional B3LYP
(Becke’s three-parameter and Lee-Yang-Parr) [36,37] without any symmetry restriction. The
triple-zeta 6-311G(d,p) basis set [38] was defined for light atoms (C, H, O, N), along with
the relativistic effective core potential LANL2DZ basis set [39] for Ag atoms.

For the potential interactions between the silver nanoclusters and the polymers (CS
and HPMC), in the next step, each optimized Ag cluster model was placed at 4 Å of each
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polymer, then all complexes were re-optimized at the 6-311G(d,p)//LANL2DZ level. The
GaussView 5 program was also used to explore the electronic structure in all optimizations.

Hence, the analysis of these interactions was focused on the complexation energies
(∆Ecomplexation), as specified in Equation (2).

∆Ecomplexation = EAg−CS/HPMC −
(
EAg + ECS/HPMC

)
(2)

where EAg−CS/HPMC, EAg, and ECS/HPMC are the ground state energies of Agn–CS and
Agn–HPMC complexes, Agn free cluster, and free CS and HPMC polymer models, respec-
tively. Thus, a negative value of ∆Ecomplexation indicates that the molecular complex is more
stable than its separated constituents.

At the end, a natural bond orbital (NBO) analysis [40] was carried out on the complexes,
aimed to characterize their charge distribution and intermolecular interactions involved in
the stabilization of silver nanoparticles. All graphs were plotted using Gnuplot 5.2 [28].

3. Results and Discussion
3.1. Preparation of CS and HPMC Hydrogels

Both chitosan (CS) and hydroxypropyl methylcellulose (HPMC) hydrogels were syn-
thesized via the conventional FRP technique, i.e., the polymerization of base polymers in the
presence of monomer AAm, cross-linker MBA, along with the initiator pair TMEDA/APS
(see Scheme 1). Pure CS hydrogels are tough and visually transparent. On the other side,
the HPMC hydrogels have a grayish-opaque coloration, probably due to the viscosity
of HPMC powder in aqueous solution and compared to CS gels, they hold a soft and
sticky consistency [41]. From previous reports, it’s well documented that the FRP pro-
cess has many applications, mainly in the preparation of porous polyacrylamide gels as
electrophoresis systems [42,43]. However, the inclusion of polysaccharides can modify
the properties of the resulting hydrogels, like internal structure, porosity, degradability,
absorption, and swelling capacity [44,45].
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3.2. Synthesis of CS/AgNPs and HPMC/AgNPs Composite Hydrogels

The preparation of silver nanocomposite hydrogels (CS/AgNPs and HPMC/AgNPs)
initially involves the synthesis of pure hydrogels (as represented in Scheme 1), followed by
the in situ reduction of precursor salt (AgNO3) and subsequent stabilization of AgNPs into
the hydrogel network. In general, the chemical reduction of Ag+ ions leads to the formation
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of zerovalent silver (Ag0), followed by its agglomeration into metallic clusters, and at the
end, silver particles are formed [45]. Scheme 2 shows the proposed two-step protocol for
the synthesis of AgNPs using the swelling method, wherein, in the first step, the silver ions
are absorbed or anchored by the hydrogel structure. Next, the reduction (second step) is
achieved through a green process using d-glucose, a cost-effective and environmentally
friendly reducing agent that can be easily integrated with natural polymers, to stabilize
and protect the metal NPs [46]. Moreover, the reduction process and later stabilization of
AgNPs are attributed to the presence of functional groups belonging to CS (amino and
hydroxyl) and HPMC hydrogels (hydroxyl). As a result, particles are embedded into
internal cavities of the CS/AgNPs and HPMC/AgNPs composite hydrogels, which can
be visually confirmed at first instance since the gel changes from transparent to an intense
yellowish-brown coloration.
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procedure is applied to embed AgNPs into HPMC-based hydrogels.

