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Abstract: In two prior articles, I demonstrated from extensive simulational studies by myself and
others that the Rouse model of polymer dynamics is invalid in polymer melts and in dilute solution.
However, the Rouse model is the foundational basis for most modern theories of polymeric fluid
dynamics, such as reptation/scaling models. One therefore rationally asks whether there is a
replacement. There is, namely by extending the Kirkwood–Riseman model. Here, I present a
comprehensive review of one such set of extensions, namely the hydrodynamic scaling model. This
model assumes that polymer dynamics in dilute and concentrated solution is dominated by solvent-
mediated hydrodynamic interactions; chain crossing constraints are taken to create only secondary
corrections. Many other models assume, contrariwise, that in concentrated solutions, the chain
crossing constraints dominate the dynamics. An extended Kirkwood–Riseman model incorporating
interchain hydrodynamic interactions is developed. It yields pseudovirial series for the concentration
and molecular weight dependencies of the self-diffusion coefficient Ds and the low-shear viscosity
η. To extrapolate to large concentrations, rationales based on self-similarity and on the Altenberger–
Dahler positive-function renormalization group are presented. The rationales correctly predict how
Ds and η depend on polymer concentration and molecular weight. The renormalization group
approach leads to a two-parameter ansatz that correctly predicts the functional forms of the frequency
dependencies of the storage and loss moduli. A short description is given of each of the papers that
led to the hydrodynamic scaling model. Experiments supporting the aspects of the model are noted.

Keywords: polymer solution dynamics; polymer; solution; hydrodynamics; diffusion; viscosity;
hydrodynamic scaling model; models theoretical; models molecular; polymers; hydrodynamics

1. Introduction
1.1. The Hydrodynamic Scaling Model

In two prior articles [1,2], we considered the simulational tests of the Rouse–Zimm [3,4]
and Kirkwood–Riseman [5] models for chain dynamics in polymeric fluids. We demon-
strated that the behavior of model polymer chains in simulated melts and simulated dilute
solutions under shear was entirely inconsistent with the Rouse model. To the very lim-
ited extent that the simulations asked the necessary questions, polymer behavior was
found to be consistent with the Kirkwood–Riseman model. It was, however, appropri-
ate to ask whether there are good tests of the Kirkwood–Riseman model, and whether
the model passes those tests. This review article treats that question, finding that appro-
priate tests [6] do indicate the validity of the Kirkwood–Riseman model as extended to
non-dilute solutions.

The original model of Kirkwood and Riseman referred to a single-polymer molecular
moving through a Newtonian fluid. Historically, it was reasonable to attempt to extend
the model to calculate, e.g., the concentration dependence of the viscosity η(c). Note
related papers by Brinkman [7], Riseman and Ullmann [8], Saito [9,10], Yamakawa [11],
Freed and Edwards [12–14], Freed and Perico [15], and Altenberger et al. [16]. There was
awareness in these reports that the long-range nature of hydrodynamic interactions can

Polymers 2023, 15, 3216. https://doi.org/10.3390/polym15153216 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15153216
https://doi.org/10.3390/polym15153216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-5538-4361
https://doi.org/10.3390/polym15153216
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15153216?type=check_update&version=1


Polymers 2023, 15, 3216 2 of 50

lead to improper integrals in generating pseudovirial series for η(c). Edwards and Freed
proposed [12–14] that the needed integrals were in fact proper due to a hypothesized
process of hydrodynamic screening, but later calculations by Freed and Perico [15] and
by Altenberger et al. [16] demonstrated that there is in fact no such phenomenon as
hydrodynamic screening in polymer solutions.

In the decades since the aforementioned work was performed, scientific interest
shifted from hydrodynamic models to the tube/reptation models of polymer dynamics.
In many of these models, polymer motion over short time periods, and polymer motion
(’reptation’) through the hypothesized tubes in entangled polymeric fluids, were assumed
to be described by Rouseian dynamics. However, as we previously found [1,2], simulations
show that the Rouse model does not describe polymer motions in the melt.

At one time, it appeared plausible that the tube model for polymer melts could
also be applied to polymer solutions [17]. Reviews [18–20] instead concluded that repta-
tion/tube/scaling models are not applicable to polymer solutions, at least for the solu-
tions of polymers in commonly studied concentration and molecular weight ranges. A
monograph-length examination of a wide range of polymer solution properties [21] came
to a similar conclusion.

This review considers an approach that effectively extends the Kirkwood–Riseman
model from a dilute solution to concentrated solutions. The results are collectively described
as the hydrodynamic scaling model. This model provides an alternative to tube/reptation
models, which assume the use of Rouseian dynamics. The Kirkwood–Riseman and
tube/reptation models differ in their assumptions as to the important forces between
polymers and as to their domains of validity. There are two intermolecular forces under
consideration, namely topological forces (chain crossing constraints) and solvent-mediated
hydrodynamic forces. Reptation models take chain crossing constraints to be the dominant
interaction and hydrodynamic interactions to provide at most secondary corrections. The
hydrodynamic scaling model takes hydrodynamic forces to be the dominant interaction and
chain crossing constraints to provide secondary corrections. Tube/reptation models refer
to entangled polymer systems, systems in which the polymer concentration and molecular
weight are large enough that chain motion is confined to tubes formed by neighboring
chains. Tube/reptation models are not applicable to unentangled polymer systems, in
which the polymers are too short or too dilute to form tubes. The hydrodynamic scal-
ing model is applicable to dilute as well as non-dilute solutions of polymers having any
molecular weight, small or large.

The hydrodynamic scaling model for the dynamics of non-dilute polymer solution has
been presented in an extended series of papers [6,20–47]. The objective here is to present the
results of these papers in a coherent way, showing what has been calculated thus far and
what remains to be accomplished. The model arises from the Kirkwood–Riseman model [5];
it transcends the earlier work of Kirkwood and Riseman by including hydrodynamic
interactions between different polymer molecules.

Five major components of the model are readily identified:
First, the hydrodynamic scaling model presumes that the dominant interactions be-

tween neutral polymers in solution are the solvent-mediated hydrodynamic forces. Chain
crossing constraints are taken to provide at most secondary corrections. How is this possi-
ble? Because hydrodynamic forces are strong, the nearby segments of different polymer
molecules move in unison with each other, so the effects of chain crossing constraints are
greatly reduced. When two chains are close to each other, each chain drags the other along,
rather than each chain acting as a stationary obstacle to block the other chain’s movements.

Second, following the Kirkwood–Riseman [5] model, each polymer chain is treated as
a line of frictional centers (“beads”) separated by a series of frictionless links (“springs”).
The hydrodynamic interactions between beads on different chains are taken to be described
by the Oseen tensor [4] and its modern short-range extensions [48].

Third, the above assumptions are used to obtain a pseudovirial expansion for the
concentration dependence of each transport coefficient, as a power series in concentration.
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Fourth, to extend the model to elevated concentrations, we have recourse to self-
similarity [23] or to renormalization group methods [41]. The renormalization group
method of choice is the Altenberger–Dahler positive function renormalization group [49–53].
Altenberger and Dahler developed this group from Shirkov’s general treatment of renormal-
ization analysis, based on functional self-similarity [54–56]. While renormalization group
methods are indirect, they allow one to extrapolate lower-order pseudovirial expansions to
elevated concentrations.

