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Abstract: Based on the Generalized bracket, or Beris–Edwards, formalism of non-equilibrium ther-
modynamics, we recently proposed a new differential constitutive model for the rheological study of
entangled polymer melts and solutions. It amended the shortcomings of a previous model that was
too strict regarding the values of the convective constraint release parameter for the model not to
violate the second law of thermodynamics, and it has been shown capable of predicting a transient
stress undershoot (following the overshoot) at high shear rates. In this study, we wish to further
examine this model’s capability to predict the rheological response of industrial polymer systems by
extending it to its multiple-mode version. The comparison with industrial rheological data (High-
Density Polyethylene resins), which was based on comparison with experimental data available in
(a) Small Amplitude Oscillatory shear, (b) start-up shear, and (c) start-up uniaxial elongation, was
noted to be good.

Keywords: rheological model; polymer melts; non-equilibrium thermodynamics; multiple modes;
normal stress coefficients; high-density polyethylene

1. Introduction

As reported by the Society of Plastics Industries (SPI) in 2000, the plastic industry in
the US is positioned, in terms of shipment, in fourth place among manufacturing industries,
following motor vehicles and equipment, electronic components and accessories, and
petroleum refining [1]. A more recent survey predicts that the global plastic packaging
market will be worth $269.6 billion by 2025, achieving a compound annual growth rate
(CAGR) [2]. This figure alone highlights the impact of plastic materials on our lives
and, thus, the significance of optimizing polymer processing technology. Future polymer
processing will focus not on the machine, but on the product [1]. Several instabilities appear
in the polymer industry, which makes life difficult for polymer engineers. For example,
under certain circumstances, when molten plastic is forced through a die, the shark-skin
defect appears [3]. To avoid this issue, it is suggested to slow down the manufacturing rate;
however, this action decreases the production rates of commercial products, leading to an
increase in cost. Wang et al. have suggested that this defect may be related to a molecular
instability that corresponds to an oscillation of the absorbed chains in the die exit area
between coiled and stretched states [4]. Thus, it seems that the answer needed should
be sought by maintaining the molecular level of description and performing molecular
dynamics simulations. The ultimate goal of this process is to predict the properties of
a product via numerical simulations based on molecular principles and multiple-scale
techniques [1].

Due to computational limitations, however, this goal has been unachievable until
the last few years, in which period the extended evolution of simulation algorithms, the
parallelization of these algorithms and the race, which has been very recently undertaken,
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to construct accurate coarse-grained potentials (directly derived from the atomistic sim-
ulations) have revolutionized the field. For example, by topologically and dynamically
mapping atomistic simulation results onto the tube notion of the de Gennes–Edwards
model, we have recently been able [5,6] to obtain the most fundamental function of the
tube (reptation) theory (according to which the polymer motion due to entanglements is
confined within a tube-like region, the axis of which coincides with the primitive path of the
chain, and its diameter provides a measure of the strength of the topological interactions),
namely the segment survival probability function, compare the atomistic simulations re-
sults against the predictions of modern tube models [7]; and even propose modifications to
improve these models on a molecular level [8,9].

Accurate continuum simulations (usually using a finite element scheme [10]) require
the use of accurate constitutive models, which are able to provide the necessary molecular
physics associated with the rheological behavior of polymeric systems. Thus, the use of
empirical models or models without reference to molecular physics may fail to represent
even the qualitative features of the material’s behavior. Furthermore, a rather small set
of parameters should be included in said models, to which a physical significance must
be assigned, and the models should have the capacity to simultaneously fit all given data
using a single set of parameter values [11]. Only in this context would polymer engineers be
able to correctly predict the rheological response in industrial processes and solve several
long-standing problems that the industry faces.