3.3. Characterization Results

Figure 1 exhibits the swelling–deswelling studies of the formulated hydrogels, pure
CS, and HPMC as well as their silver nanocomposites. All these hydrogels retain a higher
water uptake capacity compared to the control H-0 (Sg/g = 13.2, as shown in Table 1).
Interestingly, prepared CS and HPMC gels maintain a similar swelling tendency during the
successive cycles, revealing small variations in their ratios as a sign of stable mechanical
behavior. In each case, the order of swelling ratios was found as CS-6.92 > CS-2 and
HPMC-3 > HPMC-0.5. As expected, hydrogels at high initial polysaccharide concentration
increase the swelling capacity. In particular, HPMC-based hydrogels hold more flexibility
causing higher water retention [41]. Moreover, AgNPs are responsible for a moderate
decrease in swelling capacity in comparison with their respective pure hydrogels. This data
is in good accordance with previous studies, where the inclusion of AgNPs into hydrogels
may alter their swelling behavior [32,47,48].

Then, the presence of embedded AgNPs in CS and HPMC hydrogels is established
by using UV-vis spectroscopy. Figure 2 illustrates the characteristic surface plasmon
resonance (SPR) of the AgNPs extracted from the nanocomposite hydrogels. In all prepared
composites, a single SPR absorption peak was found, indicating the formation of spherical
AgNPs according to Mie’s theory [49]. At higher polymer concentrations for CS/AgNPs
composites, increased corresponding peak intensities with blue shifts from 420 to 416 nm
for CS-2/AgNPs and CS-6.92/AgNPs, respectively, as can be seen in Figure 2a. This
evidence clearly implies that the AgNPs were greatly stabilized by CS into the hydrogel
network. However, the increase in intensities is related to an increase in the concentration
of AgNPs, not necessarily determining the size of the particles. HPMC nanocomposites
follow the same trend, where blue shifts from the range of 416 to 414 nm are observed in
the respective cases of HPMC-0.5/AgNPs and HPMC-3/AgNPs (Figure 2b), accounting for
the stabilizing role of HPMC in the synthesis of silver NPs [16]. Furthermore, these findings
can be complemented by the results obtained from an extensive recent investigation [50],
where the authors analyzed the effect of a polysaccharide at various concentrations for
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aqueous suspensions of AgNPs. In that sense, a decrease of the broadness of the SPR peak
indicates that NPs with a narrow size distribution were formed in the CS/AgNPs and
HPMC/AgNPs composites.
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FTIR-ATR analysis is shown in Figure 3 and was conducted to differentiate the com-
position between pure hydrogel structures and their silver nanocomposites. The spectra of
both CS and HPMC gels as well as their CS/AgNPs and HPMC/AgNPs composites are
compared according to the absorption peaks associated with the vibration of functional
groups ranging from 4000 to 500 cm−1. For pure CS hydrogels (Figure 3a), the stretching
bands at 3331 cm−1 and 3185 cm−1 are related to O–H vibration and amide group fre-
quency, respectively. The C–H stretching vibration appears at 2930 cm−1, as evidence of
CS-MBA crosslinking [51]. Amide I stretching frequency (C=O bond) and N–H bending
vibration (amide II) are centered at 1645 cm−1 and 1602 cm−1. The peaks in the range
1450–1310 cm−1 are assigned to C–N stretching vibrations. The asymmetric C–O–C bend-
ing vibration of the pyranose ring and the C–OH vibration are visible at 1120 cm−1 and
1048 cm−1. Finally, a weak band observed at 894 cm−1 is attributed to the β-configuration
of the D-glucopyranose ring belonging to the CS structure. Compared with CS-6.92, all the
peaks in CS-2 spectra are weaker, likely due to the lower concentration of CS inside the
hydrogel network. As can be noticed in Figure 3c, some of these transmission bands were
also found in the pure HPMC spectra (such as peaks at 3331, 1645, 1448, and 1048 cm−1).
In addition, the stretching of N–H bonds characteristic of the amide group is visible at
3186 cm−1. The absorption band that appeared at 1121 cm−1 is attributed to the C–O–C
bending of the D-glucopyranose ring, whereas a very weak peak at 940 cm−1 was assigned
to its β-configuration, confirming the presence of HPMC in the hydrogels [19]. Following
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the tendency of CS hydrogels, higher intensity peaks are exhibited in the HPMC-3 spectra
compared to HPMC-0.5, as expected.
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Comparatively, from the FTIR spectra of the AgNPs composites, the main differences
with pure hydrogels were found within the fingerprint region around 1700–500 cm−1. In
particular, for CS/AgNPs hydrogels (Figure 3b), the N–H bending peak at 1645 cm−1 is
shifted to 1650 cm−1. The C–N stretching vibration of the amide III peak is slightly shifted
from 1318 cm−1 to 1321 cm−1, decreasing its intensity. Additionally, a weak band appeared
at 1103 cm−1, along with two more intense peaks at 1075 cm−1 and 1027 cm−1, which
evidenced that a covalent Ag–N/Ag–O bonding has occurred [19,31]. Similar wavenumber
shifts and new bands were also detected in both HPMC-0.5/AgNPs and HPMC-3/AgNPs
spectra (Figure 3d), indicating the formation of a chemical bond between silver and oxygen
atoms belonging to HPMC inside the macromolecular structure of these hydrogels [16,52].