Fifth, the quantitative success of the hydrodynamic scaling model is in part based
on polymer statics. In particular, it has been theoretically predicted [57] and experimen-
tally demonstrated [57,58] that, in solution, polymer coils contract as the polymer concen-
tration is increased. This fairly modest degree of chain contraction has a substantial effect
on the predicted concentration dependencies of the polymer transport coefficients.

The hydrodynamic scaling model was first used to treat the self-diffusion coefficient Ds
of polymers in solution, predicting the functional form for the dependence of Ds on polymer
concentration c and polymer molecular weight M. Physical interpretations and predictions
of numerical values for the functional form’s parameters have been provided [23,27–29].
The model has been extended to consider the effect of polymer concentration on the mobility
of the individual beads of a polymer chain and on the mobility of small probe molecules in
the surrounding solution [35]. An extended calculation predicted the low-shear viscosity of
non-dilute polymer solutions [45]. The consideration of the inferred fixed-point-structure of
the renormalization group led to an ansatz [42] that qualitatively determines the frequency
dependencies of the storage and loss moduli. The validity of the hydrodynamic scaling
model is shown by a huge mass of experimental data, as found in my companion volumes
Phenomenology of Polymer Solution Dynamics [21,59]. In the following, the discussion of
experiments will be limited to results that test particular aspects of the hydrodynamic
scaling model.

1.2. Reptation/Scaling and Hydrodynamic Scaling Models Compared

This section compares the reptation/scaling and hydrodynamic scaling models. The
major emphasis is on points where the two models are entirely different. Failure to recog-
nize the great disparities between the two models occasionally leads to confusion in the
literature. Readers should recognize that there are large numbers of modestly different
reptation/scaling treatments and several different hydrodynamic treatments.

The core physical difference between the reptation/scaling and hydrodynamic scaling
treatments is that the models do not agree as to which forces dominate the polymer solution
dynamics. Many models [17] assume that, at elevated concentrations, chain crossing
(topological) constraints (“entanglements”) between polymer chains are the dominant
physical interactions. In these models, hydrodynamic interactions between chains serve
primarily to dress the bare monomer drag coefficients. Hydrodynamic scaling models
assert, to the contrary, that hydrodynamic forces are dominant. In these models, excluded-
volume and chain crossing constraints are taken to provide only secondary corrections
to the hydrodynamic interactions. The hydrodynamic scaling model is not unique in
assuming the dominance of hydrodynamic interactions. Oono’s renormalization group
treatment of mutual diffusion shares with the hydrodynamic scaling model the assumption
that hydrodynamic forces are dominant [60].

Corresponding to the assumptions as to the nature of the dominant forces, there are as-
sumptions as to the concentration ranges in which the models are valid. Reptation/scaling
models require that the concentration is large enough that neighboring polymer coils over-
lap with each other and form entanglements, circumstances where chain crossing constraints
are particularly significant. As a result, there is a lowest concentration c∗, the overlap
concentration, below which tube model/reptation models are inappropriate. Tube models
describe small concentrations c < c∗ as constituting the dilute regime, while in the rep-
tation models, concentrations c > c∗ include the overlapping semidilute, entangled, and
concentrated regimes.
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Entanglements are not significant in the hydrodynamic scaling model, whose validity
extends up from extreme dilution toward the melt. However, within the hydrodynamic
scaling model, a transition concentration regime is expected, above which typical gaps
between polymer chains are similar in size to individual solvent molecules. At larger
concentrations, the typical gaps are smaller than solvent molecules, so that it appears
inappropriate to describe solvent dynamics in terms of continuum fluid mechanics.

Entanglement-based models were originally applied to described the diffusion of
a single polymer molecule, the probe chain, through a chemically cross-linked gel, the
polymer matrix. In a cross-linked gel, the chains of the matrix cannot move over large
distances [61]. Probe chains must thread their way through the matrix, like a very long
snake threading its way through a grove of bamboo.

To transfer the entanglement model from probe chains in a cross-linked gel to probe
chains in a polymer solution, it was hypothesized that the motions of probe chains in
cross-linked gels and in polymer solutions can be given the same description. Unlike a gel,
in the solution, the matrix chains are free to move. Entanglement-based models assume
that, on the time scales of interest, these being the time scales on which the probe chains
move, the matrix chains are effectively stationary. The entangled matrix chains of a polymer
solution are said to form a transient lattice or pseudogel that constrains probe chain motions
in the same way that a true cross-linked gel constrains probe chain motions, namely the
probe chain can only move parallel to its own chain contour.

In the hydrodynamic scaling model, there is no transient lattice or pseudogel. In
non-dilute solutions and melts, chains remain free to translate and to rotate around their
center of masses, though their motions are delayed by other neighboring chains.

In the tube/reptation models, it is implicitly assumed that, when the probe chain
encounters some neighboring matrix chains, the probe chain does not drag the matrix chain
along; instead, the probe chain is brought to a stop by the matrix chain. No rationale for
this implicit assumption is provided. It is thus assumed in reptation-scaling models that
a long polymer chain in a non-dilute polymer solution can only move through solution
in the ways that the chain can move through a true cross-linked gel, namely over large
distances, and the probe chain only moves parallel to its own length. The hydrodynamic
scaling models make an opposite assumption, namely that when polymer chains encounter
each other, the chain segments on neighboring chains tend to move in parallel directions,
so they do not block each others’ motions.

Many entanglement-based models incorporate a second, independent assumption,
the scaling assumption, which proposes that polymer transport coefficients such as the
self-diffusion coefficient Ds depend on polymer concentration c and polymer molecular
weight M via scaling laws, e.g.,

Ds(c, M) = Dcmcν Mγ, (1)

where ν and γ are scaling exponents. The business of entanglement models and exper-
imental studies is then to calculate or measure the exponents ν and γ. Presumably, a
complete model would also compute the scaling prefactor Dcm and supply the ranges of c
and M for which the model should be accurate, but much early work treated Dcm as an
undetermined constant.

The hydrodynamic scaling model usually predicts stretched exponentials:

Ds(c, M) = Do exp(−αcν Mγ). (2)

This functional form theoretically arises from the Altenberger–Dahler positive-function
renormalization group, when it is used to extrapolate Ds(c, M) from smaller to larger con-
centrations, as treated in Section 6. The model quantitatively predicts ν and γ, quantitatively
predicts the molecular weight dependence of α, and reduces the calculation of α to a single
parameter a, the same a describing η(c, M) and Ds(c, M).



