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Abstract: In this study, formulations of thermoplastic starch (TPS) with 5, 10, and 15 parts per hundred
resin (phr) of raw peach gum (PG) were prepared by melt extrusion followed by injection molding to
obtain standard specimens for characterization. In addition, biodegradable films were developed by
compression molding. It was determined that TPS with 5 phr and 10 phr of PG presented similar
mechanical behavior to pure TPS after the processing. However, results indicated that adding PG in
10 phr slowed down the starch’s retrogradation, delaying the TPS structure’s stiffening. Moreover,
the TPS–PG formulations presented improved solubility, which increased by 24% with 10 and 15 phr
of PG compared to that shown for TPS. Additionally, PG enhanced the compostability of TPS, causing
the sample to disintegrate in a shorter period. In conclusion, it was determined that raw PG added in
10 phr could be added as a sustainable additive to modify the biodegradation and water sensitivity
of TPS without affecting its mechanical behavior after processing and delaying the retrogradation of
the TPS structure, increasing its shelf life.

Keywords: thermoplastic starch; peach gum; sustainable additive; disintegration; water sensitivity

1. Introduction

Bioplastics can be produced from biomass, are susceptible to biodegradation, or meet
both conditions. Due to their low environmental impact, the most interesting bioplastics
come from natural sources and can biodegrade. Natural polymers of practical interest are
limited to a few polysaccharides and proteins, polysaccharides being the most important.
Polysaccharides account for 75% of the annual biomass production (about 170 billion
tons) [1].

After cellulose, starch is the most available polysaccharide, and its industrial, non-
food use is growing in production volume, particularly for preparing starch-based plastic.
Currently, biopolymer production is around 2.41 million tons, of which 18.7% is produced
from starch [2]. Starch is commonly used in elaborating biopolymer formulations because
it is inexpensive, abundant in nature, comes from renewable sources, and has an inherent
biodegradable and biocompatible nature [3,4]. However, starch in its native status does not
exhibit thermoplastic behavior. Starch must be de-structured and plasticized to become a
thermoplastic material [5].

Thermoplastic starch (TPS) is obtained by the action of shear forces and temperature
over starch as well as the addition of a plasticizer, for instance, water, glycerol, or sorbitol [5,6].
In recent years, TPS has gained attention for developing biodegradable starch-based food-
packaging materials or edible coatings [7,8]—and water-soluble films [9]. However, the
industrial application of TPS is limited due to its low mechanical properties and water
resistance. In addition, the changes in its structure are subject to re-crystallization and
retrogradation [10,11].
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Renewable polysaccharides produced from plants, such as gum rather than synthetic,
are receiving more attention for their use in blends with TPS due to their biodegradabil-
ity nature being environmentally friendly. For instance, adding agar in TPS to prepared
products by casting or melt blending resulted in films with promising barrier and tensile
properties. Moreover, the rigidity and strength significantly increased with higher agar con-
tent, while the deformability of the blends was better than that of pure TPS [12]. Chitosan
was used to prepare TPS/chitosan composites and chitosan provided a reinforcing effect
in TPS. Additionally, chitosan decreased the maximum water uptake of composites [13].
Cellulose was used to prepare cellulose–starch bio-composites. The results showed that the
blend of starch with cellulose resulted in a not-brittle thermoplastic starch film with higher
tensile strength and elongation than in unblended conditions. Furthermore, the blend
of cellulose and starch also allowed for greatly reducing the mass loss caused by water
immersion [14]. Starch nanocrystals (WSNC) and cellulose nanocrystals (CNC) were used
to produce TPS nanocomposites, and the crystals increased the tensile strength, elongation
at break, and Young’s modulus of TPS. Also, the crystals helped to reduce the oxygen
permeability [15].