Regarding the thermal stability of matrices, the denaturation temperatures extracted
from DSC data indicate an improvement in the hydrogel properties after incorporating the
AgNPs (see Figure S1), in accordance with other similar reports [53]. The pure hydrogels
have temperatures >105 ◦C in all cases, where their corresponding silver nanocomposites
show an important increase in those values, particularly in the case of HPMC hydrogels.
For the hydrogels based on CS, this effect is diminished since pure CS-2 and CS-6.92 gels
displayed temperatures around 150 ◦C.

Next, the interior morphology and the cavity sizes of all prepared nanostructures
were examined via cryo-SEM. It is reported that the porosity of the hydrogel architecture
depends on the nature of the monomer, polymer concentration, and cross-linking density,
among other parameters [54]. Figure 4 demonstrates that the hydrogels have a covalent
and cross-linked nature, having different sizes depending upon initial biopolymer concen-
tration. Moreover, the hydrophilic character of organic hydrogels is mediated positively by
polysaccharides and can also increase their swelling ratio [45]. In a general view, it was
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found that the pore is enlarged when the initial concentration of the polymer decreases.
For example, pure HPMC-0.5 has an average cavity size of 115.2 ± 20.7 µm compared to
HPMC-3 hydrogel (67.8 ± 12.2 µm). In the case of pure CS gels, the difference was limited
from 120.6 ± 16.4 µm to 109.0 ± 17.4 µm (CS-2 and CS-6.92, respectively).
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Figure 4. Representative SEM micrographs for pure and silver composite hydrogels. Mean values
(PS = pore size) were calculated from three different images per sample. Scale bars = 20 µm in all cases.
Bottom: EDS analysis of the silver nanocomposites (silver atoms are pointed to by a yellow arrow).

The incorporation of silver NPs into the hydrogels affected their average pore size
along with their swelling behavior (see Figure 1), probably due to the fact that many
functional groups are now interacting with the metallic particles instead of water. Hence,
all nanocomposites display a reduction in size compared to the pure CS and HPMC
hydrogels. In this sense, the presence of Ag atoms in the embedded NPs into CS-2/AgNPs,
CS-6.92/AgNPs, HPMC-0.5/AgNPs, and HPMC-3/AgNPs composites was confirmed
by means of EDS elemental analysis (Figure 4 bottom). Complementarily, from the FTIR
results, it can be concluded that the high peak intensity observed in CS-2/AgNPs and
HPMC-0.5/AgNPs spectra (Figure 3b,d), is related to the amount of metal anchored to the
polymeric matrix (level of agglomeration), as detailed in their cryo-SEM images.

Finally, the typical TEM micrographs of the synthesized AgNPs provide essential
information about their shape and size distribution. For CS/AgNPs and HPMC/AgNPs
hydrogels, these properties are affected by the initial concentration of each biopolymer.
Consequently, the smaller particle size is given by a higher polymer concentration, as
depicted in Figure 5. The high magnification TEM images reveal the formation of small
spherical silver particles, with a narrow size distribution from 4 nm to 18 nm for CS-
6.92/AgNPs and diameters about 5–26 nm in the case of HPMC-3/AgNPs, demonstrating
the stabilizing effect achieved with the inclusion of polysaccharides into nanostructured
hydrogels. When comparing these results with similar others found in literature—other
hydrogel species or in aqueous suspension—it is possible to remark on the importance of
using polymeric matrices such as CS and HPMC during the stabilization of AgNPs, which
directly impacts the obtained particle size, shape, and its distribution (see Table 2).
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Table 2. Comparison with previously reported silver nanoparticles.

