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Abstract: Frames made of polymer composites are increasingly used in the aerospace, automotive, 

and agricultural industries. A frequently used technology in the production line of composite 

frames is winding rovings onto a non-load-bearing frame to form the structure using an industrial 

robot and a winding head, which is solidified through a subsequent heat-treatment pressure pro-

cess. In this technology, the most difficult procedure is the winding of the curved parts of a compo-

site frame. The primary concern is to ensure the proper winding angles, minimize the gaps and 

overlaps, and ensure the homogeneity of the wound layers. In practice, the curved frame parts very 

often geometrically form sections of a torus. In this work, the difficulty of achieving a uniform wind-

ing of toroidal parts is described and quantified. It is shown that attaining the required winding 

quality depends significantly on the geometrical parameters of the torus in question. A mathemati-

cal model with a detailed procedure describing how to determine the number of rovings of a given 

width on toroidal parts is presented. The results of this work are illustrated with practical examples 

of today’s industrial problems. 

Keywords: curved composite frame; roving winding; optimized winding procedure; winding  

angle; torus; straight helix; toroidal helix 

 

1. Introduction 

The progress in the development of high-performance materials and structures has 

been a challenge that has required the development of novel materials with superior and 

selective mechanical properties and physical features to overcome the standard demand 

for quality and reliability at different scales [1–3]. The need to increase conventional ma-

terial efficiency continues to focus materials development on the exploration of materials 

as composites [4,5]. In this regard, new polymer composites are developed to have special 

microstructures with unique features to replace conventional materials (e.g., steel, glass, 

wood) that are frequently used in the design of advanced structures. They are character-

ized above all by mechanical properties such as tensile, compressive, and torsional 

strength, lightness, long lifespan, and weather resistance. These exceptional mechanical 

properties make possible composite structures that can endure extreme loads and bound-

ary conditions [4,6,7]. The important role of such composites in various applications that 

require the development of structures with complex geometries, such as profiles with 

open or closed cross-section forms, curved frames with rectangle to circular geometries, 

and antisymmetric planer shapes [8,9], forced designers to innovate many fabrication 

methods, such as the vacuum-infusion process, pultrusion process, and robot winding, 

enabling the possibility of such fabrications [10]. Examples for application of such com-

posite structures are reinforcements for the fuselages, wings, and doors of aircraft, or the 

Citation: Mlýnek, J.;  

Rahimian Koloor, S. S.; Knobloch, R. 

Optimal Roving Winding on  

Toroidal Parts of Composite Frames. 

Polymers 2023, 15, 3227. https:// 

doi.org/10.3390/polym15153227 

Academic Editor: Antonio Pantano 

Received: 12 June 2023 

Revised: 15 July 2023 

Accepted: 19 July 2023 

Published: 28 July 2023 

 

Copyright: © 2023 by the author. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Polymers 2023, 15, 3227 2 of 22 
 

 

attachment part of windows to helicopter cockpits [11], or chassis reinforcements, car cab-

ins, and door reinforcements in the automotive industry [12]. Composite frames (narrow 

curves, hollow structure) are utilized in many applications, such as orthopedic devices 

[13], the manufacture of sports equipment and bicycles [14], ship construction and fishery 

(hull reinforcements and masts) [5], internal parts of aircraft bodies [15], or to play the role 

of structural reinforcement [16]. As one of the important applications, such frame struc-

tures have been used in oil and petroleum industries as complex pipe or tank structures 

branching off different cross-sectional configurations of circular to elliptic shapes, utilized 

for transporting or storing oil and other petroleum liquid materials [17,18]. This is also 

due to the high potential of composite materials to bear severe loading under harsh envi-

ronmental conditions. The composite frame structures with long wound fibers are nor-

mally fabricated using the filament-winding method by robot or machine to wind contin-

uous strands of tow [19,20]. This winding process is highly adapted to arrange the fiber 

orientation in such a way that an ideal custom creation with lightweight structures is en-

gineered to meet the desired strength characteristics as dictated by the application [21,22]. 

In robot filament winding, the winding of rovings on a non-load-bearing frame is 

performed by a winding head and an industrial robot (see Figure 1a). The frame is gener-

ally 3D; it can also have a geometrically complicated shape (see Figure 1b). The frame is 

attached to the end of the robot’s working arm (robot end effector; see Figure 1a). The 

winding head contains usually three rotating rings (see Figure 2a). Several coils with 

rovings are placed evenly around the circumference of each ring (see Figure 2c).  

 
(a) (b) 

Figure 1. (a) The frame attached to the robot end effector passes through the winding head with a 

single rotating ring. One layer of winding is formed. (b) An example of a 3D frame with a compli-

cated shape. 

 
(a) (b) (c) 

Figure 2. (a) Simultaneous winding of three layers of glass rovings on the open frame. (b) Fixing the 

closed frame to the robot end effector. (c) Rotating ring of winding head with coils with wound 

rovings. 
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Based on the determination of a suitable robot trajectory, the frame passes through 

the winding head at a constant speed. Each of the three rings performs the winding of a 

layer of rovings; based on the determination of the necessary angular speed of each ring 

(control provided by the robot’s external axis), each layer is wound at the specified angle. 

Three layers of windings at different angles are thus created in one pass of the frame 

through the winding head. A detailed description of the calculation of the optimized robot 

trajectory is given in [23]. 

Note 1. 

Roving is a fiber system that enables single filaments to be arranged in one parallel 

collection without twists. Fiber rovings (from carbon, glass, basalt, or aramid fibers) are 

used to produce 3D composite reinforcement. 

Both open and closed frames can be wound using this winding procedure (see Figure 

2a,b). 

The quality of the composite frame significantly depends on maintaining the re-

quired winding angles, and ensuring the homogeneity of the windings (i.e., roving wind-

ings without overlaps and gaps). This article focuses on the quality of winding of the com-

posite frame from a geometric perspective. At the same time, the quality of the composite 

also depends on the material properties of the rovings (e.g., rovings from carbon, glass, 

aramid, and rovings from recycled materials). However, studying the properties and 

quality of the fibers used in rovings is not included in the article.  

Ideal roving winding can be formed on a frame with a circular cross-section if it forms 

a straight segment. In this case, a smooth, high-quality winding of the roving onto the 

frame can be realized. However, winding the curved parts of the frame is more difficult 

when high-quality winding is required. Simultaneous testing and ensuring the collision-

free passage of the frame through the winding head is essential for 3D frames [23,24].  

A constant speed of the frame through the winding head is assumed during the 

winding process. The winding angle is regulated by changing the angular speed of the 

winding rotated ring of the head. This issue is discussed in detail in [25]. It is also possible 

to calculate the distance of the roving winding on the frame from the rotating ring (this 

distance depends on the specified winding angle, the radius of the ring, and the radius of 

the wound frame; for detail see [25]). This enables smooth and continuous change from a 

given winding angle to another. The optimization of the number and width of the rovings 

used for specific winding is discussed in [26]. Based on this optimization, the formation 

of gaps and overlaps is minimized during the winding process.  

As already mentioned, winding the curved parts of the frames is the most difficult 

process of winding technology. The curved sections of the frame often form parts of a 

torus (see next figures). Based on the literature review and to the best of the authors’ 

knowledge, such a study has not been undertaken before. Therefore, this study focuses 

on the procedures for the optimal winding of the curved sections of frames shaped like 

parts of a torus. It is highlighted that achieving acceptable winding quality depends on 

the torus geometry. A mathematical model of the winding procedure and a detailed anal-

ysis of the possibility of achieving an acceptable and optimized winding of the frame with 

toroidal parts is described in the next sections. In addition, practical examples of the ap-

plication of the various torus geometries are provided. 

2. Materials and Methods 

Winding the roving onto a straight frame of circular cross-section using a winding 

head creates a helix on the surface of the frame (see Figure 3). A standard helix wound on 

a straight frame is called a straight helix. 
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Figure 3. The first rotating ring of the winding head winds one roving at an angle of 45° and the 

following second rotating ring winds the roving at an angle of −45°. 