Polymers 2023, 15, 3216 5 of 50

1.3. Historical Matters Aside

The hydrodynamic scaling model arose from a series of entirely empirical observations.
Experimental studies of the diffusion of microscopic polystyrene latex spheres (as probes)
through solutions of non-neutralized polyacrylic acid, poly-ethylene oxide, and bovine
serum albumin (as matrices) [62–67] found that the concentration dependence of the probe’s
diffusion coefficient Dp could be described to good accuracy by stretched exponentials in
polymer concentration, viz.,

Dp(c) = Do exp(−αcν). (3)

where c is the polymer concentration, Do is the probe diffusion coefficient in the limit of low
concentration, and in the original work, α and ν were fitting parameters. The comparison
of these experimental results [22] revealed that ν was consistently in the range of 0.5–1.0,
while over two orders of magnitude in the polymer molecular weight M, one had:

α ∼ Mγ, (4)

for γ = 0.9± 0.1. Measurements with different probe sizes found that α is approximately
independent of the probe sphere radius R.

Furthermore, in most of these systems, Dp did not track the solution viscosity via
Dp ∼ η−1. In this non-Stokes–Einsteinian behavior, probes diffused faster than expected
from their known sizes and the solution viscosity. Obvious artifacts, including polymer
adsorption by the spheres and polymer-driven sphere aggregation, would cause the spheres
to diffuse slower than expected, indicating that this non-Stokes–Einsteinian behavior was
not simply an artifact. Non-Stokes–Einsteinian behavior, which was noticed well before
Equation (3) and the dependencies of α and ν on M and R were identified, was the driving
motivation for the previous [62–67] experimental work.

Equation (3) was then compared [20] with the published studies of the polymer self-
diffusion coefficient Ds, finding that Ds(c) uniformly follows a similar equation:

Ds(c) = Do exp(−αcν). (5)

Equation (5) was therefore identified [20] as the universal scaling equation for polymer
self-diffusion. The functional form of Equation (3) has since been tested [25,37,39] against
the literature reports of the polymer solution viscosity η, sedimentation coefficient s, ro-
tational diffusion coefficient Dr, and the dielectric relaxation time τr. In each case, these
transport coefficients have stretched exponential concentration dependencies with various
prefactors and exponents α and ν.

Several features of Equation (3), as revealed in Refs. [20,22], were not in accordance
with expectations from entanglement-based models of polymer solution dynamics. In
particular: (i) The concentration dependence was found to be a stretched exponential in
c, not the expected power law in c; (ii) The concentration dependence was described over
all concentrations studied by a single set of parameters (α, ν), with no indication of a
transition in dynamic behavior between a “dilute” regime (in which hydrodynamics was
expected to dominate) and a “semidilute” regime (in which polymer coils overlapped and
entanglements were proposed to dominate); (iii) For probe diffusion (spheres diffusing
through random-coil polymers), in the semidilute regime Dp(c) was found to be dependent
on—rather than independent of—polymer molecular weight; (iv) In the semidilute regime,
α was found to be nearly independent of the probe radius, even though it had been expected
to have a strong dependence on the probe radius; and (v) Dp of large probes was expected
to be determined by the macroscopic solution viscosity, which it was not. Furthermore,
(vi) in the dilute solutions, Ds(c) was often proposed in the context of reptation/scaling
models to be nearly independent of c. None of the expectations (i)–(vi) were met in the
studied systems.

How might this set of discrepancies between the universal scaling Equation (3) and
expectations based on entanglement models be resolved? First, one could always propose
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that the agreement between the universal scaling equation and the particular datasets
with which it had been compared was a curiosity, an empirical coincidence having no real
importance. In that case, the equation would be an accident having no relationship to
fundamental theoretical considerations. Second, one could propose that the agreement
arose because the universal scaling equation is remarkably flexible. This second proposal
encounters the information-theoretic obstacle that the equation has three free parameters
(and the measurable zero-concentration limiting constant Do), so it can therefore cover
neither more nor less of the possible solution space than can any other reasonable three-
parameter equation.

Finally, the criticism was advanced that Equation (3) is purely empirical and has no
physical content. This final criticism led to the clear recommendation [68] that the pro-
ponents of Equation (3) needed to find an ab initio theoretical derivation of Equation (3),
preferably a derivation that reveals the physical interpretations of α and ν. The remain-
der of this article reviews the research program that generated the requested derivation.
Equation (3), including ab initio numerical values for α and ν and their molecular weight
dependencies, was obtained. We review the papers that supplied that derivation, ending
antiquated suggestions that the universal scaling equation and its parameters are purely
empirical and have no physical interpretation.

1.4. Precis of the Work

This section presents an outline of the remainder of this article.
In Section 2, we first discuss the less-studied Kirkwood–Riseman model, because

the Kirkwood–Riseman model provides the foundation for determining hydrodynamic
interactions between polymer chains. As an example, the drag coefficient of a Kirkwood–
Riseman polymer is calculated.

Section 3 presents our extended Kirkwood–Riseman model. The extension calculates
chain–chain hydrodynamic interactions. It thus provides the physical basis for the hy-
drodynamic scaling model. Section 3.1 presents the modern bead–bead hydrodynamic
interaction tensors including short-range and three-bead interactions. Section 3.2 shows
how to move from bead–bead to chain–chain hydrodynamic interactions in the context of
the Kirkwood–Riseman model.

Section 4 uses the extended Kirkwood–Riseman model to calculate, through O(c2),
the concentration dependence of the polymer self-diffusion coefficient.

Section 5 uses the model to calculate the concentration dependence of the viscosity.
Section 5.1 calculates the flow field u(1) created by the scattering of a shear field u(0) by
a polymer chain, and the additional flow field u(2) created by the scattering of flow field
u(1) by a second polymer. Section 5.2 calculates the power dissipated by various polymer
chains exposed to flow fields u(0), u(1), and u(2). Section 5.3 calculates the total shear field
that would be experimentally determined as a result of these flow fields, leading to a
determination in Section 5.4 of the intrinsic viscosity and the Huggins coefficient for the
extended Kirkwood–Riseman model.

Section 6 considers paths for extending the hydrodynamic calculation of pseudovirial
coefficients, as seen in Sections 4 and 5, to determine polymer dynamics at elevated
concentrations. Section 6.1 considers self-similarity rationales. Section 6.2 develops the
mathematical basis for the alternative approach, the Altenberger–Dahler positive-function
renormalization group.

Section 7 then uses the positive-function renormalization group to extend the calcula-
tions of Sections 4 and 5 to large concentrations. The universal scaling equation for polymer
self-diffusion is obtained.

Section 8 presents an ansatz for computing the frequency dependencies of the bulk and
shear moduli. The ansatz, two-parameter temporal scaling, arises from the inferred fixed-point
structure of the positive-function renormalization group calculation of the shear viscosity.

Section 9 offers single-paragraph summaries, in publication order, of the theoretical
and phenomenological papers that describe the hydrodynamic scaling model.
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Section 10 summarizes the experimental results testing various aspects of the hydro-
dynamic scaling model. The tests confirm the validity of the model.

Section 11 discusses the results here, and considers consider where the hydrody-
namic scaling model has gaps and omissions, thereby identifying a few directions for
future research.