However, polymers exhibit a wide spectrum of relaxation times, which gives poly-
meric fluids a partial memory [12]. Conformation tensor-based models that include only a
single mode cannot describe small-amplitude oscillatory shear (SAOS), in which a spec-
trum of relaxation times is needed. Even for dilute solutions, both theory and experiments
suggest that a superposition of several exponential modes is obtained [13]. In the past two
decades or so, several researchers employed multiple modes of well-known models in order
to improve their predictive capabilities. For example, the Kaye-Bernstein–Kearsley–Zapas
(K-BKZ) integral model [14,15], the Phan-Thien and Tanner (PTT) model [15–18], and the
Giesekus model [15,18] have been used to predict the rheological behaviors of industrial
polymers, such as low-density polyethylene (LDPE) and high-density polyethylene (HDPE).
Although such well-known rheological models are able to reproduce experimentally ob-
servable features of the material functions in various flows, they fail to capture the correct
physics.

Polymers with large molecular weights should be described based on the use of the
tube theory mentioned above, which introduces terms such as reptation, chain contour
length fluctuations, and constraint release (CR) due to the motion of surrounding chains [19].
Under flow, as polymer chains are oriented, a number of entanglements are expected, on
average, to be lost, as dictated by the convective constraint release (CCR) mechanism [20,21]
and shown to be the case via detailed atomistic non-equilibrium molecular dynamics
(NEMD) simulations [22]. More recently, tube models [23–26] have been used to predict
the appearance of a transient stress undershoot (following the overshoot) at high shear
rates in start-up shear, which originated from the molecular tumbling of polymer chains in
simple shear. Tube models have also been generalized to account for branches, such as the
pom-pom model [27], as well as its thermodynamically admissible version, known as the
pom-pon [28] model. Also, several works employed multimode versions of well-known
tube models to predict the rheological responses of industrial polymer systems (we only
mention a few of these works). Inkson et al. [29] used a multimode version of the pom-pom
model and found that it can quantitatively address the rheology of LDPE for shear, uniaxial,
and planar elongation. Soulages et al. [30] investigated the lubricated flow of a LDPE in a
cross-slot geometry and compared the predictions of the extended pom-pom model [31]
and the modified extended pom-pom model [16] to a plethora of rheological data: in shear,
they compared it to transient and steady-state shear viscosity and the first normal stress
coefficient, as well as the steady-state second normal stress difference, and in uniaxial
elongation, they compared it to the transient uniaxial elongational viscosity. They noted
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that both models performed equally well (note that the thermodynamic admissibility of
these two models is shown in Ref. [32]). Hoyle et al. [33] evaluated the performance of the
multimode pom-pom model to those of both LDPE and branched HDPE melts, whereas,
more recently, Konaganti et al. [15] employed the double convected pom-pom [34] model to
predict the rheological behavior of a high-molecular-weight HDPE melt. Since multimode
versions have been found to be superior to single-mode versions, our aim in this paper is
to generalize the tube model of Stephanou et al. [23] to its multimode version and use it to
predict the rheological response of a HDPE melt.

The structure of the paper is as follows: In Section 2, the new model is briefly derived
using non-equilibrium thermodynamics (NET). In Section 3, we derive the expressions of
the relevant rheological material functions obtained by analyzing the asymptotic behavior
of the model in the limits of small shear rates. The results obtained with the new model
are then presented in Section 4, in which we first discuss its parameterization and then
show how accurately and reliably it can describe the viscoelasticity of HDPE polymer melts.
The paper concludes with Section 5, in which the most important aspects of our work are
summarized, and future plans are highlighted and discussed.

2. The Constitutive Model
2.1. State Variables

This work considers an isothermal and incompressible flow, meaning that the total
mass density ρ and the entropy density (or temperature) are excluded from the vector of
state variables. To characterize the polymer chains, the entanglement strand conforma-
tion tensor c, following the method of Stephanou et al. [23,35], is considered to be made
dimensionless through c̃ = Kc/kBT, where K denotes the spring constant of the Hookean
dumbbells that represents the entanglement strands at equilibrium, kB the Boltzmann con-
stant, and T denotes the absolute temperature [36]. The conformation tensor c̃ refers to one
entanglement strand, and at equilibrium (zero flow field applied), it coincides with the unit
tensor. To characterize the multiple modes of the polymer chains, N conformation tensors
are considered, with one tensor being considered for each mode [36]. Finally, the momen-
tum density M, which is the hydrodynamic variable, is further considered, meaning that,
overall, the vector of state variables is expressed as x = {M, c(1), c(2), . . . , c(i), . . . , c(N)}.