If the wound roving forms a right-handed straight helix on the surface of the frame, 

it is said to have a positive winding angle (see Figure 4a). If a left-hand straight helix is 

formed, this is interpreted as a negative winding angle (see Figure 4b). One turn of the 

straight helix is shown in both cases Figure 4a,b. The following sections focus only on the 

winding in a positive direction and the creation of a right-handed straight helix. Winding 

at a negative angle is completely analogous. 

 

Figure 4. (a) One turn of a right-hand straight helix ℎ𝑅. (b) One turn of a left-hand straight helix ℎ𝐿. 

(c) Characteristics triangle of a straight helix. 
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One turn of right-handed straight helix ℎ𝑅 (initial point A and endpoint A’) is shown 

in Figure 4a. This straight helix is defined by its axis o (longitudinal axis of the frame), 

radius r (radius of the frame), and pitch 𝜗 (height of one helix turn measured parallel to 

axis 𝑜 of the helix), which is the Euclidean distance between points A and A’ in Figure 4a; 

for detail see [27]. A characteristic triangle (see Figure 4c) defines the straight helix angle 

α, where 

𝑡𝑔𝛼 =
𝜗

2𝜋𝑟
=

𝜗0

𝑟
 . (1) 

Parameter 𝜗 is a pitch of straight helix per 2π, and parameter 𝜗0 is a pitch per one 

radian. Angle 𝛼 is defined as an angle between tangent t to ℎ𝑅 at point 𝑇 of the straight 

helix and its orthogonal projection 𝑡1 into the ground plane (see Figure 4a). In the follow-

ing, we will call the angle α defined by Relation (1); the winding angle. It is true that 𝛼 ∈

(0, 𝜋 2⁄ ⟩. In case of 𝛼 = 𝜋 2⁄ , the roving is laid parallel to the axis 𝑜 and longitudinal to 

the frame surface. 

Specialists in the field of composite materials often call the 𝛽 angle; the winding an-

gle, as defined by the relationship 

𝛽 =
𝜋

2
−  𝛼. (2) 

In this article, the winding angle will mean the angle 𝛼 defined by Relation (1). 

2.1. Torus-Shaped Part of the Frame 

As already mentioned in the introduction of the article, winding the curved sections 

of frames belongs to the most difficult part of the winding technology when using a wind-

ing head and an industrial robot. These frame sections often form parts of a torus (see 

Figure 5).  

 

Figure 5. (a) Model of the torus. (b) Non-bearing polyurethane frame for winding rovings with a 

middle section forming part of the torus. 

Instead of describing the winding of the curved part of the frame in the shape of a 

torus, for simplicity, we provide a description of the procedure for the case of winding 

rovings on the whole torus. 

From a geometric point of view, a torus is a 3D body created by rotating a circle of 

radius r around a line lying in the plane of this circle and not intersecting this circle (see 

Figure 6a). The center of the circle of radius r is placed on the y-axis and its distance from 

origin S of the coordinate system is R, where 0 < 𝑟 < 𝑅. Rotation of this circle around axis 

𝑧 creates a torus (see Figure 6a). The value of 𝑅 is called the major radius and 𝑟 the minor 

radius of the torus. 
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Figure 6. (a) An example of a torus. (b) Torus with outer circumferential circle 𝑝1 and inner circum-

ferential circle 𝑝2. 

Similar to winding a roving on a straight frame at the 𝛼 angle, it is necessary that the 

tangent t at point 𝑃 of the intersection of frame axis 𝑜 and plane 𝜌 of winding of the 

roving on the frame is orthogonal to plane 𝜌 (see Figure 7). 

 

Figure 7. Schematic ground plan of the torus, its parameters, and rotated ring of winding head. 

However, the roving is not wound at the specified constant 𝛼 angle. The winding 

angle of the roving changes continuously during one turn (it is described in more detail 

in Sections 2.3 and 2.4; see also [28]). 

2.2. Level of Difficulty of Roving Winding 

In this paragraph, the focus is on determining the difficulty of winding the roving 

onto a torus. 

The aspect ratio 𝑎 of the torus is defined as  

𝑎 = 𝑟 𝑅⁄ .  (3) 

The aspect ratio 𝑎  significantly affects the difficulty of winding the torus. The 

smaller the value of 𝑎, the easier the torus can be wound. In the case of 𝑎 → 0, the torus 

transforms into a straight cylinder. 
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A vertical cut through the circle 𝑞 (see Figure 5b) divides the surface 𝑠𝑡𝑜𝑡𝑎𝑙  of the 

whole torus into outer part 𝑠1 and inner part 𝑠2 (see Figures 5a and 7). The winding diffi-

culty is caused by the different surface sizes of part 𝑠1 and part 𝑠2 of the torus. Integral 

calculus is used to determine 𝑠1 and 𝑠2 (see Figure 8a). Radius 𝑅 +  𝑟 of circle 𝑝1 (see 

Figures 6a and 7) is called the outer radius of the torus and radius 𝑅 − r of circle 𝑝2 the 

inner radius of the torus.  

 

Figure 8. (a) Torus centered at the origin 𝑆, xy-plane cut, rotation of circle 𝑘 ≡ (M, r) around the 𝑥-

axis. (b) Roving of width d with the central axis l. 

Surface 𝑠𝑡𝑜𝑡𝑎𝑙  of the whole torus is composed of partial surfaces 𝑠1  and 𝑠2 , i.e., 

𝑠𝑡𝑜𝑡𝑎𝑙 = 𝑠1 + 𝑠2, and (see [29], p. 26) 

𝑠𝑡𝑜𝑡𝑎𝑙 = 4𝜋2𝑟𝑅 .  (4) 

Surface 𝑠𝑡𝑜𝑡𝑎𝑙  of the whole torus is thus equal to the contents of a rectangle with the 

lengths of the sides 2πR and 2πr (see Figure 9). 

 

Figure 9. Graphical representation of the ratio of the size of partial surfaces 𝑠1 and 𝑠2, and 𝑠𝑡𝑜𝑡𝑎𝑙 =

𝑠1 + 𝑠2. 

In addition, the focus is concentrated on the calculation of values 𝑠1 and 𝑠2. Surface 

𝑠1 is created by rotating the curve 𝑓(𝑥) = R + √𝑟2 − 𝑥2 around the x-axis, where  
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𝑥 ∈< −𝑟, 𝑟 > (see [30], p. 107; Figure 8a). Therefore, the size of surface 𝑠1 can be calcu-

lated by the following procedure: 

𝑠1 = 2𝜋 ∫𝑓(𝑥)

𝑟

−𝑟

√1 + (𝑓′(𝑥))
2
𝑑𝑥 = 2𝜋 ∫(𝑅 +

𝑟

−𝑟

√𝑟2 − 𝑥2). √1 + (
−𝑥

√𝑟2 − 𝑥2
)
2

 𝑑𝑥 = 

= 2𝜋 ∫(𝑅 +

𝑟

−𝑟

√𝑟2 − 𝑥2)√1 +
𝑥2

𝑟2 − 𝑥2
𝑑𝑥 =  2𝜋 ∫(𝑅 +

𝑟

−𝑟

√𝑟2 − 𝑥2). √
𝑟2 − 𝑥2 + 𝑥2

𝑟2 − 𝑥2
𝑑𝑥 = 

= 2𝜋 ∫(𝑅 +

𝑟

−𝑟

√𝑟2 − 𝑥2).
𝑟

√𝑟2 − 𝑥2
𝑑𝑥 = 2𝜋𝑅𝑟 ∫

1

√𝑟2 − 𝑥2

𝑟

−𝑟

𝑑𝑥 + 2𝜋𝑟 ∫1𝑑𝑥 =

𝑟

−𝑟

 

= 2𝜋 [𝑅𝑟 𝑎𝑟𝑐𝑠𝑖𝑛
𝑥

𝑟
+ 𝑟𝑥]

−𝑟

𝑟

= 2𝜋[𝑅𝑟 𝑎𝑟𝑐𝑠𝑖𝑛1 + 𝑟2 − (𝑅𝑟 𝑎𝑟𝑐𝑠𝑖𝑛(−1) − 𝑟2)] = 

= 2𝜋 [𝑅𝑟 
𝜋

2
+ 𝑟2 − (𝑅𝑟 (−

𝜋

2
) − 𝑟2)] = 2𝜋2𝑅𝑟 + 4𝜋𝑟2. 