2. Single-Chain Behavior
2.1. The Models

This section discusses models for single-chain polymer motion. There are two major
classes of models, namely models based on the Kirkwood–Riseman [5] treatment, and
models based on the treatments of Rouse [3] and Zimm [4]. Qualitatively, the two classes
of model supply radically different descriptions for chain motion in dilute solutions. The
hydrodynamic scaling model is based on extensions of the Kirkwood–Riseman model,
while in contrast, many tube/reptation models reference the original Rouse treatment. I
have previously discussed [1,2] the Rouse model in detail and will not repeat that discussion
here. A major emphasis of this Section is therefore to alert readers familiar with Rouse and
Zimm models as to the very different way in which Kirkwood and Riseman described the
movements of an individual polymer coil.

In all of these models, a polymer chain is treated as a series of beads, pairs of beads
that are connected by links. The polymer interacts hydrodynamically with the solvent via
the beads, each of which acts as a small sphere or point that applies a frictional force on
the solvent. The links are hydrodynamically inert. They serve to control the distances
between the beads. In the Rouse and Zimm models, the beads are abstractions representing
the hydrodynamic friction of a subsection of the polymer, while the links are treated as
the subsections of the polymer chain, each subsection being barely long enough to have
a Gaussian distribution of lengths. In the original Kirkwood–Riseman model, the beads
were taken to be monomer units, while the links were the covalent bonds connecting one
monomer to the next. In some modern applications of the Kirkwood–Riseman model, the
beads and links are interpreted in the Rouse and Zimm sense.

In the Rouse and Zimm models, each subsection acts as a Hookian spring. Each
subsection generates an attractive force on the two beads to which it is attached. The force
has magnitude k`, where k is an effective spring constant and ` is the distance between the
two beads; the force acts along the line of centers connecting the beads. In these models,
the unstretched (rest) length of each subsection is zero.

In the original Kirkwood–Riseman model, the links are covalent bonds having rigid
lengths and bond angles, but perhaps a potential energy for torsion. Within the model,
the effect of the links is to determine the statistico-mechanical distribution functions for
the distances between pairs of beads along the polymer chain. Because the beads of the
original Kirkwood–Riseman model are monomers, the number of beads in a Kirkwood–
Riseman chain can be very large, much larger than the number of beads in a Rouse or
Zimm model for the same polymer. For beads that are well separated along the chain,
in the Kirkwood–Riseman model, the distribution function for the bead–bead distance is
assumed to be a Gaussian.

These models for polymer dynamics make contradictory assumptions as to which
polymer chain motions are of interest in solutions. In the Kirkwood–Riseman model, the
interesting motions of the beads are described as whole-body motion. In whole-body motion,
the polymer beads may experience equal linear displacements, and they may rotate around
the polymer center of mass, but the displacements and rotations are such that the chain
motion does not alter the relative positions of the polymer beads. The phrase whole-body
motion does not mean that the polymer coil is mechanically rigid. A full description of the
motions of N polymer beads requires 3N coordinates. The whole body motion description
extracts from these 3N coordinates a set of six collective coordinates, describing whole-body
translations and rotations, with the remaining motions are described as the internal modes.
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Kirkwood and Riseman are entirely specific that the polymer coil in their model
has internal motions, so that the relative positions of beads fluctuate with respect to
each other. However, in the Kirkwood–Riseman model, the whole-body motions are
assumed to dominate polymer solution dynamics. Internal motions are taken to provide
corrections to the dominant chain motions, the whole body displacements and rotations.
The internal motions are coarse-grained out, so bead velocities are approximated as being
the components created by the polymer translational and angular velocities. Kirkwood and
Riseman did not compute the magnitude of the internal mode corrections.

In contrast to the Kirkwood–Riseman model, the Rouse and Zimm models assume
that the beads move relative to each other. The relative motions of the beads are driven by
attractive forces between adjoining beads, as created by the links. These relative motions
are described by the Rouse–Zimm polymer internal modes, and are taken to dominate
polymer solution dynamics. Rouse and Zimm model polymer coils do perform whole-body
translation, but translation does not to contribute to the polymer solution’s viscosity.

2.2. Kirkwood–Riseman Model

We consider the Kirkwood–Riseman model [5], whose ansatz provides the basis of
the hydrodynamic scaling model. The Kirkwood–Riseman model is much less discussed
than the Rouse and Zimm models and their extensions are, in part because it is more
mathematically demanding, and in part because Kirkwood and Riseman used a less
familiar notation. This presentation of the Kirkwood–Riseman model has therefore been
reset in a more modern form.

The Kirkwood–Riseman model describes a chain of N beads connected by links having
a length of b0. The links are covalent bonds, with adjoining links separated by a rigid angle
θ. Successive three-bead planes are related by a torsion angle φ. In the original model, the
potential energy was taken to be independent of the angle φ. The effective bond length, the
contribution of each link to the distance between distant beads, is:

b =

(
1 + 〈cos(φ)〉
1− 〈cos(φ)〉

)(
1− cos(θ)
1 + cos(θ)

)
b0. (6)

For beads ` and s that are well separated, Kirkwood and Riseman supply several
average values, notably:

〈| R`s |2〉 =| `− s | b2, (7)

〈| R0` |2〉 = b2
(

12`2 + N2 − 2N + 1
12(N − 1)

)
, (8)

〈R0` · R0s〉 =
b2

N − 1

(
`2 + s2

2
− N − 1

2
| `− s | +(N − 1)2

2

)
, (9)〈

1
R`s

〉
=

6√
πb | `− s |1/2 . (10)

Here, beads ` and s have locations r` and rs, R`s = rs − r` is the vector from bead ` to
bead s, R`s = |R`s|, and r0 is the location of the center of mass of the polymer, so that R0`
is the vector from the center of mass to bead `. The final equation assumes that R`s has a
normal distribution.

The Kirkwood–Riseman model assumes that polymer beads have a long-range hydro-
dynamic interaction, as described by the Oseen tensor:

Tij(rij) =
1

8πη0rij
(I + r̂ij r̂ij), (11)

which gives the fluid flow created at a point rj by a force Fi applied to the solution at point
ri. The vector from point i to point j is rij, with magnitude rij = |rij| and corresponding
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unit vector r̂ij = rij/rij. Here, η0 is the solvent viscosity. In Equation (11) and its associated
notation, there is no assumption that there is a polymer bead at point rj. The theoretical
model treats the force as a point source, and assumes that the presence of the polymer
has no effect on the solvent’s viscosity, an assumption that is experimentally known to be
incorrect [69–72]. The fluid flow induced at rj by Fi is:

v′(rj) = Tij(rij) · Fi(ri). (12)

Within the model, the forces Fi arise because the beads are moving with respect to the
fluid. If a bead is stationary with respect to the local fluid flow, it exerts no force on the
fluid. The force exerted on the fluid by a bead ` is determined by the velocity u` of the
bead, the velocity v(r`) that the fluid would have had, at the point r`, if the bead were not
present, and the drag coefficient ξ of the bead, namely:

Fi = ξ(u` − v(r`)). (13)

Because the beads are treated as points, a single bead is assumed to exert no torque on
the surrounding fluid.