2.2. System Hamiltonian

The mechanical part of the system’s Hamiltonian is given as [36]

Hm(x) = Ken(x) + A(x) (1)

where

Ken(x) =
∫ M2

2ρ
dV (2)

represents the kinetic energy of the system, whereas [23,35,36]

A(x) =
∫

a(x)dV =
1
2

N

∑
i=1

∫
G(i)

e

[
Φ
(

tr
(

c̃(i) − I
))
− ln det̃c(i)

]
dV (3)

represents the system’s Helmholtz free energy (with a(x) the Helmholtz free energy density)
that includes the following contributions: the dimensionless potential Φ

(
tr
(

c̃(i) − I
))

,
which accounts for chain stretching, and an entropic contribution, which involves the
logarithm of the determinant of the conformation tensor of each mode [35,36]. Here, G(i)

e is
the entanglement modulus of the ith mode, and I is the unit tensor. The partial derivative of
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the potential with respect to the trace of the conformation tensor defines the (dimensionless)
effective spring constant [37,38] for the ith mode

h
(

trc̃(i)
)
≡

∂Φ
(

trc̃(i)
)

∂trc̃(i)
(4a)

meaning that the corresponding Volterra derivative of the free energy with respect to the
conformation tensor is

δA

δc̃(i)
=

G(i)
e
2

[
h
(

trc̃(i)
)

I−
(

c̃(i)
)−1

]
(4b)

Here, the following FENE-P(Wagner) expression is used:

h
(

trc̃(i)
)
=

b(i)e − 3

b(i)e − trc̃(i)
(4c)

where b(i)e is the finite extensibility (FENE) parameter of the entanglement strand associated with
the ith mode. As shown by the study of Stephanou et al. [35], be = 3

[
(0.82)2/C∞

]
(Me/M0)

(when all FENE parameters are considered equal), where C∞ is the polymer characteristic
ratio at infinite chain length, Me is the entanglement molecular weight, and M0 is the
average molar mass of a monomer. For example, for PS melts, be = 54 [35].

2.3. The Poisson and Dissipation Brackets

Following the work of Beris and Edwards [36], the Poisson bracket for multiple modes
is given as follows:

{F, G}c = −
N
∑

i=1

∫ [
δF

δc(i)aβ

∇γ

(
c(i)aβ

δG
δMγ

)
− δG

δc(i)aβ

∇γ

(
c(i)aβ

δF
δMγ

)]
dV

+
N
∑

i=1

∫
c(i)γa

[
δF

δc(i)aβ

∇γ

(
δG

δMβ

)
− δG

δc(i)aβ

∇γ

(
δF

δMβ

)]
dV

+
N
∑

i=1

∫
c(i)γβ

[
δF

δc(i)aβ

∇γ

(
δG

δMα

)
− δG

δc(i)aβ

∇γ

(
δF

δMα

)]
dV

(5a)

We note both here and throughout this paper that Einstein’s summation convention
for repeated Greek indices is employed. The complete Poisson bracket was then simply
given as follows:

{F, G} = −
∫ [

δF
δMγ
∇β

(
Mγ

δG
δMβ

)
− δG

δMγ
∇β

(
Mγ

δF
δMβ

)]
dV

+{F, G}c

(5b)

Next, the following expression for the dissipation bracket associated with the confor-
mation tensors is used [36].