 

In the previous derivation, the relation ∫
𝑑𝑥

√𝑟2−𝑥2
= arcsin

𝑥 

𝑟
 (see [30], p. 150) is used. 

This relationship also follows from the derivative of composite function 𝑎𝑟𝑐𝑠𝑖𝑛
𝑥

𝑟
: 

(𝑎𝑟𝑐𝑠𝑖𝑛
𝑥

𝑟
)
′
=

1

√1−
𝑥2

𝑟2

 .
1

𝑟
=

1

√𝑟2√1−
𝑥2

𝑟2

= 
1

√𝑟2−𝑥2
.  

The size of the surface 𝑠1 is therefore given by the relation 

𝑠1 = 2𝜋2𝑅𝑟 + 4𝜋𝑟2. (5) 

Since the following holds: 𝑠2 = 𝑠𝑡𝑜𝑡𝑎𝑙 − 𝑠1, and from the Relations (4) and (5), this 

implies  

𝑠2 = 2𝜋2𝑅𝑟 − 4𝜋𝑟2. (6) 

Thus, the value for the ratio 𝑠2/𝑠1 and the use of Relations (5) and (6) is equal to 

𝑠2

𝑠1
=

2𝜋2𝑅𝑟 − 4𝜋𝑟2

2𝜋2𝑅𝑟 + 4𝜋𝑟2
= 1 −

8𝜋𝑟2

2𝜋2𝑅𝑟 + 4𝜋𝑟2
= 1 −

4𝑟

𝜋𝑅 + 2𝑟
< 1.  (7) 

The more the ratio 𝑠2/𝑠1 in Relation (7) approaches the value 1, the more acceptable 

the conditions for the winding of rovings are. It follows from Relation (7) that the larger 

the value of R with respect to r, the better the conditions for roving winding. The sizes of 

the areas corresponding to 𝑠𝑡𝑜𝑡𝑎𝑙 , 𝑠1, and 𝑠2 are shown graphically in Figure 9. 

Figure 9 shows that the geometrical conditions for roving winding are better the 

smaller the blue marked area of size 2𝑟. 2𝜋𝑟. 

As stated in [26], circumference 𝑜(𝑝1) of the outer circumferential circle 𝑝1 (see Fig-

ures 6b and 7) is equal to 𝑜(𝑝1) = 2𝜋(𝑅 + 𝑟) and circumference 𝑜(𝑝2) of inner circum-

ferential circle 𝑝2 is equal to 𝑜(𝑝2) = 2𝜋(𝑅 − 𝑟), while it is valid 𝑅 > 𝑟 (see Figure 6). 

This then implies 

𝑜(𝑝2)

𝑜(𝑝1)
=

2𝜋(𝑅 − 𝑟)

2𝜋(𝑅 + 𝑟)
=

𝑅 − 𝑟

𝑅 + 𝑟
=  

𝑅 + 𝑟

𝑅 + 𝑟
−

2𝑟

𝑅 + 𝑟
= 1 −

2𝑟

𝑅 + 𝑟
 < 1.  (8) 

It follows from Relation (8) that winding of the torus is easier the closer the 

𝑜(𝑝2)/𝑜(𝑝1) ratio is to 1, i.e., the smaller the positive value of 2𝑟/(𝑅 + 𝑟).  

Relations (7) and (8) characterize the difficulty of winding rovings on the curved part 

of the frame. 
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Thus, it follows from Relations (7) and (8) that the smaller the value of aspect ratio 𝑎 

defined by Relation (3) (i. e., 𝑅 ≫ 𝑟), the more homogeneous the winding that can be 

achieved.  

2.3. Mathematical Description of Roving Winding on the Torus 

Our attention in this paragraph is focused on the procedure of winding rovings onto 

the surface of a torus. In the next mathematical model of the roving winding on the surface 

of the torus, only the central axis l (see Figure 8b) of the roving will be considered.  

The torus can be parametrically defined in a 3D right-handed Euclidean space in the 

form (see [31], p. 65)  

𝑥(𝜃, 𝜑) = (𝑅 + 𝑟 𝑐𝑜𝑠𝜃) 𝑐𝑜𝑠𝜑, 

𝑦(𝜃, 𝜑) = (𝑅 + 𝑟 𝑐𝑜𝑠𝜃) 𝑠𝑖𝑛𝜑, 

                         𝑧(𝜃, 𝜑) = 𝑟 sin 𝜃. 

(9) 

Recall that major radius R denotes the radius of the central axis o of the torus (see 

Figure 7) and the minor radius r the radius of the tube (see Figures 6a–8a). Parameters 𝜃 

and 𝜑 are the angles that make the whole torus, 𝜃, 𝜑 ∈< 0, 2𝜋). Angle 𝜃 represents ro-

tation around the tube, whereas 𝜑 represents rotation around the torus’s central axis 𝑜 

(see Figure 7). 

The parametric expression of a right-handed helix wound on a torus can be expressed 

in the following form [28] 

𝑥(𝑡) = (𝑅 + 𝑟 cos(𝜔𝑡)) cos 𝑡, 

 𝑦(𝑡) = −(𝑅 + 𝑟 cos(𝜔𝑡)) sin 𝑡, 

                         𝑧(𝑡) = 𝑟 sin (𝜔𝑡) 

(10) 

for 𝑡 ∈ R, 𝜔 is a real positive constant; parameters 𝑅 and r have the same meaning as in 

Relation (9). This winding defined by Relation (10) describes the helix wrapped around 

the torus and is called the right-handed toroidal helix (see Figure 10a).  

 

Figure 10. (a) Graph of right-handed toroidal helix for specified parameters 𝑅 =  100, 𝑟 =  33, 𝜔 =

 5 (number of winds per helix). (b) δ angle clamped by vectors 𝐮(0) and 𝐰(0) at point 𝑇0 of to-

roidal helix δ. (Figures 10a and 12 are generated by „Toroidal Helices—Wolfram Demonstrations 

Project” graphics application freely available from https://www.google.com/search?q=toroidal-he-

lix&oq=toroidal-helix&aqs=chrome..69i57j0i13i30.10920j0j15&sourceid=chrome&ie=UTF-

8#imgrc=HAw5MhPvHq4pfM.). 

When 𝜔 is a natural number, the toroidal helix creates a closed loop and 𝜔 defines 

the number of times the toroidal helix coils around the torus (in more detail see [28]). The 

circumference 𝑂(𝑜) of the central axis 𝑜 of the torus (see Figure 7) is equal to 𝑂(𝑜) =
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2𝜋𝑅. Following this, toroidal pitch 𝐻 (specifies the length of repetition along the center 

axis 𝑜) and corresponding reduced toroidal pitch 𝐻0 (pitch per one radian) are defined 

by the relations 

𝐻 =
2𝜋𝑅

𝜔
, 𝐻0 =

𝐻

2𝜋
=

𝑅

𝜔
. (11) 

The central axis 𝑜 of the torus passes at the same speed through the winding head 

as in the case of a straight frame and this and Relation (1) imply that for toroidal pitch, 

𝐻 = 𝜗 = 2𝜋𝑟 𝑡𝑔𝛼. (12) 

Recall that 𝛼 indicates the winding angle on the straight part of the frame. 

2.4. Determination of Winding Angle on Torus 

When the roving is wound onto a straight frame, a straight helix is formed with the 

same winding angle at all points of the resulting helix. When winding the toroidal helix, 

however, the winding angle continuously changes. This paragraph focuses on a more de-

tailed description of the winding angle in the case of the toroidal helix. 