Medium, Matrices for NPs Shape Reported Size of NPs (nm) Reference

Aq. suspension, PVP Spherical 20–80 [5]
Aq. suspension, CS Cubic – [14]
Aq. suspension, HPMC Spherical 3–17 [16]
Aq. suspension Cubic 26 [21]
Aq. suspension Spherical 2–3 [24]
Film, HPMC – 41–100 [27]
Hydrogel Cubic ~1 up to 80 [48]
Aq. suspension Spherical 8.3–14.8 [50]
Hydrogel Spherical 35–40 [55]
Hydrogel, collagen Spherical 3.5 ± 0.04 [56]
Hydrogel, curcumin – 18.24 ± 4.20 [57]
Hydrogel Spherical ~12 [58]
Hydrogel, starch Semi-spherical 4–58 [59]

3.4. Evaluation of Antimicrobial Activity

The antibacterial activity of the prepared silver nanocomposites was evaluated against
both Gram-negative (P. aeruginosa) and Gram-positive bacteria (S. aureus and E. coli) us-
ing the qualitative agar diffusion assay. Representative photographs are illustrated in
Figure 6, where all the hydrogels embedding AgNPs displayed a significant inhibition
zone (≥9.2 mm). This clearly demonstrates a bactericidal effect over the tested bacteria.
However, control CS and HPMC hydrogels exhibit a diminished to moderate effect, which
might be due to the intrinsic bioactivity of their constituent polymers [18,60]. The calcu-
lated inhibition diameters are in agreement with the value reported in the standard control
method [61], suggesting that zones >1 mm are labeled as a good antibacterial material. For
all tested bacteria, the diameter of inhibition increases at higher polymer concentrations,
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meaning that among the obtained nanocomposites, CS-6.92/AgNPs and HPMC-3/AgNPs
exhibited the most active antibacterial properties and are more effective materials compared
to nanoparticles in suspension, improving the durability, stability, mechanical properties,
and affinity of the particles during the assay [19,32]. This observation seemed to be due to
the small size of the particles found in those samples, as a result of the TEM experiments
(Figure 5); therefore, they will have larger surface areas available for interactions, producing
a greater bactericidal effect compared to larger NPs [55]. Generally, another important
feature that inorganic composite hydrogels offer in biomedical fields is an improvement in
the binding characteristic of the NPs towards bacteria—including resistant strains—during
the antimicrobial assay [56,62–66].
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Figure 6. Antibacterial activity of the prepared CS and HPMC-based hydrogels and silver nanocom-
posites against (a) S. aureus, (b) P. aeruginosa, and (c) E. coli. Pure gels served as controls for all
bacteria. Hydrogel codes are at the bottom. Scale bars = 6.0 mm (initial hydrogel size). In the inset
(right), the calculated inhibition zones for all groups. All diameters are in mm and averaged from
two independent antibacterial assays.

Regarding the mechanism of AgNPs, the exact antibacterial effect has not been studied
clearly; however, several ideas have been proposed, such as cell membrane breakage,
protein denaturation, DNA damage, ribosome disassembly, oxidative stress, and interrupt
ATP production [67], as it can be summarized in Figure 7. Moreover, silver nanoparticles
are spontaneously liberating Ag ions, and both are having a great affinity towards sulfur,
so they can adhere to the bacterial cell wall then which leads to the process of membrane
breakage and other above-mentioned effects, avoiding the intrinsic antibiotic resistance
mechanisms from resistant strains, which supports the importance of developing new
nanomaterials as effective antimicrobial agents in this field.
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3.5. Theoretical Analysis