[F, G]nec = −
N
∑

i=1

∫
δF

δc(i)aβ

Λ(ii)
αβγε

δG
δc(i)γε

dV

+
N
∑

i=1

∫
L(i)

αβγε

[
δF

δc(i)γε

∇α

(
δG

δMβ

)
− δG

δc(i)γε

∇α

(
δF

δMβ

)]
dV

(6)

The first integral on the right-hand side of Equation (6) accounts for the relaxation
effects of each conformation tensor, which is proportional to a fourth–rank relaxation tensor,
whereas the second integral allows for the non-affine deformation of each conformation
tensor. We note that the subscript “nec”, meaning “no entropy production correction”,
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is added to the dissipation bracket to indicate that this bracket lacks terms that involve
Volterra derivatives with respect to the entropy density, which can be omitted when we
consider isothermal systems [36]. We further note that although, in general, the dissipation
bracket allows explicit coupling between cross modes, as shown in Equations (8.2–25) of
Beris and Edwards [36], in this study, they are omitted for simplicity. Then,

.̃
c
(i)
αβ,[1] = −Λ(ii)

αβγε

δA

δc(i)γε

+ L(i)
αβγε∇γuε (7a)

where we have defined the upper-convected time derivative:

.̃
c
(i)
αβ,[1] ≡

∂c̃(i)αβ

∂t
+ uγ∇γc(i)αβ − c̃(i)αγ∇γuβ − c̃(i)γβ∇γuα (7b)

Finally, the extra (polymeric) stress tensor is given as follows:

σαβ =
N

∑
i=1

2c(i)aγ
δA

δc(i)γβ

+ L(i)
αβγε

δA

δc(i)γε

 (8)

2.4. The Matrices L and Λ

The relaxation matrix of each mode Λ(ii)
αβγε is split into two contributions, following the

work of Stephanou et al. [23], which have different relaxation times:

Λrept,(ii)
αβγε =

f (i)rept

(
trc̃(i)

)
2G(i)

e τ
(i)
CR

(
c̃(i)αγ β̃

(i)
βε + c̃(i)αε β̃

(i)
βγ + c̃(i)βγ β̃

(i)
αε + c̃(i)βε β̃

(i)
αγ

)
ΛRouse,(ii)

αβγε =
f (i)Rouse

(
trc̃(i)

)
2G(i)

e τ
(i)
R (trc̃)

(
c̃(i)αγ β̃

(i)
βε + c̃(i)αε β̃

(i)
βγ + c̃(i)βγ β̃

(i)
αε + c̃(i)βε β̃

(i)
αγ

) (9a)

Here, τ
(i)
CR is the CR relaxation time of the ith mode, which is considered to be half of

the corresponding reptation time, τ
(i)
CR = 1

2 τ
(i)
d [39] [we note that this time coincides with

the CCR relaxation time at equilibrium, as shown in Equation (10)], and τ
(i)
R (trc̃) is the

Rouse relaxation time of the ith mode,

τ
(i)
R (trc̃) = τ

(i)
R,eq

(
trc̃(i)

3

)k(i)

(9b)

where τ
(i)
R,eq is the equilibrium Rouse relaxation time of the ith mode, which is given as

τ
(i)
d = 3Zτ

(i)
R,eq [19], and k(i) is the Extended White–Metzner (EWM) exponent [36] for the

ith mode. We note that for the Rouse time, a shear rate dependency through the use of the
trace of the conformation tensor of each mode is considered. The functions f (i)rep

(
trc̃(i)

)
and

f (i)Rouse

(
trc̃(i)

)
are scalar functions of the trace of the conformation tensor, as defined via the

following equation [23]:

f (i)Rouse

(
trc̃(i)

)
= 1− f (i)rep

(
trc̃(i)

)
= β

(i)
ccr

h
(

trc̃(i)
)

trc̃(i) − 3

3 + β
(i)
ccr

[
h
(

trc̃(i)
)

trc̃(i) − 3
] (9c)

where β
(i)
ccr is the CCR parameter of the ith mode. For the (dimensionless) mobility tensor β̃

(i)

of the ith mode, the Giesekus’ postulate β̃
(i)

= I + α(i)σ̃(i) is used [37] with σ̃(i) = σ(i)/Gi,
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and α(i) is the anisotropic mobility (Giesekus) parameter of the ith mode. Then, with

Λ(ii)
αβγε = Λrep,(ii)

αβγε + ΛRouse,(ii)
αβγε , we obtain

Λ(ii)
αβγε =

1

2G(i)
e τ

(i)
CCR

(
trc̃(i)