A torus with major radius 𝑅 and minor radius 𝑟 in Figures 6a and 7 has its center S 

placed at the origin in the 3D right-handed Euclidean coordinate system. Circles 𝑝1, 𝑝2, 

and central axis 𝑜 lie in the plane defined by the x and y axes. The points of the wound 

toroidal helix defined by Relation (10) and lying on the circles 𝑝1 or 𝑝2 can be deter-

mined by the following procedure. The z-coordinate of these points is zero. Therefore, it 

follows from Relation (10) 

𝑧(𝑡) = 𝑟 sin(𝜔𝑡) = 0.  

The relationship is valid when sin(𝜔𝑡) = 0, which implies 𝜔𝑡 = 𝑘. 𝜋, where 𝑘 is an 

arbitrary integer number. From here it follows  

𝑡 =
𝑘.𝜋

𝜔
. (13) 

Applying Relation (13) successively for 𝑘 = 0, 1, 2, 3 , it follows 𝑡0 = 0, 𝑡1 =

 𝜋 𝜔⁄ , 𝑡2 = 2𝜋 𝜔⁄ , and 𝑡3 = 3𝜋 𝜔⁄ . Points of toroidal helix 𝑇0 = [𝑥(𝑡0), 𝑦(𝑡0), 𝑧(𝑡0)], 𝑇2 =

[𝑥(𝑡2), 𝑦(𝑡2), 𝑧(𝑡2)] lie on the outer circle 𝑝1  of torus and points 𝑇1[𝑥(𝑡1), 𝑦(𝑡1), 𝑧(𝑡1)], 

𝑇3[𝑥(𝑡3), 𝑦(𝑡3), 𝑧(𝑡3)]  lie on the inner circle 𝑝2  of the torus. The components of these 

points can be expressed using the relationship (10): 

           𝑇0 = [𝑥(𝑡0), 𝑦(𝑡0), 𝑧(𝑡0)] =  [𝑅 + 𝑟, 0, 0] , 

 𝑇1[𝑥(𝑡1), 𝑦(𝑡1), 𝑧(𝑡1)] = [(𝑅 − 𝑟)𝑐𝑜𝑠
𝜋

𝜔
, −(𝑅 − 𝑟)𝑠𝑖𝑛

𝜋

𝜔
, 0], 

𝑇2 = [𝑥(𝑡2), 𝑦(𝑡2), 𝑧(𝑡2)] = [(𝑅 + 𝑟)𝑐𝑜𝑠
2𝜋

𝜔
, −(𝑅 + 𝑟)𝑠𝑖𝑛

2𝜋

𝜔
, 0], 

   𝑇3[𝑥(𝑡3), 𝑦(𝑡3), 𝑧(𝑡3)] = [(𝑅 − 𝑟)𝑐𝑜𝑠
3𝜋

𝜔
, −(𝑅 − 𝑟)𝑠𝑖𝑛

3𝜋

𝜔
, 0]. 

(14) 

Attention is focused on determining the winding angle on the outer circumference of 

the torus (circle 𝑝1) and on the inner circumference of the torus (circle 𝑝2). The tangent 

vector 𝑤(𝑡) at any point of the toroidal helix can be obtained by the following procedure. 

From Relation (10) it follows 

𝜕𝑥

𝜕𝑡
= 𝑟. (− sin(𝜔𝑡)). 𝜔. cos 𝑡 + (𝑅 + 𝑟. cos(𝜔𝑡)). (− sin 𝑡) = 

= −𝑟𝜔 sin(𝜔𝑡). cos 𝑡 − (𝑅 + 𝑟𝑐𝑜𝑠 (𝜔𝑡)). sin 𝑡, 

𝜕𝑦

𝜕𝑡
= −[𝑟. (− sin(𝜔𝑡). 𝜔. sin 𝑡 + (𝑅 + 𝑟. cos(𝜔𝑡)). cos 𝑡] = 

(15) 
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= +𝑟𝜔(sin(𝜔𝑡)). sin𝑡 − (𝑅 + 𝑟. cos(𝜔𝑡)). cos 𝑡, 

𝜕𝑧

𝜕𝑡
= 𝑟. cos(𝜔𝑡). 𝜔 = 𝑟𝜔. cos(𝜔𝑡) . 

The tangential direction vector 𝐰(𝑡) at the point [𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)] has the expres-

sion 

𝐰(𝑡) = (
𝜕𝑥

𝜕𝑡
,
𝜕𝑦

𝜕𝑡
,
𝜕𝑧

𝜕𝑡
) , (16) 

where 
𝜕𝑥

𝜕𝑡
,
𝜕𝑦

𝜕𝑡
, and 

𝜕𝑧

𝜕𝑡
 are defined by Relation (15). 

Point 𝑇0 lies on the circle 𝑝1 and has coordinates 𝑇0 = [𝑅 + 𝑟, 0, 0]  according to Re-

lation (14). 

Tangent vector 𝐮(𝑡0) to the circle 𝑝1 at point 𝑇0 lying in the plane of the x and y 

axes (ground plane) can then be expressed in the form 𝐮(𝑡0) = (0, 𝑅 + 𝑟, 0); see Figure 

10b. 

Recall that in Euclidean space 𝐸3, the length of the vector 𝑢⃗  is defined by the rela-

tion ‖𝐮‖ =  √𝑥𝑢
2 + 𝑦𝑢

2 + 𝑧𝑢
2 . The scalar product  𝐮. 𝐯 of vectors 𝒖  and 𝐯  is defined by 

𝐮. 𝐯 = 𝑥𝑢 . 𝑥𝑣 + 𝑦𝑢. 𝑦𝑣 + 𝑧𝑢 . 𝑧𝑣. The tangent vector 𝐰(𝑡0) to the toroidal helix at point 𝑇0 is 

according to Relations (15) and (16) of the form 𝐰(𝑡0) = 𝐰(0) = (0, −(𝑅 + 𝑟), 𝑟𝜔). The 

angle 𝛿0 enclosed by the vectors 𝐮(0) and 𝐰(0) can be determined using the relation 

(see [32], p. 113) 

cos 𝛿0 =
𝑢⃗⃗ (0).𝑤⃗⃗ (0)

‖𝑢⃗⃗ (0)‖.‖𝑤⃗⃗ (0)‖
=

(0,−(𝑅+𝑟),0).(0,−(𝑅+𝑟),𝑟𝜔)

(𝑅+𝑟).(√(𝑅+𝑟)2+𝑟2𝜔2
=

𝑅+𝑟

(√(𝑅+𝑟)2+𝑟2𝜔2
,  

thus 

𝛿0 = arccos (
𝑅 + 𝑟

(√(𝑅 + 𝑟)2 + 𝑟2𝜔2
). (17) 

Similarly, tangent vector 𝐰(𝑡1) to the toroidal helix at point 𝑇1 is 𝐰(𝑡1) = 𝐰 (
𝜋

𝜔
) =

(−(𝑅 − 𝑟)𝑠𝑖𝑛
𝜋

𝜔
, −(𝑅 − 𝑟)𝑐𝑜𝑠

𝜋

𝜔
, −𝑟𝜔). Tangent vector 𝐮(𝑡1) to the circle 𝑝2  at point 𝑇1 

lying in the plane of the x, y axes (ground plane) can be expressed in the form 𝐮(𝑡1)  =

(𝑅 − 𝑟). (−𝑠𝑖𝑛
𝜋

𝜔
, − 𝑐𝑜𝑠

𝜋

𝜔
, 0). Thus, it is true for the angle between vectors 𝐮1 and 𝐰(𝑡1) 

cos 𝛿1 =
𝐮(𝑡1).𝐰(𝑡1)

‖𝐮(𝑡1)‖.‖𝐰(𝑡1)‖
=

(𝑅−𝑟).(−𝑠𝑖𝑛
𝜋

𝜔
 ,−𝑐𝑜𝑠

𝜋

𝜔
,0).(−(𝑅−𝑟)𝑠𝑖𝑛

𝜋

𝜔
,−(𝑅−𝑟)𝑐𝑜𝑠

𝜋

𝜔
,−𝑟𝜔)

√(𝑅−𝑟)2(𝑠𝑖𝑛
𝜋

𝜔
+𝑐𝑜𝑠

𝜋

𝜔
) .√(𝑅−𝑟)2(𝑠𝑖𝑛2𝜋

𝜔
+𝑐𝑜𝑠2𝜋

𝜔
)+𝑟2𝜔2

=

(𝑅−𝑟)2

(𝑅−𝑟)√(𝑅−𝑟)2+𝑟2𝜔2
=

𝑅−𝑟

√(𝑅−𝑟)2+𝑟2𝜔2
. 