We now come to the modeled dynamics of the polymer. The beads are taken to
lie along a Gaussian chain, meaning that, on average, their concentration declines with
the distance from the center of mass, as a Gaussian in that distance. The velocities of
the individual beads are taken to be entirely determined by the time-dependent chain
center-of-mass velocity V(t) and chain rotational velocity Ω(t) as:

u`(t) = V(t) + Ω(t)× R0`. (14)

u`, as given by Equation (13), is the velocity that the bead ` would have, if it were part
of a rigid body that had translational velocity V and rotational velocity Ω. We therefore
describe the chain motions as whole-body translation and whole-body rotation. As noted
above, Kirkwood and Riseman recognized that polymer molecules also have internal
coordinates whose fluctuations contribute to the bead velocities, leading to an extra velocity
component, different for each bead, in Equation (14), but those components were neglected
as an approximation.

What forces act on a polymer chain? The model assumption is that, in the absence of
external forces, over long times, the polymer’s translational and rotational accelerations
must both average to zero. Under these conditions, the long-time averages of the sum of
the forces and of the sum of the torques on each chain must both vanish. The zero-force
and zero-torque conditions determine the response of the polymer to an external force or
to an external torque.

As an example of the effect of hydrodynamic interactions, we consider the drag coeffi-
cient (and hence the diffusion coefficient) of a polymer chain. The analysis of Zwanzig [73]
is followed. Note that Kirkwood and Riseman took Fj to be the force on the solvent, while
Zwanzig takes Fj to be the force on the bead, so the papers have sign differences. We
have a polymer chain whose beads have arbitrary velocities u`, while the fluid at r` has an
unperturbed velocity v0

` . The hydrodynamic interactions perturb the fluid flow at r`, so the
actual fluid velocity at r` is:

v` = v0
` +

N

∑
k 6=`=1

T`k · Fk. (15)

However, the hydrodynamic force that a bead k exerts on the solvent is:

Fk = f (uk − vk), (16)
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where f is the drag coefficient of a single bead. Combining the above two equations,

v` = v0
` −

N

∑
k 6=`=1

T`k · f (vk − uk). (17)

Subtracting u` from each side of the equation,

v` − u` = v0
` − u` −

N

∑
k 6=`=1

T`k · f (vk − uk). (18)

which allows us to write:

v0
` − u` = f

N

∑
k=1

µ`k · (vk − uk). (19)

The new matrix µ is:

µ`k =
Iδ`k

f
+ T`k, (20)

where the rule Tkk = 0 has been applied and I is the 3× 3 identity matrix.
Matrix inversion gives the vk − uk in terms of the v0

` − u` and the inverse of µ, namely:

vk − uk = f−1
N

∑
`=1

(µ−1)k` · (v0
` − u`), (21)

so the force on a bead k due to its hydrodynamic interactions with the solvent becomes:

−Fk ≡ f (vk − uk) = −
N

∑
`=1

(µ−1)k` · (v0
` − u`). (22)

The minus sign appears because Fk is the force of the bead on the solvent, not vice versa.
The drag coefficient fc of the polymer chain is obtained by choosing all bead velocities

to be equal to u0 and the unperturbed fluid velocity to be zero, and calculating the total of
the drag forces on all beads of the chain, leading to:

−
N

∑
k=1

Fk ≡ fcu0 =
N

∑
k=1

N

∑
`=1

(µ−1)k` · u0. (23)

Bead–bead hydrodynamic interactions, as described by the Oseen tensor, thus perturb
the drag coefficient of the whole chain.

3. Extended Kirkwood–Riseman Model

Here, we consider the extension of the Kirkwood–Riseman model to treat multiple
polymer chains. The calculation refers to time scales that are sufficiently long that polymer
inertia can be neglected. The solvent is treated as a continuum fluid. Each polymer chain
is treated as a line of beads that interacts with the solvent by applying to the solvent a
series of point forces. The point forces create solvent flows and hydrodynamic forces on
other polymer beads, the flows and forces being described by mobility tensors µij. Beads
on each chain are linked by springs; a spring is a hydrodynamically inert coupler that
determines the distribution of bead–bead distances. We only consider ghost chains that
can pass through each other; excluded volume interactions only serve to set the minimum
distances of approach between pairs of beads. Chain motions are approximated by whole-
chain translation and rotation; internal modes that change the shape of a chain have not yet
been included in the hydrodynamic scaling model.
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3.1. Bead–Bead Hydrodynamic Interactions

The effects of hydrodynamic interactions are usefully described by mobility tensors
µij. These tensors give the hydrodynamic force on a bead (or chain) i due to the force a bead
(or chain) j exerts on the solvent; i = j is allowed. Separate expressions are needed for the
self (i = j) and distinct (i 6= j) components of µij. For the calculations here, we begin with
the µij that relate the force on bead i to the force that bead j applies to the solvent. After
some work, we end with a second set of mobility tensors that give the force and torque on
a chain i due to a force or torque applied to the solution by a chain j.

The mobility tensors are specifically of interest because they determine the self-
diffusion coefficient via:

Ds =
1
3

kBT trace(µii). (24)

Here, kB is Boltzmann’s constant and T is the absolute temperature. For spheres in
solution, the mobility tensors can be expanded as power series in a/r, where a is a sphere
radius and r is the distance between the spheres, as developed by Kynch [48], Mazur and
van Saarloos [74], this author [75], and Ladd [76]. Part of the expansion improves the
accuracy of the hydrodynamic interaction tensor for spheres that are close to each other.
Other extensions describe additional interactions between three or more spheres. The
lowest-order approximation to the hydrodynamic interaction between two spheres is the
Oseen tensor. The µij can be expanded as [48,74,75]:

µii =
1
fo

I + ∑
l,l 6=i

bil + ∑
m,m 6=i or l

l 6=i

biml + ...

 (25)

for the self terms, and:

µij =
1
fo

Tij + ∑
i,j,m

i,j,m distinct

Timj + ...

, i 6= j (26)

for the distinct terms.
The leading terms of the b and T tensors are [74]:

bil = −
15
4

(
a

ril

)4
r̂il r̂il , (27)

biml =
75a7

16r2
imr2

ilr
3
ml
{[1− 3(r̂im · r̂ml)

2][1− 3(r̂ml · r̂li)
2]

+6(r̂im · r̂ml)(r̂ml · r̂li)
2 − 6(r̂im · r̂ml)(r̂ml · r̂li)(r̂li · r̂im)}r̂im r̂li, (28)

Tij =
3
4

a
rij

[I + r̂ij r̂ij], (29)

Timl = −
15
8

a4

r2
imr2

ml
[I − 3(r̂im · r̂ml)

2]r̂im r̂ml , (30)

where only the lowest order term (in a
r ) of each tensor is shown. See Mazur and van

Saarloos [74] for the higher-order terms. Here, I is the unit tensor, r = |r|, the unit vector is
r̂ = r/r, ηo is the solvent viscosity, and r̂r̂ is an outer product.

bij and Tij describe the hydrodynamic interactions of a pair of interacting spheres.
Tij/ fo describes the velocity induced in particle i due to a force applied to particle j, while
bij describes the retardation of a moving particle i due to the scattering by particle j of the
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wake set up by i. Timl and biml describe the interactions between trios of interacting spheres.
Timl describes the velocity of particle i by a hydrodynamic wake set up by particle l, the
wake being scattered by an intermediate particle m before reaching i. biml describes the
retardation of a moving particle i due to the scattering, first by m and then by l, of the wake
set up by i.