Peach gum (PG) is one of the world’s most abundant plant gums. Raw PG is exuded
from the trunk and fruit of peach trees (Prunus persica) as a defense mechanism against infec-
tion, insect attack, mechanical and chemical injury, and other environmental stresses [16,17].
Raw peach gum is a solid crystalline and translucent material with brownish-yellow col-
oration. Raw PG contains 80–85 wt.% polysaccharide, 2–12 wt.% moisture, 0.3–4 wt.% ash,
0.2–2 wt.% protein, and traces of polyphenols and inorganic elements [17]. Raw peach gum
can swell in water but has a poor water solubility [16,17]. However, the polysaccharide
in PG has excellent water solubility; good biocompatibility; acceptable antioxidant, an-
tibacterial, and film-forming properties; and has shown good application prospects in the
food field, such as in microcapsule carriers, thickeners, emulsifiers, stabilizers, and candy
coatings [17]. Peach gum polysaccharides (PGPs) can easily be made through the hydrolysis
of raw peach gum (PG). Chemically, a PGP is an acidic heteropolysaccharide that possesses
a relatively high molecular weight (>106 Da) with a branched macromolecular structure
composed of (1→3)-linked β-D-Galp units in the main-chain and arabinogalactan in the
side chains [16,18]. The polysaccharides in peach gum are acidic arabinogalactans with
high contents of arabinose and galactose, and peach gum also has xylose, glucuronic acids,
and small contents of rhamnose and mannose [19]. Arabinogalactans are water-soluble
polysaccharides found in the composition of exudate resins from trees, as well as in plants,
fungi, and bacteria [20]. The gums from these resins are also water-soluble; for instance,
puka gum obtained from the Meryta sinclarii tree reaches a solubility of 25 wt.% [21], Arabic
gum derived from the stems and branches of Acacia senegal has a solubility of 77 wt.%, and
cherry gum presents a solubility of 62 wt.% [22].

The chemical structures of the monosaccharides present in peach gum are shown in
Figure 1.

Peach gum is a biopolymer that is edible, non-toxic, biocompatible, digestible, renew-
able, and biodegradable [17,23]. Raw peach gum has been used in traditional Chinese
medicine to treat hemolysis, dysentery, and diabetes, and as a pharmaceutical excipient.
However, due to PG’s poor water solubility, its application is limited [17]. Nonetheless,
PG has a broad potential to be used to manufacture environmentally friendly materials.
Moreover, only a tiny fraction of PG has been used, and a large amount of peach gum is
not utilized, which ends as waste. Furthermore, it is crucial to promote the use of natural
bio-based polymers that are safer for human health and would reduce plastic waste.

Several studies have been conducted on possible uses of PG. For instance, Ref. [24]
investigated the potential use of PG as a natural adsorbent for removing dyes from aqueous
solutions and found that PG had excellent adsorption capabilities and high selectivity for
cationic dyes. Ref. [25] studied PG polysaccharides to produce edible coatings on cherry
tomatoes because of their antioxidant and antibacterial activity. The results showed that PG
polysaccharides extended the shelf life of cherry tomatoes. Ref. [26] used peach gum and
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polyethylene oxide as fiber-forming solutions to entrap Litsea cubeba essential oil (EOLC).
The study found that the fibers could control the release of EOLC and maintained the pH,
TVB—N, and TBARS values from deterioration in the chicken. The fiber also inhibited the
reproduction of S. aureus and E. coli during the storage period.
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Figure 1. Chemical structure of the monosaccharides present in raw peach gum (PG).

The present work aims to determine the effect of using raw peach gum as a sustain-
able additive in thermoplastic starch films to tune its water solubility and compostability
without affecting its mechanical properties. This is the first time raw peach gum has been
used as an additive in polymeric materials. Different concentrations of raw peach gum
were added by melt extrusion to TPS. The resultant materials were characterized through
the performance of mechanical and morphological tests, water contact angle assessment,
colorimetry, water sensitivity, infrared spectroscopy evaluation, and disintegration under
composting conditions.