 

Thus it is that 

𝛿1 = arccos (
𝑅 − 𝑟

(√(𝑅 − 𝑟)2 + 𝑟2𝜔2
). (18) 

Note 2. 

Let 𝑅, 𝑟, 𝜔 be real numbers and 𝑅 > 𝑟. Thus, 

𝑅+𝑟

(√(𝑅+𝑟)2+𝑟2𝜔2
>

𝑅−𝑟

√(𝑅−𝑟)2+𝑟2𝜔2
. (19) 

Proof. Assume the validity of Relation (19). After the removal of fractions, partial adjust-

ments of the inequality are gradually made 

𝑅 + 𝑟

(√(𝑅 + 𝑟)2 + 𝑟2𝜔2
>

𝑅 − 𝑟

√(𝑅 − 𝑟)2 + 𝑟2𝜔2
  

(𝑅 + 𝑟). √(𝑅 − 𝑟)2 + 𝑟2𝜔2 > (𝑅 − 𝑟). √(𝑅 + 𝑟)2 + 𝑟2𝜔2  
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(𝑅 + 𝑟)2. ((𝑅 − 𝑟)2 + 𝑟2𝜔2) > (𝑅 − 𝑟)2. ((𝑅 + 𝑟)2 + 𝑟2𝜔2)  

(𝑅 + 𝑟)2. (𝑅 − 𝑟)2 + (𝑅 + 𝑟)2𝑟2𝜔2 > (𝑅 − 𝑟)2. (𝑅 + 𝑟)2 + (𝑅 − 𝑟)2𝑟2𝜔2  

(𝑅 + 𝑟)2𝑟2𝜔2 > (𝑅 − 𝑟)2𝑟2𝜔2  

(𝑅 + 𝑟)2 > (𝑅 − 𝑟)2  

The last inequality holds for arbitrary real numbers 𝑅, 𝑟 for 𝑅 > 𝑟. From Relation 

(19) and the fact the 𝑎𝑟𝑐𝑐𝑜𝑠 function is decreasing in the interval 〈0, 1〉, it follows that 

𝛿1 > 𝛿0. In accordance with Relation (2), it follows that 𝛼̃0 =
𝜋

2
− 𝛿0, 𝛼̃1 =

𝜋

2
− 𝛿1 and it is 

true 𝛼̃0 > 𝛼̃1. The transition from the point 𝑇0 to point 𝑇2 on the circle 𝑝1 is made at 

one turn of the filament on the outer circumference of the torus. Analogously, transition 

from the point 𝑇1 to 𝑇3 on the circle 𝑝2 is made also in one turn filament on internal 

circumference of the torus. This means that on the outer circumference of the torus, the 

filament is wound at an angle 

𝛼̃𝑒𝑥𝑡 =
𝜋

2
− 𝛿0 (20) 

and in the internal circumference of the torus, the filament is wound at an angle 

𝛼̃𝑖𝑛𝑡 =
𝜋

2
− 𝛿1. (21) 

At the same time, 𝛼̃𝑖𝑛𝑡 < 𝛼̃𝑒𝑥𝑡  and the filament winding angle 𝛼̃ varies continu-

ously over the interval 〈𝛼̃𝑖𝑛𝑡 , 𝛼̃𝑒𝑥𝑡〉. When winding the filament on a straight frame with a 

circular cross-section, the filament is wound at a constant 𝛼 angle. However, if the fila-

ment is wound on a torus-shaped frame section, the wound 𝛼̃ angle changes and is valid 

𝛼̃𝑖𝑛𝑡 < 𝛼 < 𝛼̃𝑒𝑥𝑡 . 

2.5. Determination of Torodial Helix Parameter 𝜔 

One of the parameters defining the expression of the toroidal helix in Relation (10) is 

a real 𝜔 value. If 𝜔 is a natural number, it indicates the number of turns of the toroidal 

helix on the whole torus. According to Relations (11) and (12), 
2𝜋𝑅

𝜔
= 2𝜋𝑟. 𝑡𝑔 𝛼  holds. 

From here it follows 

𝜔 =
2𝜋𝑅

2𝜋𝑟.𝑡𝑔𝛼
=

𝑅

𝑟.𝑡𝑔𝛼
. (22) 

The 𝜔 value determined by Relation (22) and used in the toroidal helix parametric 

Expression (10) ensures that the central axis 𝑜 of the frame will pass through the winding 

head at the same speed when passing through both the straight and curved torus-shaped 

parts of the frame. In this case, the length 𝜗 on the 𝑜-axis at one turn of the straight frame 

part of the frame is equal to the length 𝐻 on the 𝑜-axis at one turn of the toroidal helix on 

curved part of helix. 

2.6. Optimal Number of Rovings Used during Winding 

When winding the frame using rovings, it is desirable to ensure the following prop-

erties of the wound layer: the winding does not contain any gaps on the outer part of the 

torus, overlaps of adjacent rovings on the inner part of torus are minimized, and the ap-

proximate desired winding angle is maintained. The determination of the appropriate 

number of rovings when winding a curved torus-shaped frame section is the subject of 

this paragraph.  

First, attention is paid to determining the length of the arc on the circle 𝑝1 at one turn 

of the toroidal helix (i.e., the length of the arc with the starting point 𝑇0 and the ending 

point 𝑇2 on the circle 𝑝1; see Figure 10b). Similarly, the length of the arc on the circle 𝑝2 

with starting point 𝑇1 and ending point 𝑇3 will be determined. 
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From the parametric expression of the coordinates of points 𝑇0, 𝑇1, 𝑇2 and 𝑇3 in Re-

lation (14) it is clear that the vectors 𝑆𝑇0
⃗⃗ ⃗⃗ ⃗⃗   and 𝑆𝑇2

⃗⃗ ⃗⃗ ⃗⃗   (see Figure 11a) are at an angle 𝛾 =
2𝜋

𝜔
 

and analogously vectors 𝑆𝑇1
⃗⃗ ⃗⃗ ⃗⃗   and 𝑆𝑇3

⃗⃗ ⃗⃗ ⃗⃗   are also at the same angle 𝛾. At one turn of the to-

roidal helix, point 𝑇0 ∈ 𝑝1 corresponds to point 𝑇2 ∈ 𝑝1 and point 𝑇1 ∈ 𝑝2 corresponds 

to point 𝑇3 ∈ 𝑝2. The arc length 𝑙02 of circle 𝑝1 with origin point 𝑇0 and end point 𝑇2 is 

given by relation (see [29], p. 11) 

𝑙02 = 𝛾. (𝑅 + 𝑟). (23) 

Angle 𝛾 is given in Relation (23) in arc measure. Analogously the arc length 𝑙13 of 

circle 𝑝2 with origin point 𝑇1 and end point 𝑇3 is given by the relation  

𝑙13 = 𝛾. (𝑅 − 𝑟). (24) 

From Relations (23) and (24), it follows that the difference 𝑔 of the arc lengths 𝑙02 

and 𝑙13 is equal to 𝑔 =  𝑙02 − 𝑙13 = 2𝛾𝑟. As the 𝑔-value increases, it becomes more diffi-

cult to ensure quality winding of the rovings on the curved part of the frame.  