In most of the following, the individual beads are taken to be small relative to the
distances between beads on different polymer chains, so only the lowest-order (in a/r) term
is used to describe the bead–bead interactions, this being the Oseen tensor of Equation (29).

3.2. Chain–Chain Hydrodynamic Interactions

Having considered the hydrodynamic interactions between polymer beads, we now
advance to calculate the hydrodynamic interactions between the pairs of polymer chains.
The method of reflections is used to compute the interchain hydrodynamic interactions.
A chain whose beads move with respect to the solvent creates flows in the surrounding
solvent. These flows act on other chains. In response to those flows, the other chains move.
Those chain motions induce additional solvent flows. The hydrodynamic equations are
linear, so if a chain A is subject to flows due to chains B and C, the flow acting on chain A
is the sum of the flows created by B acting on A and by C acting on A. Because the flow
properties are linear, all hydrodynamic effects can be obtained by considering a line of
chains, with each chain acting on the next in line. We say that the process is scattering: The
flow created by each chain is scattered when it encounters the next chain in the line. It is not
assumed that each chain in a line must be different from all the other chains in a line; the
line of chains may loop back on itself so that a given chain appears in the line more than
once. A crude image of the hydrodynamic effect of one moving chain on the next is given
by this paper’s graphical abstract. A chain (left, blue line) moves (green vertical arrow)
and puts forces on the fluid. In response, the fluid moves, symbolically represented by the
horizontal arrow labeled “T”. The second chain (right, red line) responds by translating
and rotating (two green arrows).

The chains in a line are labeled 1, 2, 3, . . . . The center-of-mass location of chain j is
the vector aj, with j labeling which of the Nc chains is involved. The location of a bead i
with respect to its chain’s center-of-mass is si. Each step of the calculation here involves
only beads on a single chain, so si does not need a separate label specifying the chain of
which it is a part. The vectors from the center of mass of each chain in the line to the next
chain’s center of mass are the vectors Rj, with Rj = aj+1 − aj. Solvent flows are denoted
u(n)(r); they are implicit functions of position even if no dependence on r is specified. An
imposed solvent flow, such as a fluid shear field, is denoted u(0); in a quiescent liquid,
u(0) = 0. Solvent flows created by the first, second,. . . chains in a sequence are denoted u(1),
u(2), . . . , respectively.

The velocity vj of a bead j that is located on chain i may be divided between the
center-of-mass motion, whole-body rotation, and internal mode motions as:

vj = V (i) + Ω(i) × sj + ẇj. (31)

Here, the chain’s center-of-mass velocity is V (i), the chain’s angular velocity around its
center of mass is Ω(i), and the bead motions arising from chain internal modes are denoted
by ẇj. The superscripts on V and Ω identify the reflection that created those parts of V
and Ω.

The chain center-of-mass velocity is:

V (i) =
∂ai
∂t

. (32)
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V (i) is determined by averaging over the N beads of chain i, namely:

V (i) =
1
N

N

∑
j=1

vj. (33)

The V (i) and ẇi are independent of Ω(i), so Ω(i) can be determined from Equation (31) as:

1
N

N

∑
j=1

sj × (Ω(i) × sj) =
1
N

N

∑
j=1

sj × vj. (34)

The instantaneous-square chain radius s2 is N−1 ∑N
j=1 s2

j .
The model describes the low-frequency regime. The chain linear and angular momenta

fluctuate, but over the time scales of interest herein, the fluctuations average towards zero.
For the same reason, contributions to fluid flow from the higher-frequency ẇi are not taken
into account. If the fluctuations in the total linear momentum and total angular momentum
of each chain average towards zero, from the fundamental mechanics the total force and
total torque on each chain after the first must also average towards zero. (The first chain in
a line may also be subject to external forces, torques, or fluid flows, and so is a special case.)
One obtains:

N

∑
j=1

f j(vj − u(rj)) = 0, (35)

and:
N

∑
j=1

f jsj × (vj − u(rj)) = 0, (36)

The four Equations (33)–(36) take us from the fluid velocity u(n−1)(rj) at the beads of
chain n to the center-of-mass translational and rotational velocities V (n) and Ω(n) of chain
n. The V (n) and Ω(n) depend on the relative positions of the chains.

For the calculation of the self-diffusion coefficient, the first chain in the series is
presumed to have some initial velocity that corresponds to its performing translational
motion. For the calculation of the viscosity increment, the first chain in the series finds itself
in a velocity shear. As will be seen, each chain moves at the local flow velocity. Each chain
rotates so as to attempt to comply at its every point with the imposed shear flow. Each
chain can translate and rotate, but its local velocity at every bead cannot be the same as the
velocity that the fluid would have had at the same point if the chain were absent.

4. Extended Kirkwood–Riseman Model: Self-Diffusion

We now implement the method of reflections as described above. We begin with
polymer chain 1 that has linear velocity V (1) and angular velocity Ω(1) with respect to
the unperturbed and hence quiescent solvent. A bead j on chain 1 then has the velocity
v(1)

j = V (1) + Ω(1) × sj, plus a component corresponding to the internal modes that we are

neglecting. The flow u(1) induced at r by all M beads of chain 1 is:

u(1)(r) =
M

∑
j=1

T(r− sj) · v
(1)
j . (37)

In the spirit of the Kirkwood–Riseman calculation, we now average over detailed
relative locations of the individual beads. Functions of the vector s from the center of mass
replace the functions of the bead label j. All sums ∑j f j over beads are replaced with the
integrals

∫
ds g(s) f (s), s being a vector from the chain center of mass to a point within the

chain, with g(s) being the density of beads at s, and f (s) being the effective drag coefficient
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of the beads at s. The integral of f (s) over the complete chain is the total drag coefficient
Fo. Correlations in the shapes of nearby chains are neglected.

A series expansion for the Oseen tensor is T(r− s) = T(r)− s ·∇T(r) +O(s2), namely:

T(r− s) =
1

8πη

[
I + r̂r̂

r
− r̂

s · (I − 3r̂r̂)
r2 − sr̂

r2 +
s · r̂
r2 I

]
+O(( s

r
)2). (38)

The resulting induced flow field, to the lowest order in the series expansion, is:

u(1)(r) =
∫

ds g(s)
fo

8πη

[
I + r̂r̂

r
− r̂

s · (I − 3r̂r̂)
r2 − sr̂

r2 +
s · r̂
r2 I

]
·
[

V (1) + Ω(1) × sj

]
. (39)

In the above,
∫

g(s)s2 ds = R2
g. Terms odd in s vanish by symmetry. fo, the chain

drag coefficient, is 6πηRh. By direct calculation,
∫

g(s)s · r̂Ω× s ds = R2
gΩ× r̂/3. Here,

Rg and Rh are the radii of gyration and the hydrodynamic radius of the chain, with
additional numerical subscripts on Rg and Rh being used to identify which chain’s radii
are under consideration.