)(c̃(i)αγ β̃
(i)
βε + c̃(i)αε β̃

(i)
βγ + c̃(i)βγ β̃

(i)
αε + c̃(i)βε β̃

(i)
αγ

)
(9d)

where [23,39] the CCR relaxation time is obtained as follows:

1

τ
(i)
CCR

(
trc̃(i)

) =
1

τ
(i)
CR

+

 1

τ
(i)
R

(
trc̃(i)

) − 1

τ
(i)
CR

β
(i)
ccr

h
(

trc̃(i)
)

trc̃(i) − 3

3 + β
(i)
ccr

[
h
(

trc̃(i)
)

trc̃(i) − 3
] (10)

Finally, the expression of the L(i) matrix is given via the following equation [36,37]:

L(i)
αβγε = −

ξ(i)

2

(
c̃(i)αγδβε + c̃(i)αε δβγ + c̃(i)βγδαε + c̃(i)βε δαγ

)
(11)

Here, ξ(i) is the non-affine/slip parameter of the ith mode. This parameter is important,
as it allows for the prediction of a transient stress undershoot (following the overshoot) at
high shear rates [23].

2.5. Thermodynamic Admissibility

Any thermodynamic system must obey the restriction of a non-negative rate of to-
tal entropy production. When the fluid studied is isothermal and incompressible, the
entropy production results from the degradation of the mechanical energy, leading to
dHm/dt = [Hm, Hm] ≤ 0 [36]. For this aspect to be satisfied in our model, the following
equation must hold:

N

∑
i=1

δF

δc(i)aβ

Λ(iι)
αβγε

δG

δc(i)γε

=
N

∑
i=1

G(i)
e

2τ
(i)
CCR

(
trc̃(i)

) 3

∑
k=1

(
hµ

(i)
k − 1

)2

µ
(i)
k

[
1 + α(i)

(
1− ξ(i)

)(
hµ

(i)
k − 1

)]
≥ 0 (12)

where µ
(i)
k , k = {1, 2, 3}, i = {1, .., N} are the three eigenvalues of the conformation tensor

of the ith mode. Obviously, since the conditions 0 ≤ α(i)
(

1− ξ(i)
)
< 1, 0 ≤ ξ(i) < 1, ∀i and

β
(i)
ccr ≥ 0, ∀i [23] guarantee that each term of the summation is positive, the sum as a whole

is also positive, meaning that the multimode version of the Stephanou et al. model [23]
presented in this work is thermodynamically admissible.

2.6. Conformation Tensor Evolution Equation

The evolution equation used for each of the dimensionless conformation tensors is
obtained by substituting Equations (4b), (9d), and (11) into Equation (7a)

.̃
c
(i)
[1] = − 1

τ
(i)
CCR

(
trc̃(i)

){α(i)
(

1− ξ(i)
)

h2
(

trc̃(i)
)

c̃(i) · c̃(i)

+
[
1− 2α(i)

(
1− ξ(i)

)]
h
(

trc̃(i)
)

c̃(i) −
[
1− α(i)

(
1− ξ(i)

)]
I
}

, ∀i ∈ [1, N]

(13)

The CCR relaxation time for the ith mode is given in Equation (10), and the (dimen-
sionless) effective spring constant is given in Equation (4c). Finally, the expression for the
polymeric stress tensor is obtained by substituting Equations (4b) and (11) into Equation (8)
as follows:

σ =
N

∑
i=1

G(i)
e

[
h
(

trc̃(i)
)

c̃(i) − I
]

(14)
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3. Asymptotic Behavior of the Model in Steady State Shear

In this section, we provide analytical expressions that describe the asymptotic behavior
of the multimode version of the Stephanou et al. [23] model in the limit of weak flows
for the following cases: inception of simple shear flow (SSF) described by the kinematics
u =

( .
γy, 0, 0

)
, in which

.
γ is the (constant) shear rate; inception of uniaxial elongation

flow (UEF) described by the kinematics u =
( .