Let 𝑑 denote the width of the roving (see Figure 8b). The appropriate number of 

rovings when winding the curved part of the frame is determined by making one turn of 

the toroidal helix. Recall that 𝛿0 is the angle that the tangent vector 𝐰(0) of the toroidal 

helix makes with the tangent vector 𝐮(0) of the circle 𝑝1 at the point 𝑇0 (see Figure 10b, 

Relation (17)). It is valid (see Figure 11b) that sin 𝛿0 = 𝑑 𝑐0⁄ , where 𝑐0 denotes the width 

of the wound roving on the circle 𝑝1. From here it follows 

𝑐0 = 𝑑 sin 𝛿0 ⁄ . (25) 

Thus, the optimized number 𝑛 of rovings used during torus winding is equal to  

𝑛 = ⌈
𝑙02

𝑐0
⌉. (26) 

 

Figure 11. (a) Arc length part 𝑙02 of circle 𝑝1and arc length part 𝑙13 of circle 𝑝2. (b) Laying a roving 

of width 𝑑 at an angle 𝛼̃𝑒𝑥𝑡  (relation 18a/). Value 𝑐0 indicates the length of the wound roving on 

connecting points 𝑇0 and 𝑇2. 
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Note 3. 

The ceiling ⌈𝑥⌉ of a real number, 𝑥, is defined as ⌈𝑥⌉ = min{𝑝 ∈ 𝑍; 𝑝 ≥ 𝑥}, where Z 

denotes a set of integers. 

Further the total sum 𝜀02  of overlaps of adjacent rovings on the circle 𝑝1  when 

winding a layer of rovings within one turn of the toroidal helix is equal to 

𝜀02 = 𝑛. 𝑐0 − 𝑙02. (27) 

The overlap 𝜀0̃2 of two adjacent rovings on the circle 𝑝1 is then equal to 

𝜀0̃2 =
𝜀02

𝑛
 (28) 

Similarly, the angle 𝛿1 at the point 𝑇1 lying on the circle 𝑝1 is defined. Parameter 

𝑐1 denotes the width of the wound roving on the circle 𝑝1. Thus, 

𝑐1 = 𝑑 sin 𝛿1 ⁄   (29) 

and the total sum 𝜀13 of overlaps of adjacent rovings on the circle 𝑝2 within one turn of 

the toroidal helix is equal to 

𝜀13 = 𝑛. 𝑐1 − 𝑙13. (30) 

The overlap 𝜀1̃3 of two adjacent rovings on the circle 𝑝2 is then equal to 

𝜀1̃3 =
𝜀13

𝑛
 . (31) 

Relations (26)–(30), (31) allow us to determine the optimized number of rovings when 

winding the torus. For a given roving width 𝑑, the minimum number of rovings used in 

the winding process can be determined. This prevents the formation of gaps between the 

rovings and at the same time ensures minimum overlaps between adjacent rovings on the 

outer circumference of the torus (circle 𝑝1). At the same time, overlaps of adjacent rovings 

on the inner circumference of the torus (circle 𝑝2) are minimized. 

When using 𝑛 rovings (𝑛 is defined by Relation (26)) of width 𝑑 when winding the 

curved part of the torus-shaped frame, the n coils with wound rovings are distributed 

evenly around the circumference of the rotating ring of the winding head (see Figure 3). 

When winding the curved part of the frame, the relationships given in Section 2.6 apply. 

After the transition to the straight part of the frame, the rovings are wound at the desired 

𝛼 angle. The process of winding rovings onto a straight frame is discussed in detail in [26] 

and [25]. 

Note 4. 

Relation (10) defines a toroidal helix wound on the torus. Consider hereafter only the 

central axes l of 𝑛 rovings (see Figure 8b) wound on the torus. Following this, these axes 

form on the torus regular toroidal n-helix ([28]; see Figure 12). 

 

Figure 12. Examples of regular right-handed toroidal (a) 3-helix: major radius R=10, minor radius r 

= 2.5, ω=2 (number of winds per helix), (b) 5—helix: major radius R = 10, minor radius r = 4.5; ω=3. 
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3. Results and Discussion 

This chapter focuses on the practical applications of derived relationships presented 

in the previous paragraphs.  

3.1. Determining the Difficulty of Torus Winding 

As mentioned in the previous part of the article, winding a curved frame section with 

a circular cross-section is one of the most difficult parts of winding technology. Often the 

curved part of the frame is shaped in 2D and forms part of the torus (see Figure 5a). The 

three basic characteristics of the difficulty of performing a quality roving winding on a 

torus are applied in Table 1. The first column contains the values of major radius R and 

the second column minor radius r of the torus (see Figure 6a). The third column shows 

the values of aspect ratio 𝑎 defined by Relation (3). The smaller the value of the parameter 

𝑎 is, the more suitable the conditions for winding (at 𝑎→ 0 the torus becomes a straight 

frame). The penultimate column contains the ratio of the surface area of the inner part 𝑠2 

and the outer part 𝑠1 of the total torus surface (Figure 5a). The closer the ratio 𝑠1 𝑠2⁄  is to 

1, the more suitable the torus is for winding. The last column shows the values of the ratios 

𝑜(𝑝2) 𝑜(𝑝1)⁄ . Here 𝑜(𝑝1) denotes the circumference of the circle 𝑝1 on the outer circum-

ference of the torus (Figure 6b) and 𝑜(𝑝2) the circumference of the circle 𝑝2 on the inner 

circumference of the torus. Again, the closer the ratio 𝑜(𝑝2) 𝑜(𝑝1)⁄  is to 1, the better wind-

ing can be achieved. 

Table 1. Characteristics indicating the level of difficulty of performing a quality roving winding. 

Major Radius  

(R)  

[mm] 

Minor 

Radius  

(r)  

[mm] 

Aspect 

Ratio 

(a) 

Ratio 
𝒔𝟐

𝒔𝟏
 

Ratio 
𝒐(𝒑𝟐)

𝒐(𝒑𝟏)
 

1000 

20 0.02 0.9748 0.9607 

500 0.5 0.5171 0.3333 

800 0.8 0.2407 0.1111 

500 

50 0.1 0.8802 0.8181 

100 0.2 0.7741 0.6666 

400 0.8 0.3251 0.1111 

100 

20 0.2 0.7741 0.6666 

50 0.5 0.5171 0.3333 

90 0.9 0.2715 0.0526 

50 

10 0.2 0.7741 0.6666 

20 0.4 0.5941 0.4285 

30 0.6 0.4472 0.2500 

Figure 13 shows three torus floor plans for the given pairs of 𝑅 and 𝑟 values from 

the fourth to sixth rows of Table 1. From Figure 13 and Table 1, it is clear that the best way 

to wind rovings onto the torus is in the a/ case and the worst way is in the c/ case. 
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Figure 13. Floor plans of tori with parameters: 𝑅 = 500[mm]; (a) 𝑟 = 50[mm], 𝑎 = 0.1 ; (b) 𝑟 =

100[mm], 𝑎 = 0.2; (c)  𝑟 = 400[mm], 𝑎 = 0.8. 

If the winding difficulty characteristics are unfavorable for the specified torus, then 

it is appropriate to consider either another production technology or the use of a differ-

ently shaped frame for the manufacture of the composite.  

Figure 14 shows the values of the characteristics 𝑎 = 𝑟/𝑅 (Relation (3)), 𝑠1/𝑠2 (Rela-

tion (6)) and 𝑜(𝑝2)/𝑜(𝑝1) (relation (8)). The best conditions for winding the roving on the 

torus occur in the case of 𝑎 → 0, 𝑠2/𝑠1 → 1 and 𝑜(𝑝2)/𝑜(𝑝1) → 1. 

 

Figure 14. Graphical representation of 𝑎 = 𝑟/𝑅, 𝑠2/𝑠1, and 𝑜(𝑝2)/𝑜(𝑝1) values for constant major 

radius 𝑅 = 500[mm] and gradually increasing minor radius 𝑟. 