The result of these steps is:

u(1)(r) =
3
4

Rh1
r

[
I + r̂r̂

r
] · V (1) +

1
2

Rh1R2
g1

r2 (Ω(1) × r̂). (40)

The indicated terms are the longest-range parts of the flow field created by the motions
of the first chain. By expanding T(r − s) to a higher order in s ·∇, one would obtain
higher-order in terms (Rg/r)2.

The calculation now proceeds by iteration. The flow field u(1)(r) exerts forces on the
next chain in the series. The zero-force and zero-torque conditions let us calculate the
linear and angular velocities V (2) and Ω(2) of the next chain. Under the approximation
that we neglect chain internal modes, the beads of the next chain move with velocities
v(2)

j = V (2) + Ω(2) × sj. These beads cannot simply move with the solvent. As a result, the

beads of chain 2 exert forces on the solvent, thereby creating a new flow field u(2)(r), where
r is now measured from the center of mass of chain 2.

The force on a representative bead i of chain 2, due to the flow field u(1)(r) scattered
by chain 1, is:

F(2)
i = fi(u(1)(R1 + si)− V (2) −Ω(2) × si). (41)

where fi is the bead’s drag coefficient. The bead is at R1 + si, a displacement by si from the
displacement R1 of the center of mass of chain 2 from the center of mass of chain 1.

The zero-force and zero-torque conditions are then applied to chain 2. To do this,
beads at the locations si are again replaced with a bead density g(s), and the flow field
u(1)(R1 + si) is given a series expansion, centered on the center-of-mass of chain 2, in the
powers of s ·∇. The zero-force condition starts as:

fo

∫
ds g(s)[u(1)(R1) + s ·∇u(1)(R1)− V (2) −Ω(2) × si] = 0, (42)

while the zero-torque condition starts as:

fo

∫
ds g(s)[s× u(1)(r)− s× V (2) − s× (Ω(2) × s)] = 0. (43)

After noting that everything except s itself is independent of s, while terms odd in s
integrate to zero, and integrating on s, one finds:

V (2) = u(1)(R1) (44)
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and:
2
3

foΩ(2) = fo

∫
ds g(s)[s× (s ·∇R)u(1)(R1)], (45)

the subscript on the ∇ being the variable with respect to which the derivatives are taken.
Taking the spherical averages, one finally reaches [41]:

Ω(2) = −3
4

Rh1

R2
1
[R̂1 × V (1)]− 1

4

Rh1R2
g1

R3
1

Ω(1) · [I − 3R̂1R̂1]. (46)

The flow field due to scattering from chain 2 is:

u(2)(r) = − 9
16

Rh1Rh2R2
g2

R2
1r2

[1− 3(r̂ · R̂1)
2](R̂1 · V (1))r̂+

3
8

Rh1Rh2R2
g1R2

g2

R3
1r2

[
r̂×Ω(1) − (r̂× R̂1)R̂1 ·Ω(1) + r̂ · R̂1(Ω

(1) × R̂1)−

r̂ · (Ω(1) × R̂1)R̂1 · (I − 3r̂r̂)
]

. (47)

The calculation of higher-order scattering events proceeds by iteration. From the linear
and angular velocities V (n) and Ω(n) of chain n in the sequence, we compute the induced
fluid flow field u(n)(Rn) at the location of chain n + 1. From the flow field, we compute
the linear and angular velocities V (n+1) and Ω(n+1) of chain n + 1. We can now repeat the
process ad infinitum. The final calculation only needs the part of u(3) created by the linear
velocity V (1) of the first bead, namely:

u(3)(r) =
27
64

Rh1Rh2Rh3R2
g2R2

g3

R2
1R3

2r2

[
(1− 3(R̂1 · R̂2)

2)×

(1− 3(R̂2 · r̂)2 − 6(R̂1 · R̂2)(R̂2 · r̂) + r̂ · [I − R̂2R̂2] · R̂1)

]
(R̂1 · V1)r̂. (48)

This form does not include the contribution to u(3)(r) from Ω(1).
The terms of the mobility tensors µii are obtained from the u(n)(Rn) or the V (n+1)

by setting Rn = −R1 − R2 − . . .− Rn−1 and suppressing the V (1). One obtains for the
relevant parts of the mobility tensor:

b12 = − 1
fc

9
8

Rh1Rh2R2
g2

R4
1

R̂1R̂1 (49)

and:
b123 · V1 = u(3)(r)|r→−R1−R2 . (50)

Taking appropriate ensemble averages over these tensors leads to a pseudovirial
expansion for the self-diffusion coefficient, viz.,

Ds(c) = Ds0

(
1− 9

16
Rh1Rh2

aoRg

(
4π

3
R3

g

)
c + 9.3 · 10−4 Rh1Rh2Rh3

aoR2
g

(
4π

3
R3

g

)2
c2 + . . .

)
. (51)

The numerical coefficient in the c2 term was obtained by Monte Carlo integration.
We have now used a generalization of the Kirkwood–Riseman model to treat interchain

hydrodynamic interactions. The motions of each chain set up wakes in the surrounding
fluid. The surrounding fluid drives the motion of other chains in the fluid, creating
fresh wakes which act on still further chains in the sequence. Our generalization has
several lacunae. Intrachain hydrodynamics were not included in the calculation. The
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accuracy of the calculation will diminish when chains overlap, due to the strong interchain
hydrodynamic interactions between pairs of nearly adjacent beads.

Short-Range Hydrodynamic Effects

The purpose of this subsection is to reveal some of the ways in which higher-order
hydrodynamic interactions modify polymer dynamics. I follow the results of Phillies
and Kirkitelos [35]. There are very considerable opportunities for extending the results
of Ref. [35].

Equations (27)–(30) introduce short-range hydrodynamic interactions, corrections to
the Oseen tensor approximation that become most important when the diffusing bodies
are close together. Consequences of short-range hydrodynamic interactions for the diffu-
sion of colloidal spheres have been intensively studied [77]. Because beads of the same
polymer are obliged to remain close to each other, the effects of short-range hydrodynamic
interactions are reasonably expected to be at least as important for polymer dynamics as
for colloid dynamics. Several authors [12,78,79] have developed multiple scattering ap-
proaches for treating polymer–polymer interactions, but none of these developments have
included short-range interactions. Freed [80] previously identified the use of short-range
hydrodynamic interactions as an unexplored possibility in this context.

Some effects of short-range interactions on polymer diffusion have already been
examined. The Oseen tensor Tij effectively approximates the interacting bodies as points,
an approximation conspicuously dubious when treating the diffusion of a linear rod
polymer around its major axis. Bernal [81] models a rod as a shell of small spheres in
order to remove the approximation. The DeWames–Zwanzig singularity [82,83] in the
Kirkwood–Riseman [5] treatment of translational diffusion by a rigid rod was shown by
Yamakawa [84] to be eliminated by including theO((a/r)3) corrections to the Oseen tensor.