εx,− 1
2

.
εy,− 1

2
.
εz
)

, in which
.
ε is the (constant)

elongation rate; and small amplitude oscillatory shear (SAOS) described by the kinematics
u =

( .
γ cos(ωt)y, 0, 0

)
, in which ω is the oscillation frequency. The material functions

to be analyzed are as follows: (a) the transient shear viscosity η+(t) (= σyx(t)/
.
γ) and

the first, Ψ+
1 (t) (=

(
σxx(t)− σyy(t)

)
/

.
γ

2), and second, Ψ+
2 (t) (=

(
σyy(t)− σzz(t)

)
/

.
γ

2), nor-
mal stress coefficients in the case of shear; (b) the transient elongational viscosity, η+

E (t)
(=
(
σxx(t)− σyy(t)

)
/

.
ε), in the case of uniaxial elongation; and (c) the storage, G′(ω), and

loss, G′′ (ω), moduli in the case of SAOS.
To obtain the asymptotic behavior, we need to expand the conformation tensor for each

mode in the limit of small strain rates (by invoking a linearization of the evolution equation
for each of the conformation tensors) and analytically solve the corresponding ordinary
differential equations. After this stage, we obtain the non-zero stress tensor components via
Equation (14). Finally, we obtain the following results for the relevant material functions:

Inception of shear:

η+(t) =
N

∑
i=1

τ
(i)
CRG̃(i)

e

[
1− exp

(
− t

τ
(i)
CR

)]
(15a)

Ψ+
1 (t) = 2

N

∑
i=1

(
τ
(i)
CR

)2
G̃(i)

e

[
1−

(
1 +

t

τ
(i)
CR

)
exp

(
− t

τ
(i)
CR

)]
(15b)

−Ψ+
2 (t) =

N
∑

i=1

(
τ
(i)
CR

)2
G̃(i)

e

{[
ξ(i) + α(i)

(
1− ξ(i)

)][
1−

(
1 + t

τ
(i)
CR

)
exp

(
− t

τ
(i)
CR

)]
α(i)
(

1− ξ(i)
)2

exp
(
− t

τ
(i)
CR

)[
1− t

τ
(i)
CR

− exp
(
− t

τ
(i)
CR

)]} (15c)

Inception of uniaxial elongation:

η+
E (t) = 3

N

∑
i=1

τ
(i)
CRG̃(i)

e

[
1− exp

(
− t

τ
(i)
CR

)]
(16)

meaning that Trouton’s law is true for the steady-state extensional viscosity.
Small Amplitude Oscillatory Shear:

G′(ω) =
N
∑

i=1
G̃(i)

e

(
ωτ

(i)
CR

)2

1+
(

ωτ
(i)
CR

)2

G′′ (ω) =
N
∑

i=1
G̃(i)

e
ωτ

(i)
CR

1+
(

ωτ
(i)
CR

)2

(17)

In Equations (15)–(17), we have defined G̃(i)
e ≡

(
1− ξ(i)

)2
G(i)

e .

4. Results and Discussion

The FENE parameter can be easily calculated via be = 3(0.82)2Me/(M0C∞), as men-
tioned above. In this study, PE M0 = 14 g/mol, whereas C∞ = 7.3 and Me = 828 g/mol (see
Table 3.3, p. 151 of Ref. [40]). These values yield be = 16.34. We will compare against the
experimental data of Konaganti et al. [15] that have performed rheological measurements
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of the sample HDPE-1 (reported by the same group [41]), for which Mw = 206 kg/mol; thus,
the number of entanglements is equal to Z ≈ 249 >> 1. The relaxation spectrum is the same
as the one used by Konaganti et al. [15] (see their paper’s Table 2 for T = 200 ◦C, though is
also provided in Table 1), and it was obtained by fitting the expressions of the storage and
loss moduli, which are shown in Equation (17), with the corresponding experimental data.
The comparison against the experimental storage and loss moduli is shown in Figure 1.

Table 1. Relaxation spectrum [15].