It can be clearly seen from Figure 14 that as the value of 𝑟 increases, the conditions 

for making a high-quality winding gradually deteriorate (aspect ratio of torus 𝑎 =

𝑟/𝑅 gradually increases and values of 𝑠2/𝑠1 and 𝑜(𝑝2)/𝑜(𝑝1) gradually decrease). It is 

possible to use any quantity of 𝑎 = 𝑟/𝑅, 𝑠2/𝑠1, and 𝑜(𝑝2)/𝑜(𝑝1) as a measure of the dif-

ficulty of the winding, but we recommend the ratio 𝑜(𝑝2)/𝑜(𝑝1) as the most practically 

oriented measure. 

3.2. Relations between Winding Parameters 

The interrelationships of some parameters in winding the straight part of the frame 

and the curved part of the frame in the shape of a torus section are shown. An example of 

a frame composed of two straight parts and one curved part in the shape of a torus section 

is shown in Figure 5b. Table 2 gives examples of different parameter values for a frame 

with a circular cross-section, which includes a straight part and a curved part in the shape 

of a torus section. The first column contains the value of the major radius 𝑅 and several 
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different values of the minor radius 𝑟 of the torus in the second column. Aspect ratio 𝑎 

is defined by Relation (3). The following two columns contain the different values of the 

𝛼 angle under which the roving winding is required and the corresponding values of the 

tangent function. The penultimate column contains the values of 𝜔 parameter defined by 

Relation (22); this parameter is significant in the toroidal helix parametric Expression (10).  

Table 2. Interrelation of parameters when winding the straight part of the frame and the curved 

part of the frame in the shape of the torus part. 

Major Ra-

dius  

(R)  

[mm] 

Minor Ra-

dius  

(r)  

[mm] 

Aspect 

Ratio 

(a) 

Winding  

Angle  

(α)  

[°]     [rad] 

tg α 
Parameter   

ω 

Toroidal 

Pitch  
(𝑯) 

[mm] 

500 

25 0.05 

5 0.0815 0.0874 228.8329 13.7287 

30 0.5235 0.5773 34.6440 90.68215 

45 0.7853 1.0000 20.0000 157.0796 

50 0.1 

5 0.0815 0.0874 114.3118 27.4826 

30 0.5235 0.5773 17.32051 181.3799 

45 0.7853 1.0000 10.0000 314.1592 

100 0.2 

5 0.0815 0.0874 61.3496 51.2080 

30 0.5235 0.5773 8.6610 362.7286 

45 0.7853 1.0000 5.0000 628.3185 

450 0.9 

5 0.0815 0.0874 12.7128 247.1204 

30 0.5235 0.5773 2.1224 1480.2076 

45 0.7853 1.0000 1.1111 2827.4616 

The last column of Table 2 contains values of toroidal pitch 𝐻 calculated by the use 

of Relation (11). 

Central axis 𝑜 of the frame passes through the winding ring of the head at a constant 

speed. The required winding angle can be achieved by regulating the angular speed of the 

rotating ring of winding head when winding the straight part of the frame (angular speed 

is controlled by the robot’s external axis; for details see [25]). When winding a part of the 

torus-shaped frame, the winding angle changes during one turn in the range of values 

𝛼̃𝑖𝑛𝑡 to 𝛼̃𝑒𝑥𝑡  defined by Relations (20) and (21). Maintaining the same angular speed of the 

rotating ring of head when winding the bent part of the frame corresponds to the determina-

tion of the 𝜔 parameter using Relation (22). Parameter 𝜔 is applied in the parametric expres-

sion of the toroidal helix in Expression (10). The 𝜔 parameter defines the toroidal pitch 𝐻 

(specifies the length of repetition along the centre axis 𝑜) by Relation (11).  

3.3. Winding Angle of Rovings on the Torus 

Based on the values of major radius 𝑅, minor radius 𝑟 of the torus, and the desired 

winding angle  𝛼 on the frame, the winding angle 𝛼̃𝑖𝑛𝑡  of the roving on the inner circum-

ference 𝑝2 of the torus (see Figure 6b) and on the outer circumference 𝑝1 of the torus 

𝛼̃𝑒𝑥𝑡  can be determined. It always holds that 𝛼̃𝑖𝑛𝑡 < 𝛼 < 𝛼̃𝑒𝑥𝑡 . Therefore, the winding an-

gle 𝛼̃𝑒𝑥𝑡  on the outer circumference of the torus is larger than the winding angle 𝛼̃𝑖𝑛𝑡 on 

the inner circumference of the torus. The angle of winding 𝛼̃ roving on the torus surface 

changes continuously from 𝛼̃𝑖𝑛𝑡  to 𝛼̃𝑒𝑥𝑡  and vice versa, 𝛼̃𝑖𝑛𝑡 ≤ 𝛼̃ ≤ 𝛼̃𝑒𝑥𝑡 . 

In Table 3, Relation (22) is used to calculate the parameter ω, Relations (18) and (21) are 

used to determine the angle 𝛼̃𝑖𝑛𝑡, and Relations (17) and (20) are used to determine 𝛼̃𝑒𝑥𝑡 . 
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Table 3. Determination of the winding angle 𝛼̃𝑖𝑛𝑡 on the inner circumference of the torus (circle 𝑝2) 

and the winding angle 𝛼̃𝑒𝑥𝑡 on the outer circumference of the torus (circle 𝑝1) depending on the 

major radius 𝑅 of the torus, the minor radius 𝑟 of the torus and the desired winding angle 𝛼. 

Major 

Radius  

(R)  

[mm] 

Minor 

Radius  

(r)  

[mm] 

Aspect 

Ratio 

(a) 

Winding  

Angle  

(α)  

[°]    [rad] 

tg α 
Parameter 

𝝎 

Angle 
𝜶̃𝒊𝒏𝒕 

[°] 

Angle 
𝜶̃𝒆𝒙𝒕 

[°] 

100 

20 0.2 5 0.0815 0.0874 57.2082 3.9968 5.9872 

50 0.5 30 0.5235 0.5773 3.4644 16.1007 40.8909 

90 0.9 45 0.7853 1.0000 1.4148 4.4904 56.1712 

50 

10 0.2 5 0.0815 0.0874 61.3496 3.73040 5.5857 

20 0.4 30 0.5235 0.5773 4.7755 17.4376 36.2379 

30 0.6 45 0.7853 1.0000 1.6666 21.8021 57.9956 

Table 3 clearly shows that the deviations 𝛼̃𝑖𝑛𝑡 and 𝛼̃𝑒𝑥𝑡  from the specified winding 

angle α increase with increasing aspect ratio 𝑎. 

3.4. Determination of Optimal Number of Rovings 

Based on the knowledge of the winding of the rovings on the frame from a geomet-

rical point of view, the optimal number of rovings used in winding the new layer can be 

determined. Knowledge of the major radius 𝑅 and minor radius 𝑟 of the torus and the 

prescribed winding angle 𝛼 is assumed. As shown in the previous Section 3.3, when the 

roving is wound onto the torus, the circumference 𝑜(𝑝1) (see Figures 6b and 11a) is larger 

than the circumference 𝑜(𝑝2). At the same time, it was shown that on the outer circle 𝑝1 

the roving is wound at a larger angle 𝛼̃𝑒𝑥𝑡  than on the inner circle 𝑝2 with angle 𝛼̃𝑖𝑛𝑡. 

For the optimum number 𝑛 of rovings to be used for roving width 𝑑, it is desired 

to create a winding without gaps and with zero or minimal overlap of two adjacent rovings 

on the outer circle 𝑝1. At the same time, the size of the overlap of two adjacent rovings can be 

determined on the inner circle 𝑝2. This overlap is always larger than on 𝑝1.  