2. Materials and Methods
2.1. Materials

Native rice starch was supplied by Manuel Riesgo S.A. (CAS: 9005-25-8). Distilled
water and glycerol were used as plasticizers. Glycerol of 99% purity was supplied by Sigma
Aldrich (Schnelldorf, Germany). The raw peach gum (PG) samples were collected from
Prunus dulcis trees. The PG sample had an irregular kernel shape. Also, it presented a
variation of shades between amber and a toasted brown color. Before the analysis, the raw
peach gum was ground in a mortar to obtain a powder. The raw PG used was composed of
Ara, Xyl, Man, Gal, Rha, and Glucuronic acids in a 35:6:4:40:13:2 molar ratio, showing an
arabinogalactan structure with the typical composition of a fruit tree’s gums [22].

2.2. Methods
2.2.1. TPS–Peach Gum Blends

Figure 2 shows a schematic representation of the preparation and processing of the
materials, which includes the following: (i) manual mixing, (ii) the extrusion process to
obtain the TPS and PG mixtures, and (iii) injection molding to obtain mechanical character-
ization samples.

In brief, a mixture of 65 wt.% starch, 25 wt.% glycerol, and 10 wt.% water was man-
ually mixed and stored in a hermetically sealed polyethylene bag for 24 h to ensure the
homogeneity of the mixture and to allow the correct diffusion of the plasticizers in the
starch matrix.
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Figure 2. Schematic representation of TPS preparation and the processing of TPS blends with peach
gum into injection-molded samples.

The mixture to obtain TPS was extruded in a micro-compounder MC 15HT Xplore
with a temperature profile of 120–125–130 ◦C (from die to hopper) at 30 rpm for 3 min.
After this time, PG was added in 5, 10, and 15 parts per hundred resin (phr). Then, the
mixture was left for 3 min more. Table 1 shows the composition of the prepared samples.

Table 1. Composition of TPS–PG formulations.

Resin Content (phr)

Matrix Resin 5 10 15

TPS Peach gum TPS–5PG TPS–10PG TPS–15PG

The blends were further injected into Xplore’s MC 15HT micro-compounder with a
mold temperature of 30 ◦C and injection temperature of 135 ◦C. The test specimens’ type
1BA (64 mm × 5 mm × 2 mm) according to ISO 527 was obtained.

2.2.2. Raw Peach Gum Characterization

The morphology of raw peach gum powder was captured under an Olympus optical
microscope, model SZX7 from Olympus Iberia (Barcelona, Spain), with a magnification of
1×. The image was then photographed with the help of a digital microscopic camera used
in normal light mode [24,27].

2.2.3. Color Characterization

The color characterization was measured using a colorimeter Colorflex-Diff2 458/08
from HunterLab (Reston, VA, USA) in the CIEL*a*b* color space. Five samples of each
formulation were analyzed. The average values and the standard deviation of the coordi-
nates L*, a*, and b* were reported together with the yellowish index (YI). The total color
difference (∆E) was calculated using Equation (1) [28]:

∆E =
√

∆a2 + ∆b2 + ∆L2 (1)

Significant differences in colorimetry parameters were statistically evaluated at a 95%
confidence level according to Tukey’s test using an analysis of variance (ANOVA) with
OriginPro software version Origin 2018 (9.5).
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2.2.4. Mechanical Characterization

The mechanical characterization of the material was carried out by tensile test over
the test specimens’ type 1BA prepared by injection molding. The tensile test was con-
ducted according to ISO 527 [29]. The analysis was performed in a universal test machine
Duotrac-10/1200 from Iberest (Madrid, Spain) using a 100 N load cell at a 100 mm/min
crosshead rate. The tensile test was performed 1, 15, and 35 days after the specimen’s
preparation to follow the mechanical properties’ evolution with time. Five samples of each
formulation were analyzed in each measurement. The average values and the standard
deviation of tensile strength, elongation at break, and Young’s modulus were reported.
Significant differences in mechanical parameters were statistically evaluated at a 95%
confidence level according to Tukey’s test using an analysis of variance (ANOVA) with
OriginPro2018 software.