Mode G̃
(i)
e (Pa) τ

(i)
CR (s)

1 387,808 0.00086

2 185,307 0.0075

3 93,338 0.0548

4 37,766 0.403

5 12,934 2.99
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Figure 1. Comparison between the model predictions Equation (17) and the experimental data
presented in Ref. [15] for the storage and loss moduli of an HDPE sample at 200 ◦C. The relaxation
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All of the remaining parameter values are obtained by fitting the model predictions
with the experimental data; for simplicity, we assume that each parameter has the same
value for all modes, although, in general, different values for each mode could be considered
(e.g., Konaganti et al. [15]). The following values of the model parameter are chosen to
provide a good comparison with the start-up shear flow experimental data provided in
Figure 2: ξ = 0.02, α = 0.3, βccr = 4 × 10−4, and k = −3.5. For comparison, we also depict,
in the following figures, the predictions of the multimode Giesekus model [which is a
special case of our model in which βccr = ξ = k = 0 and be infinite or the function h = 1 in
Equation (4c)] with α = 0.3 and the relaxation spectrum of Table 1.

4.1. Comparison with Start-Up Shear Flow Data

Figure 2a illustrates the comparison between the experimental data for the growth
of the shear viscosity upon inception of shear flow and the simulated results obtained
using the new model. The experimental data (symbols) were collected at three different
shear rates—0.05 1/s, 0.5 1/s, and 1 1/s—whereas the lines represent the simulated shear
viscosity values at the corresponding shear rates. It can be observed that the model
accurately captures the trends and magnitude of the shear viscosity over time, doing so
much more successfully than the Giesekus model (Figure 2b). We should, however, note
that the overshoots noted at the two larger shear rates (0.5 1/s and 1 1/s) are higher than
the experimental data. The overshoot predicted using our model is controlled by two
parameters: the FENE parameter be and the anisotropic mobility (Giesekus) parameter α.
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As mentioned above, the former parameter is not a free parameter, as it is directly dictated
by structural parameters. The latter parameter is a free parameter, and by increasing its
value, the start-up shear viscosity overshoots noted at the two larger shear rates (0.5 1/s
and 1 1/s) shift downwards and broaden (results not shown), thus more closely agreeing
with the experimental data; however, the good comparison identified at the smaller shear
rate (0.05 1/s) is reduced. This result might hint that the parameter α should not be a
constant, but should increase with the applied strain rate. Similar arguments have been
put forth and resulted in a variable non-affine/slip parameter proposed by Nikiforidis
et al. [42] and a variable link tension coefficient proposed by Stephanou and Kröger [26].
We note that although a non-zero value of ξ is employed, the undershoots produced are
too small to be noted via the scale used in Figure 2. Although no experimental data are
provided, we provide the corresponding prediction of the growth of the first and second
normal stress coefficients in Figure 3, as well as the steady-state values of all viscometric
material functions in Figure 4.
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for the multimode Giesekus model. The thick black line depicts the LVE envelope, which is shown in
Equation (15a).
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Figure 3. Model predictions (red, blue, and orange lines) of the growth of the first (a) and second
(b) normal stress coefficients upon the inception of shear flow. The thick black lines depict the LVE
envelope, which is shown in Equations (15b) and (15c). The s parameter values are the same as those
used in in Figure 2. The multimode Giesekus model’s predictions are also depicted (red, blue, and
orange dashed lines). The thick black dashed lines depict the LVE envelope, which are again shown
in Equations (15b) and (15c).
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4.2. Comparison with Start-Up Uniaxial Elongational Flow Data