Table 4 shows the calculated values 𝑛 of the optimal number of rovings used for a 

given width 𝑑 and values of 𝑅, 𝑟, and winding angle α. From the knowledge of values 

𝑅, 𝑟, 𝛼 and Relation (22), the parameter ω can be determined. At the same time, the over-

laps of two adjacent rovings on the outer circumference 𝑝1 and the inner circumference 

𝑝2 are determined. By successively using Relations (17), (23), (25)–(28), the overlap 𝜀0̃2 of 

two adjacent rovings on the outer circumference 𝑝1 of the torus can be determined. Sim-

ilarly, by successively using Relations (18), (24), (29)–(31), the overlap 𝜀1̃3 on the inner 

circumference 𝑝2 of torus can also be determined. 

Table 4. Optimized number of rovings 𝑛 used in winding and the size of overlaps 𝜀0̃2 on the outer 

and 𝜀1̃3 on the inner circumference of the torus for given values of 𝑅, 𝑟, 𝑑 and 𝛼. 

Outer Ra-

dius  

(R)  

[mm] 

Inner Ra-

dius  

(r)  

[mm] 

Param. 

a 

Angle 

Winding  

(α)  

[°] 

Param.  

ω 

Roving 

Width 

(d) 

[mm] 

Optimized 

Number  

of Rovings 

(n) 

Outer 

Overlap 

(𝜺̃𝟎𝟐) 

[mm] 

Inner 

Overlap 

(𝜺̃𝟏𝟑) 

[mm] 

100 

20 0.2 10 28.3607 

9 

3 0.3378 3.1811 

25 0.25 30 6.9282 11 0.7944 3.6238 

30 0.3 45 3.3333 17 0.3467 3.2236 

200 10 0.05 

10 113.4429 

5 

3 1.2083 1.5621 

30 34.6410 7 0.4055 0.7795 

45 20.0000 10 0.6526 0.9274 

  



Polymers 2023, 15, 3227 19 of 22 
 

 

Note 5. 

The carbon rovings are from Toho Tenax, a widespread manufacturer of winding 

rovings. Carbon roving 24K consists of twenty-four-thousand carbon filaments about a 

diameter 7[μm] , creating a rectangular cross-section with a width of 9[mm]. Carbon 

rovings marked 12K and 6K have a width of 12K = 5[mm] and 6K = 2[mm]. 

The curved part of a polymer-composite frame after the simultaneous successive 

winding of three layers of carbon rovings on a non-load-bearing frame under specified 

winding angles 𝛼 equal to 45°, −45°, and 45° is shown in Figure 15. The curved part of 

the frame forms one-quarter of the torus. Subsequently, the wound frame is thermally 

treated.  

 

Figure 15. Example of the curved part of polymer composite frame with the following parameters: 

major radius 𝑅 = 102.5[mm], minor radius 𝑟 = 17.5[mm], width of roving 𝑑 = 5[mm]. The non-

load-bearing polyurethane frame is visible in the vertical section (light colour of the cross-section). 

3.5. Recommended Procedure before Starting Winding 

Before starting the actual winding procedure on a frame with a curved section in the 

shape of a torus part, it is advisable to carry out the following preparatory steps.  

1. Determine the suitability of winding the rovings on the non-load-bearing frame (Re-

lations (3), (7), and (8) can be used, see Table 1). If the winding conditions are unfa-

vorable, consider whether, for example, to use a differently shaped frame or to choose 

a different composite manufacturing technology. 

2. Calculate parameter ω using Relation (22). Based on the knowledge of this parameter, 

an estimate of the number of roving revolutions on the whole toroidal helix can be 

obtained. 

3. Determine the maximum winding angle of the roving 𝛼̃𝑒𝑥𝑡  on the torus at the outer 

circumference 𝑝1 (see Figure 6b) using Relations (17) and (20). At the same time, de-

termine the minimum winding angle 𝛼̃𝑖𝑛𝑡 on the inner circumference of 𝑝2 by ap-

plying Relations (18) and (21). For the required winding angle 𝛼 for a given layer, 

the following relation holds: 𝛼̃𝑖𝑛𝑡 < 𝛼 < 𝛼̃𝑒𝑥𝑡 . During the winding procedure, the 

winding angle 𝛼̃ on the torus changes continuously and 𝛼̃𝑖𝑛𝑡 ≤ 𝛼̃ ≤ 𝛼̃𝑒𝑥𝑡 . Due to the 

continuously changing winding angle 𝛼̃, it is useful to determine whether the chang-

ing winding angle satisfies the winding requirements with respect to the planned 

loading of the polymer composite frame using a suitable modelling software tool 

(e.g., ABAQUS, ANSYS). 

4. Determine the optimized number of rovings 𝑛 for the winding of the layers at their 

specified width 𝑑. To the selected value of 𝑛, calculate the overlap 𝜀0̃2 of two adja-

cent rovings on the outer circumference 𝑝1 and the overlap 𝜀1̃3 on the inner circum-

ference 𝑝2. Following this, select the winding of the roving with the most suitable 

width 𝑑 provided by the supplier of rovings.  

Based on the above procedure, it is possible to define the optimized the winding pro-

cedure. 
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4. Conclusions 

The article focuses on the problem of winding rovings on a non-load-bearing frame 

with a circular cross-section, and the problem of winding the curved part of the frame is 

solved. In particular, attention is paid to the case where the curved section of the frame 

forms part of the torus. The problem is solved from a geometric point of view. Based on 

the geometric parameters of the torus and the relations derived in the paper, the level of 

difficulty of the roving layer winding, including the real feasibility of homogeneous wind-

ing, can be determined. Based on the given torus and using the relations derived in Chap-

ter 2, the parametric expression of the wound toroidal helix can be determined. As a result, 

the behavior of the roving when winding on a torus can be described analytically. The 

winding angle changes continuously within one turn of the roving. 

In Section 2.2. we provide three alternative quantities, specifically 𝑎 = 𝑟/𝑅, 𝑠2/𝑠1, 

and 𝑜(𝑝2)/𝑜(𝑝1), that describe the level of difficulty of winding on given toroidal part of 

the frame. However, we recommend the quantity 𝑜(𝑝2)/𝑜(𝑝1) as the most practically ori-

ented measure of the winding difficulty. 

When winding the roving layer, it is necessary to avoid gaps in the winding on the 

outer circumference of the torus and at the same time it is necessary to minimize overlaps 

of adjacent rovings on the inner circumference of the torus. Using the relations from the 

previous section, the optimal number of rovings used to wind the layer onto the torus can 

be determined for a given roving width. At the same time, the overlap size of two adjacent 

wound rovings can be determined.  

A greater number of rovings and their shorter length are required when the frame is 

wound at a greater angle (for a curved section of the frame in the shape of a torus section, 

a smaller 𝜔  parameter corresponds to a greater winding angle). When winding at a 

smaller winding angle, fewer rovings of greater length are required. The total amount of 

material required is practically the same, unless we consider the issue of overlapping ad-

jacent rovings. Of course, different frame loads (tension, torsion, etc.) correspond to dif-

ferent suitable winding angles. Practical tests show that it is not advisable to wind the 

roving on the torus at an angle greater than 45°, as this usually causes the roving to “slide” 

on the surface of the frame and degrade the entire winding. 

Meeting the necessary geometric conditions of winding is a prerequisite for a quality 

winding of the roving layer. As the frame passes through the winding head, three layers 

of roving are wound simultaneously at different angles (the winding head contains three 

rotating rings with coils of wound roving). If more layers of windings are required on the 

frame, the frame can be passed through the winding head repeatedly. 

The problems of winding straight frames with circular cross-sections (especially the 

smooth transition to another winding angle, the distance of winding roving from the ro-

tating ring of the winding head, and the determination of the optimal number of rovings 

when winding a layer of rovings) are analyzed mainly in previous published works 

[25,26]. These articles, together with this paper, comprehensively describe the problem of 

winding composite frames using rovings. The fulfillment of the required geometrical con-

ditions of winding is a prerequisite for ensuring the production of high-quality polymer 

composite frames. A detailed procedure for calculating the optimal trajectory of the in-

dustrial robot during the winding process even for curved frames is described in [23,33]. 
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