2.2.5. Microstructural Characterization

Field Emission Scanning Microscopy (FESEM) was conducted on a Zeiss Ultra 55 mi-
croscope, Oxford Instruments (Abingdon, UK) at 1 kV. The samples were cryo-fractured
before the analyses and covered with a gold–palladium alloy layer to grant electrical
conduction with a Sputter Mod Coater Emitech SC7620, Quorum Technologies (East Sus-
sex, UK).

2.2.6. Water Contact Angle (WCA) Measurement

The wettability of the samples was measured with an EasyDrop-FM140 optic goniome-
ter from Kruss Equipments (Hamburg, Germany). The obtained images were managed
with Drop Shape Analysis software. Five measurements of WCA were evaluated in three
specimens for each formulation. ANOVA variability analysis was conducted to determine
the statistical differences between the samples with 95% confidence according to the Tukey
test using OriginPro2018.

2.2.7. Water Sensitivity

Water sensitivity was determined by immersing dried film pieces of TPS in 50 mL of
distilled water and placing the flasks in shaking at 25 ◦C for 24 h [30]. The film pieces were
removed (50 ◦C for 24 h) to determine the weight of the dry matter dispersed in water. The
weight of the water-soluble matter was calculated using Equation (2) by subtracting the
weight of the undissolved dry matter from the initial dry matter weight and expressed as a
percentage of the initial dry matter content:

s =
w1 − w2

w1
·100 (2)

where w1 is the dry weight before the test and w2 is the dry weight after the test. The
analysis was performed over three samples of each formulation. The average value and the
standard deviation were reported.

2.2.8. Chemical Characterization

Attenuated total reflectance–Fourier transform infrared spectroscopy (FTIR–ATR)
was applied to study the chemical interactions between TPS and PG. The analysis was
performed on a Perkin Elmer Spectrum BX (FTIR system) coupled to a Pike MIRacle ATR
(Beaconsfield, UK). All formulations were evaluated over a range of 4000–600 cm−1 with a
resolution of 4 cm−1, a range of 2 cm−1, and 36 scans.

XDR was used to analyze the influence of PG on the crystallinity of thermoplastic
starch. Wide-angle X-ray diffraction measurements were carried out using a Bruker D8
Advance X-ray diffractometer with a Lynxeye XE linear detector. Scattering angles (2θ)
covered the ranges from 4◦ to 50◦ (θ is the Bragg angle) at a rate of 1◦/min. The analyses
used a 1 mm thick sample with a smooth surface.
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2.2.9. Disintegration under Composting Conditions

The disintegration under composting conditions test was carried out according to
the parameters of the ISO-20200 standard [31] for a period of thermophilic degradation
(30 days). The dry solid residue was prepared by combining 40% sawdust, 30% rabbit feed,
10% commercial compost (Mantillo, Spain), 10% corn starch, 5% sucrose, 4% corn oil, and
1% urea. Water was then added to the mixture to adjust the final water content to 55%. The
wet solid residue was placed in a polypropylene container.

TPS square films of 2 cm per side with an average thickness of 1 mm were prepared for
the disintegration study. The TPS–PG mixtures were compression molded at 130 ◦C. Film
samples were dried at 50 ◦C for 48 h prior to testing. The samples were then weighed and
placed in mesh, which allowed for access to microorganisms and moisture to facilitate their
removal after treatment [32]. Samples were buried 5 cm deep in the wet solid residue of
the plastic reactor and incubated under aerobic conditions (58 ± 2 ◦C) in an air-circulating
oven. The compost was mixed gently to ensure aerobic conditions and relative humidity in
the reactor, and water was added periodically [33].

The samples were taken from the container on different disintegration days (1, 4,
7, 9, 11, 14) to control the disintegration process. The collected samples were washed
with distilled water, oven-dried at 50 ◦C for 48 h, and weighed. A visual evaluation
was performed on all samples when they were removed from the composting reactor.
The degree of disintegration on different days of exposure to the compost medium was
calculated by normalizing the weight of the sample to the initial weight.