DFT calculations delivered information about the electronic properties and binding
geometries between selected silver nanoclusters as nanoparticle models [68], Agn (n = 2, 4,
6, and 8 atoms), and the molecular models of both CS and HPMC polymers (depicted in
Figures S2 and S3). Also, the analysis provided details of the ionization potential, electron
affinity, and charge distribution of the complexes. The optimized Agn–CS and Agn–HPMC
complexes are summarized in Figure 8, where the corresponding bond lengths and atomic
charges at selected sites involving silver atom interactions are shown. According to the
analyzed Agn–CS complexes, it is important to notice that the Ag–N bonds exhibited the
lowest distances compared to those shown by silver atoms and the –OH groups, meaning
that the nitrogen atoms generate a more stable bonding and have a larger contribution
in the stabilization of the studied nanoclusters. In this context, silver atoms can strongly
interact, through their 4d and 5s orbitals, with the fully available lone pair of electrons
belonging to amine sites. A similar tendency has been reported in investigations of small
gold nanoclusters [69]. This theoretical evidence is in good accordance with previous
experimental studies, where the coordination of metal clusters by CS is mediated by
hydroxyl and amino groups near to the glycosidic linkage [70].
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On the other side, the internal coordination between Agn clusters and HPMC is
reinforced through short-medium distance H–bonds. The nature of these interactions
helped to elucidate some of the experimental findings about the role of hydroxyl groups,
which can strongly interact with silver cations and subsequently stabilize the nanoparticles
during their synthesis [16,17]. This approach has been also reported in other cellulose
derivatives [71]. Taken together, these results for the Agn–CS and Agn–HPMC complexes
established that the geometry of the silver clusters remains almost unchanged.
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Figure 8. Ground state geometries of the (a) Agn–CS and (b) Agn–HPMC complexes at the B3LYP/6-
311G(d,p)//LANL2DZ level. Bond lengths (Å) and NBO charges (a.u., in italics) for selected atoms
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It is well known that the frontier orbitals analysis comprises a good approach to
describing conductivity in molecular systems [69,72]. Thus, the frontier orbitals of the CS
and HPMC models and their complexes with silver clusters were examined. The HOMO-
LUMO gap was computed as the difference between the highest occupied molecular orbital
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(HOMO) and the lowest unoccupied molecular orbital (LUMO). As displayed in Table 3,
observing the H-L gap energies of the bare optimized polymers, it is clear that once CS and
HPMC bind to the silver cluster, the energy gap decreases, indicating greater conductivity.
In addition, the complexation energies (∆Ecomplexation) analysis reveals negative values in
all cases, indicating that the complex formation by CS and HPMC is energetically favored,
showing minimum energy (see Figure S4a). In detail, the Agn–CS complexes follow the
tendency Ag8 > Ag4 > Ag2 > Ag6, whereas the Agn–HPMC complexes follow the tendency
Ag4 > Ag2 > Ag6 > Ag8. Taking the results of the natural bond orbital (NBO) analysis, it is
simple to determine that an electron transfer from the polymer to the metal cluster occurred
in all complexes, which is associated with the stabilization process. The net charge of the
silver cluster in complexation with CS follows an increasing behavior, reaching the most
negative value in the Ag8–CS complex (∆q = −0.483 a.u.), which agrees with its higher
stability. Referring to HPMC complexes, the charge values also manifest an ascending trend,
where the most negative value is consequently reached in the Ag8 cluster (−0.359 a.u.).
However, in all silver nanoclusters, the charges are lower in the Agn–CS complexes as a
sign of a higher amount of transferred electron density compared to Agn–HPMC complexes
(Figure S4b).

Table 3. Total energy (a.u.), complexation energies (∆Ecomplexation, kcal/mol), net NBO charges on
Agn (∆q, a.u.), ionization potential (IP, eV), electron affinity (EA, eV), and the HOMO-LUMO energy
gap (H-L gap, eV) for the studied Agn–CS/HPMC systems.

System Total Energy ∆Ecomplexation ∆q (Agn) H-L Gap IP EA

CS −3184.405 – – 6.378 6.411 0.034
Ag2–CS −3476.020 −25.634 −0.199 3.319 5.355 2.037
Ag4–CS −3767.628 −30.421 −0.323 2.311 4.515 2.204
Ag6–CS −4059.253 −19.857 −0.410 2.747 5.023 2.277
Ag8–CS −4350.901 −37.288 −0.483 2.465 4.598 2.134

HPMC −3363.556 – – 6.767 6.788 0.021
Ag2–HPMC −3655.173 −26.326 −0.134 3.451 5.133 1.683
Ag4–HPMC −3946.775 −27.435 −0.300 2.327 4.390 2.063
Ag6–HPMC −4238.411 −23.931 −0.317 2.760 5.115 2.355
Ag8–HPMC −4530.029 −22.385 −0.359 2.546 4.540 1.994