In Figure 5, we provide the comparison between the model predictions and the experi-
mental measurements obtained by Konaganti et al. [15] for the growth of the elongational
viscosity as a function of time upon inception of uniaxial elongation at the following stretch
rates: 0.05 1/s, 0.5 1/s, and 5 1/s. The comparison employs the same parameter values
as those used in Figure 2, except ξ = 0, as informed by Stephanou et al. [37], and the
corresponding steady-state prediction is provided in Figure 6. Given that the parameter
values were selected based on the start-up shear data (Figure 2), the comparison is noted to
be adequately appropriate. We note that the Giesekus model (Figure 5b) fails to reproduce
correctly the trend of the experimental data. It should be noted that the uniaxial elongation
data obtained by Konaganti et al. [15] do not seem to reach a steady state. This outcome
is customary in the literature [11,12,43] due to experimental difficulties, as the polymer
samples used become too slender and often break. This issue has led some researchers to
consider the highest value as the steady-state elongational viscosity and omit all following
data [44]. Thus, the data that follow the overshoot may not be accurate. Overall, the
proposed model demonstrates good agreement with the experimental data, indicating its
effectiveness in describing the rheological behavior of polymers of industrial significance.
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Figure 5. (a) Comparison between the model predictions (lines) and the experimental measurements
(symbols) of Konaganti et al. [15] for the growth of the elongational viscosity as a function of time for
several stretch rates. The thick black line depicts the LVE envelope, as given in Equation (16). The
sparameter values are the same as those used in Figure 2 except ξ = 0. In panel (b), we depict the
same comparison for the multimode Giesekus model.
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5. Conclusions

In this work, we developed the multiple-mode version of a generalized, conformation-
tensor based viscoelastic model for polymer melts, which was proposed in [23], by making
use of the generalized bracket formalism of Beris and Edwards [36]. Like its forerunner,
i.e., the single-mode version [23], it accounts for the most significant effects that can be
realized in entangled polymer systems: anisotropic drag, finite extensibility, non-affine
motion (leading to the exhibition of a transient stress undershoot at large shear rates), and
variable chain relaxation due to convective constraint release. The multiple-mode version
of the model has been shown to have a very good predictive capability with regard to the
industrial experimental data for HDPE obtained by Konaganti et al. [15]. Obviously, a better
comparison could have been obtained if we had simultaneously fitted all available data,
as Konaganti et al. [15] did (we note that some parameters must have different values in
different flows, such as the non-affine/slip parameter, which must be explicitly considered
in the fitting process). Furthermore, different values of the model parameters for each
mode could also have been considered, following the work of Konaganti et al. [15], which
would certainly provide more flexibility to the model and, thus, improve its capacity to fit
the experimental data. However, in our present work, we mostly focused on deriving the
multimode version of the model proposed by Stephanou et al. [23] using non-equilibrium
thermodynamics, with less focus devoted to its predictive capacity to almost perfectly fit
all available experimental data.
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The model, in its present form, only considers strictly linear chains. Industrial samples,
particularly LDPE, are never strictly linear, having either short or long branches distributed
along their entire backbone. There is clear evidence that all material functions of PE are
considerably affected by the presence of even low levels of long-chain branching [45]. We,
therefore, need to generalize it and allow the explicit consideration of branches, following
the guidelines provided by the pom-pom [27] model and its thermodynamically admissible
version, known as the pom-pon [28] model. Furthermore, the multimode version does
not explicitly consider the molecular weight (MW) distribution of industrial samples,
such as the log-normal or gamma distributions, that are able to describe experimentally
measured distributions [46]. As such, we should also generalize it to handle molecular
weight distribution, following the work of Schieber [47,48]. This generalized constitutive
model will allow a more accurate prediction of the rheological responses of industrially
used polymeric systems that possess an extensive spectrum of MW. Finally, we used an
ambiguous model-fitting process wherein the values of the model parameters were obtained
to best compare them to the experimental data. However, atomistic non-equilibrium
molecular dynamics simulations can be used to directly obtain some of the parameters
from the simulations [37,49]. For example, the EWM exponent can be obtained by directly
comparing the prediction of Equation (9b) to the relaxation time as a function of shear rate
at large shear rates obtained via the NEMD simulations, and the CCR parameter can be
obtained by directly comparing the average number of entanglements as a function of shear
rate which, due to CCR, is noted to decrease [22] (we note, however, that in our present
work we omitted this approach and considered a constant number of entanglements). Only
then, polymer engineers would be able to accurately use the predictions of the multimode
constitutive model for comparison with the rheological response noted in actual industrial
processes. Our findings provide a foundation for future research that aims to enhance the
properties of high MW polymers for diverse applications.
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