3. Results and Discussion
3.1. Peach Gum Characterization

Figure 3 presents images of raw dried PG, PG powder, and an optical microscope
image of PG particles. The photographs show that peach gum has a yellow-reddish and
yellow-brownish coloration. The microscope image allowed us to determine that PG power
particles were polyhedral in shape with sizes in the range of 3–15 µm in agreement with
previous reports [24].
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3.2. Color Characterization

Images of the visual appearance of TPS and TPS–PG formulations are presented in
Figure 4. The color parameters in the CIEL*a*b* color space of the different formulations
prepared are shown in Table 2. Figure 4 shows that all samples present a homogeneous
appearance. TPS has a light coloration, whereas the addition of PG produces a darkening
in the color of the samples. However, the samples’ color is uniform at a glance, indicating a
good distribution of PG in TPS.
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Table 2. CIEL*a*b* color coordinates of thermoplastic starch (TPS) and formulations with 5, 10, and
15 phr of peach gum (PG).

Title 1 L* a* b* YI E313 ∆E*

TPS 38.91 ± 0.26 a −1.54 ± 0.05 a 5.05 ± 0.05 a 17.53 ± 0.08 a 0 a

TPS–5PG 42.96 ± 0.20 b 0.08 ± 0.28 b 8.18 ± 0.71 b 29.03 ± 2.38 b 5.37 b

TPS–10PG 51.80 ± 1.34 c 1.77 ± 0.39 c 11.87 ± 1.32 c 37.35 ± 3.33 c 14.95 c

TPS–15PG 43.56 ± 1.04 b −0.03 ± 0.07 b 7.90 ± 0.25 b 27.70 ± 0.83 b 5.66 b

a–c Different numbers show statistically significant differences between the formulations (p < 0.05).

The lightness coordinates L* show that the samples are medium-light, and the TPS–PG
formulation’s luminosity is statistically different (p < 0.05) than TPS. The a* coordinate
(red–green) indicates that TPS displays a high predominance of greenish tones. When
PG is added, TPS–5PG and TPS–15PG lose the hue, and the a* coordinate presents no
predominant coloration as it approaches 0. However, TPS–10PG presents a reddish hue.
The b* coordinate (blue–yellow) indicates that all samples have a yellow hue. However,
adding PG increases the yellowish coloration significantly (p < 0.05), with TPS–10PG being
the formulation with the highest b* value. The yellowish index (YI) increased according to
the yellowish hue b* [34].

The changes observed in the CIEL*a*b* coordinates of the samples suggest that TPS’s
coloration turns reddish and yellowish with the addition of PG. However, this trend stops
at TPS–15PG, where it is observed that the color chordate values are like those of TPS–5PG.
This result could suggest that the lack of miscibility, observed in SEM, also produces a low
homogenization which influences the coloration of the sample.

The total color difference shows that adding PG affects TPS’s coloration significatively,
∆E > 2 [35], even in low contents.

3.3. Mechanical Characterization

Figure 5 compares the tensile properties of the TPS–PG formulations and their evolu-
tion with time. TPS presents an average tensile strength of 4.0 MPa, an elongation at break
of 77.8%, and Young’s modulus of 38.8 MPa. On day 1, these parameters did not change
significantly with the addition of PG in 5 and 10 phr; however, a reduction in all tensile
parameters was observed in TPS–15PG.
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PG is compatible with starch because of its hydroxyl groups and their similarity in
structure in its polysaccharide and monosaccharides composition [36]. Therefore, 5 and
10 phr of PG blends well with thermoplastic starch. However, the monosaccharides in
peach gum are not enough to affect the mechanical behavior of the TPS matrix. However,
when PG is further increased to 15 phr, the miscibility limit of PG in TPS is exceeded,
and PG acts as a filler whose agglomeration results in a poor stress transfer, reducing the
mechanical parameter of the TPS–15PG formulation [37].