Moreover, it is well established that electronic properties like ionization potential (IP)
and electron affinity (EA) govern the reactivity of molecular systems. These properties
can be estimated through the frontier molecular orbitals energies; according to Koopmans’
theorem [73,74], IP can be approximated as the negative of HOMO energy (IP ≈ –EHOMO),
and EA as the negative of LUMO energy (EA ≈ –ELUMO). The predicted IP and EA are
summarized in Table 3 and graphed in Figure S4c,d. From the data, IP values exhibit an os-
cillatory behavior depending on the nanocluster size and are in the range of 4.515–5.355 eV
for CS and 4.390–5.133 eV for case HPMC, all of them being smaller compared to the bare
optimized CS and HPMC structures. Next, the EA values of CS and HPMC models are very
low (0.034 eV and 0.021 eV, respectively) in comparison with all the complexes, particularly
when the Ag cluster reaches n = 4–8 atoms. As the silver nanoclusters have higher IP and
EA values than when forming complexes with CS or HPMC, the reactivity increases in these
Agn-CS/HPMC systems, suggesting that the formation of metal aggregates is favored.

Finally, chemical bonding in metal complexes is determined by electrostatic and
covalent interactions between the components. The covalent contribution is translated
during the mixing of molecular orbitals, whereas the electrostatic effect is related to the
atomic charges [69,75]. Therefore, Figure 9 displays the shapes of HOMO and LUMO for
the biggest silver cluster, Ag8, in complexation with CS and HPMC. As can be seen, both
frontier orbitals are mainly localized on the silver clusters, suggesting a significant covalent
character. The orbital mixing is also reflected in the other studied complexes: Ag2–, Ag4–,
and Ag6–CS/HPMC.
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4. Conclusions

In summary, we have synthesized and characterized hybrid composite hydrogels based on
metallic silver nanoparticles and CS and HPMC biopolymers (CS/AgNPs and HPMC/AgNPs)
through a simple and flexible two-step methodology. The swelling–deswelling cycles indicate
that the developed nanocomposites have good mechanical properties in terms of their
structural stability. Moreover, from the cryo-SEM studies, the nanostructures reveal a
well-distributed cavity size, where the inclusion of AgNPs improved their thermal stability.
The AgNPs deposited into hydrogels are small and spherical in shape, finding that both CS
and HPMC polymers have a stabilizing effect, owing to their functional groups (hydroxyl
or amino). Through TEM analysis, it was found that the diameters of the NPs were
about 9 ± 3.4 nm and 12 ± 5.3 nm for CS-6.92/AgNPs and HPMC-3/AgNPs composites,
respectively. The antibacterial assays showed significant inhibition zones against bacteria
attributed to the reduced-size AgNPs, demonstrating the great potential of these silver
nanocomposites for advanced antimicrobial applications. Despite the achieved results,
additional evaluation of the prepared nanomaterials is needed, for instance, to perform
cytotoxicity tests or quantitative antibacterial assays. Nevertheless, this method could be
extended to other natural polymers and target metals (e.g., gold, copper) in the fabrication
of metal composite hydrogels pursuing biomedical or pharmaceutical applications. Finally,
theoretical calculations contributed to describe the covalent nature of the interactions
between silver nanoclusters and CS and HPMC models, demonstrating that CS has a higher
stabilizing effect over the studied complexes.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/polym15163370/s1, Figure S1: Denaturation temperatures (Td, ◦C) for
the pure CS and HPMC hydrogels and its silver nanocomposites measured using DSC; Figure S2:
Optimized structures of silver nanoclusters (Agn) at the B3LYP/LANL2DZ level of theory, with
geometries of one (n = 2), two (n = 4, 6) and three (n = 8) dimension. Bond lengths in Å; Figure S3:
Schematic representation of (a) initial and (b) optimized molecular models of chitosan (CS) and
hydroxypropyl methylcellulose (HPMC), consisting of 5 monomeric units in each case. Notice how
both polymeric chains contract after the optimization of their geometries (B3LYP/6-311G(d,p)). (Color
legend: Carbon = gray; Hydrogen = white; Oxygen = red; and Nitrogen = blue); Figure S4: Plots of
(a) ∆Ecomplexation, (b) total charge of silver clusters, (c) ionization potential (IP), and (d) electron
affinity (EA) of the Agn–CS/HPMC complexes in the function of silver atoms per cluster.
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