At day 15, the tensile strength of TPS increased by 18%, TPS–5PG increased by 20%,
and TPS–15PG increased by 36%. In contrast, TPS–10PG did not significantly change the
tensile strength. The elongation at break decreased by 7% in TPS, 9% in TPS–5PG and
TPS–10PG, and 14% in TPS–15PG. On day 35, the tensile strength increased by 36% in TPS,
33% in TPS–5PG, and 43% in TPS–15PG with respect to day 1. Meanwhile, the TPS–10PG
tensile strength increased by 20% with respect to day 1 but did not significatively change
with respect to day 15. In addition, the elongation at break decreased in all samples between
20 to 26%. Finally, Young’s modulus gradually increased; however, TPS–10PG displayed
the slowest increment in Young’s modulus compared to the other formulations.

The results show that the TPS structure progressively stiffens over time due to the
recrystallization that the TPS structure is subject to because of retrogradation [38,39]. More-
over, it is seen that PG in 5 phr did not produce a significant change in the tensile properties
of TPS, neither on day 1 nor over time. On the contrary, PG in 15 phr reduced the tensile
properties of TPS starting with day 1. Moreover, even when PG in 10 phr did not change
the TPS properties at the beginning, it seemed to delay the structure’s stiffening, as this
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was the formulation with the most negligible differences between its initial properties and
those measured at 15 and 35 days.

3.4. Microstructural Characterization

Figure 6 presents the micrographs of TPS and TPS–PG formulations obtained by
scanning electron microscopy. The TPS structure presented a smooth and homogeneous
surface which confirms the good plasticization of starch with glycerol and water. The
smooth fracture surface is typical of TPS with 25 to 30% amylose contents [11,40]. TPS
added with 5 and 10 phr of PG showed no apparent phase separation, which suggests that
PG was well incorporated into the TPS.
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Figure 6. Images obtained from scanning electron microscopy analysis at 10,000×: (a) TPS, (b) TPS–
5PG, (c) TPS–10PG, and (d) TPS–15PG.

Furthermore, when PG was added in 15 phr content, TPS presented roughness over the
surface, pointing to phase separation. The separation observed suggests a lack of cohesion
due to low miscibility between TPS and PG at 15 phr [10]. This phase separation explains
the reduction in tensile properties seen earlier in TPS–15PG. Moreover, the results indicate
that PG added in 15 phr exceeds the miscibility limit between TPS and PG. This behavior
has been formerly reported when using natural gums in TPS and other thermoplastic
matrices [10,41,42].

3.5. Water Contact Angle (WCA) Measurement

Figure 7 shows the variation in water contact angle with PG content. The plot shows
that all the materials display a hydrophilic character as the WCA is lower than 65◦ [43]. It
is observed that there are no significant differences (p > 0.05) in the contact angle of TPS
with the addition of PG in 5 and 10 phr. However, when PG was added in 15 phr, the
WCA value was statistically lower than TPS, TPS–5PG, and TPS–10PG. The contact angle
highly depends on the surface’s topographical and chemical properties [44]. Therefore, as
no chemical changes were detected in the formulations due to the addition of peach gum
(Figure 8), the wettability of the samples could be related to the surface topography. TPS–
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5PG and TPS–10PG show excellent miscibility with TPS, as seen in Figure 6b,c; therefore,
the materials may have a homogeneous surface. On the contrary, TPS–15PG presents a lack
of miscibility between PG and TPS (Figure 6d), which could have caused superficial defects
in the sample that may lead to a reduction in the WCA in this sample.
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3.6. Water Sensitivity

The TPS and TPS–PG formulations’ water sensitivity regarding dissolved mass is
shown in Table 3. Both pure TPS and raw PG present no significant differences in their water
sensitivity (p > 0.05). However, it is observed that the solubility of TPS–PG formulations
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significantly increased with PG. A content of 5 phr of PG increased the water sensitivity by
6%, and a content of 10 and 15 phr of PG increased it by 24%.

Table 3. Solubility of raw peach gum (PG), thermoplastic starch (TPS), and formulations with 5, 10,
and 15 phr of peach gum (PG).

Formulation Water Sensitivity (%)

PG 29.8 ± 1.2 a

TPS 28.9 ± 1.0 a

TPS–5PG 31.7 ± 0.8 b

TPS–10PG 36.3 ± 1.2 c

TPS–15PG 36.8 ± 0.8 c

a–c Different numbers show statistically significant differences between the formulations (p < 0.05).

It is important to note that even when TPS-based materials tend to be hydrophilic
and hygroscopic, the TPS water solubility index is low [45]. Thus, the soluble fraction
of the films is related to the amount of starch that dissolves in the water [45] and the
plasticizers that migrate to the water during immersion, as reported by [46]. Therefore,
PG did influence the water sensitivity of TPS, which two causes could explain. First, the
presence of arabinogalactans in the composition of the TPS–PG formulations increased the
water sensitivity because these polysaccharides are water-soluble [17]. Second, PG absorbs
and retains water due to its swelling capacity, simultaneously increasing the TPS structure’s
free volume. This increase in free volume favored water absorption due to a more open
structure [46] increasing the contact area between TPS and water and enhancing the ability
of the water to dissolve the remaining soluble starch.

TPS–10PG and TPS–15PG presented statistically the same water sensitivity, which
suggests that the soluble starch in the formulations is the same and that its total solubility
has been reached with a PG content of 10 phr.

3.7. Chemical Characterization

Figure 8 compares the FTIR spectra of pure TPS and TPS–PG formulations. The TPS
FTIR spectrum shows the typical absorption bands corresponding to starch and glycerol
functional groups. The peaks over 3270 cm−1 indicate hydrogen bond vibration and O-H
stretching. A peak at 2930 cm−1 indicates an asymmetric stretching vibration typical of
the C-H bond. The absorption peaks at 1651 cm−1 and 1150 cm−1 are produced by O-H
bending vibration and C-O-C asymmetric stretching, respectively [47–49]. The raw PG
spectrum presents bands associated with the composition of PG polysaccharides. The band
at 3414 cm−1 corresponds to the O-H stretching vibration of the hydroxyl group. The bands
at 2928 cm−1 and the shoulder at 2864 cm−1 are related to the C-H stretching vibrations.
The high-intensity peak at 1626 cm−1 corresponds to COO-stretching derived from the
glucuronic acid component, and the peak at 1066 cm−1 is attributed to the C-O stretching
vibration [17,50]. Because TPS and PG are composed of polysaccharides and have the same
characteristic groups, it is rather difficult to determine changes in the TPS–PG formulations’
spectra concerning the pure TPS spectrum.

The X-ray diffractograms of TPS and the TPS–PG formulations are displayed in
Figure 9. The X-ray diffractograms of all the materials show they exhibited the typical
behavior of semicrystalline materials. Similar diffractograms were obtained in previous
works for thermoplastic starch obtained from corn starch [8].

In the diffractograms, the characteristic peaks of TPS are observed at 2θ = 13.1◦, 16.9◦,
19.8◦, and 22.2◦. The peaks at 2θ = 16.9◦ and 22.2◦ are related to the A-type structure
typical of cereal-based starches [51], and those at 2θ = 16.9◦ are associated with the interac-
tions between TPS’s external amylopectin chains and glycerol during thermo-mechanical
processing [51,52]. The peaks at 2θ = 13.1◦ and 19.8◦ are associated with glycerol–starch
hydrogen bonding interactions and indicate a VH-type structure, while the broad hump
centered on 19◦ is characteristic of TPS [52,53].
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The crystallinity percentage of TPS is 2.87%, which could be related to the residual
crystallinity of the remaining starch granules without plasticizing and to the parallel
orientation of the starch chains, which leads to retrogradation (starch recrystallization) [54].
All the TPS–PG formulations present higher crystallinity than pure TPS, which increases as
the PG content increases in the formulations. This is because of the intrinsic crystallinity of
the polysaccharides in raw PG [19].

3.8. Disintegration under Composting Conditions

The biodegradable nature of TPS-based materials is one of the most striking qualities
of this biomaterial [55]. Therefore, a disintegrability test was conducted under composting
conditions at a laboratory scale to determine raw PG’s effect on TPS’s compostability.
Figure 10 shows the visual appearance of TPS and TPS–PG formulations recovered at
different composting times. Figure 11 presents the degree of disintegrability evaluated
in terms of mass loss as a function of incubation time. Figure 10 shows that at day 0, all
samples are transparent, which readily allows us to see clearly through them. After just one
day in the composting reactor, all the samples lost their transparency and broke down. TPS
and TPS–5PG lost around 38% of their weight, while TPS–10PG and TPS–15PG lost 70%.
This transparency loss and breakage effects are linked to the beginning of the hydrolytic
degradation of TPS and the formation of low-molecular-weight compounds. Hydrolytic
degradation occurs due to hydroxyl or polar groups in the biopolymer [56]. This rapid
beginning of degradation was previously reported for corn-starch-based TPS [8]. At day 7,
the coloration of the sample turns darker, presumably due to microbial growth [57]. TPS
and TPS–5PG lost 70% of their weight, while TPS–10PG and TPS–15PG lost 80%. On day
16, TPS–10PG and TPS–15PG were disintegrated, reaching 95% and 97% of weight loss. On
day 18, TPS and TPS–5P reached 95–98% values, which are considered wholly degraded.
The results show that thermoplastic starch is hydrolyzed and metabolized rapidly. The
biodegradation of starch-based polymers is a result of an enzymatic attack at the glucosidic
linkages between the sugar units, leading to the breakdown of long-chain sugar units
into oligosaccharides, disaccharides, and monosaccharides that are readily accessible to
microbial or enzymatic attack [55,56].
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Figure 11. Disintegration degree of thermoplastic starch (TPS) and formulations with 5, 10, and
15 phr of peach gum (PG) under controlled compost conditions as a function of incubation time.

The visual appearance of the samples containing 10 and 15 phr of PG shows an
increased disintegration in the early incubation period compared to pure TPS. This effect
could be ascribed to an earlier hydrolytic reaction on the samples due to the increased
water affinity as PG content increases in the formulations. The results are in correlation
with the increased water sensibility percentage presented for these formulations.
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4. Conclusions

Homogeneous TPS-based materials were prepared using rice starch (water and glyc-
erol as plasticizers). The resulting TPS was then blended with peach gum through an
extrusion process, followed by injection molding. The mechanical characterization results
indicate that the TPS structure gradually turned stiffer due to retrogradation. The addition
of 5 phr of PG did not significantly change TPS’s tensile behavior, and the addition of 15 phr
of PG reduced the tensile properties of TPS. Moreover, TPS–10PG delayed the stiffening of
the structure without altering TPS’s tensile properties. The electron scanning microscopy
showed that PG added in 5 and 10 phr presented an excellent incorporation into the TPS
matrix without phase separation.

Nonetheless, PG added in 15 phr produces a phase separation due to a lack of cohesion
produced by low miscibility between PG and TPS, which explained the decrease in tensile
properties. In addition, no significant differences were found in the WCA of TPS and
TPS–PG formulations. However, a 24% water sensitivity increase was observed with a
content of 10 and 15 phr of PG due to water-soluble polysaccharides in the composition.
This increase in water sensitivity also increased the disintegration in the early stages of
degradation, which corresponds to the hydrolytic degradation of the samples. Therefore,
raw PG can be added as a sustainable additive to modify the biodegradation and water
sensitivity of TPS, and at a content of 10 phr it helps to delay the retrogradation of the TPS
structure, increasing its shelf life.
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