Phillies and Kirkitelos [35] made two applications of the short-range hydrodynamic
interaction tensors. First, they calculated the chain–chain hydrodynamic interaction tensors
including bead–bead interactions out to the O((a/r)7) level, both for the chain–chain Tij
and to a higher level for the chain–chain bij. They further calculated the effect of the short-
range hydrodynamic interactions on the diffusion coefficients of a free monomer and for a
monomer bead incorporated into a polymer chain in solution. These effects are entirely
distinct from the contribution of short-range hydrodynamic interactions to the chain–chain
hydrodynamic interaction tensors. Because the beads of a polymer are always close to
other beads of the same chain, at no polymer concentration can the diffusion coefficient of a
chain monomer be as large as the diffusion coefficient of a free monomer. At concentrations
below the overlap concentration, solvent molecules readily penetrate into polymer coils,
but polymer chains do not interpenetrate a great deal. As a result, the addition of polymer
molecules to a dilute solution is more effective at delaying the motion of free monomers
than at delaying the motion of monomer units of a given polymer chain. At polymer
concentrations above the chain overlap concentration, the total polymer concentration is
the same everywhere in the solution, but the correlation hole created by a chain of interest
ensures that the concentration of the other chains, near the beads of the chain of interest, is
never as large as the average concentration of chains in the solution. As a result, the effect
of interchain interactions on the mobility of a given polymer bead is never as large as the
effect of the same interactions on the mobility of a free monomer in the solution.

Higher-order hydrodynamic interactions make contributions of the same nature to
the drag coefficients of a free monomer and a whole chain. However, the contributions to
the free monomer and chain drag coefficients are not equal; nor are they multiplicative,
contrary to the core assumption behind the common practice of normalizing polymer
transport data with small-molecule diffusion coefficient data as a correction for ’monomer
friction effects’. The notion that the concentration dependence for Ds for free monomers or
solvent molecules reveals the concentration dependence of the mobility of monomer units
within a polymer chain is therefore incorrect. However, the effect of interchain interactions



Polymers 2023, 15, 3216 17 of 50

on the free monomer mobility and on the mobility of monomer units of polymers can be
calculated separately.

5. Extended Kirkwood–Riseman Model for the Viscosity

This section considers the contribution to the solution viscosity η from chain–chain
hydrodynamic interactions, as obtained from an extended Kirkwood–Riseman model. We
obtain the lead terms in a pseudovirial expansion for η(c). The underlying hydrodynamic
interactions depend on the interchain distance r as r−2 or r−3, so the convergence of the
pseudovirial expansion’s cluster integrals is potentially delicate. Our general approach
is to apply a velocity field to the solution, and calculate the additional power dissipation
caused by the polymer beads as they move with respect to the solvent.

5.1. Flow Fields from Scattering of a Shear Field

We choose to impose a spatially oscillatory flow field:

u(0)(r) = uo cos(kx) ĵ; (52)

u(0)(r) is the bare velocity field and k is the spatial oscillation frequency. The oscillations
are not time-dependent, so the shear magnitude is |α(x)| = u0k sin(kx). The mean-square
average shear is 〈α2〉 = u2

0k2/2. The shear is assumed to be sufficiently weak that the
average spherical symmetry of the polymer chain is not perturbed.

The effect of the spatial oscillations is to ensure that the total of the external forces,
applied to the fluid to create the flow field, vanishes. At the end of the calculation, we
take the limit k → 0. As seen below, the scattering of the velocity field by the polymer
molecules makes an additional contribution to the flow field, so that the experimentally
measured velocity field will not be the field given by Equation (52). The observable shear
field will include the contributions due to the scattering of the imposed shear field by all
the polymers in the solution.

The power P dissipated by polymer chains in a solution flow is:

P =

〈
M

∑
i=1

N

∑
j=1

fij(vij − u(rij))
2

〉
. (53)

Here, the sum proceeds over all N beads of each of the M chains in some volume V,
with fij being the drag coefficient of bead j of chain i, vij being the velocity of that bead,
and u(rij) being the velocity that the solvent would have had, at the location rij of the bead
in question, if the bead had been absent.

The viscosity increment is extracted from P via the relationship:

dP
dV

= δη

(
∂uy

∂x

)2

, (54)

where the velocity shear was simplified to correspond to the flow field directions described
by Equation (52).

To describe the polymer chains and their motions, we use the same notation as that
introduced in the previous section. Because the fluid motions are not the same as in the
self-diffusion problem, the calculational details change.

Each chain’s center-of-mass translational velocity is the average of the velocities of its
N beads, so:

V (i) =
1
N

N

∑
j=1

vj. (55)
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The translational, rotational, and internal mode components of the chain motion are
independent of each other, so the rotational velocity vectors Ω(i) follow from:

1
N

N

∑
j=1

sj × (Ω(i) × sj) =
1
N

N

∑
j=1

sj × vj. (56)

As in the previous section, the zero-force and zero-torque Equations (35) and (36)
determine how each chain moves.

The applied solvent flow within chain n + 1 is obtained from u(n) via a Taylor expan-
sion around the center of mass of chain n + 1, to wit:

u(n)(Rn + s) = u(n)(Rn) + (s · ∇)u(n)(Rn) +
1
2
(s ·∇)2u(n)(Rn) + . . . (57)

The u(n) are in part determined by a1, the location of the first chain, and those of the
Rj with j < n, these being the displacement vectors taking one from chain 1 to chain n.

For the first chain, after making a Taylor series expansion of the fluid velocity around
the chain center of mass a1 (with sx = s · i and ax = a1 · i), the zero-force condition may
be written:∫

ds f (s)g(s)
(

V (1) + Ω(1) × s + ẇ(s)− u0 cos(kax) ĵ

−α(ax)sx ĵ− 1
2
(s ·∇)2u(0)(a1)− . . .

)
= 0. (58)

Because we are discussing weak shear, f (s)g(s) is spherically symmetric, so only
terms even in s survive integration, leading to:

V (1) = u0 cos(kax) ĵ +O(s2). (59)

Up to terms in (s ·∇)2, the first chain simply moves with the velocity that the solvent
would have had, at the chain’s center of mass location, if the chain were not present.

Substituting for v(1) and u(0), the corresponding zero-torque condition is:

∫
ds f (s)g(s)s× (V (1) + Ω(1) × s + ẇ) =∫

ds f (s)g(s)[s× (u0 cos(kax) ĵ + α(ax)sx ĵ +
1
2
(s ·∇)2u(0)(s)− . . .)]. (60)

We denote
∫

ds f (s)g(s)Q(s) = Fo〈Q(s)〉. Applying an extended series of identities
seen in Ref. [45], one finally obtains:

Ω(1) =
α(ax)

2
k̂, (61)

which is the result of Kirkwood and Riseman [5] for a single chain in a shear. The chain on
the average rotates at half the shear rate at its center of mass.

Chain 1 cannot be stationary at every bead with respect to the fluid. For example, it is
doing whole-body rotation, so some of its beads are moving in directions perpendicular to
the direction of the fluid flow. The fluid flow, bead velocity, and Oseen tensor then combine
to give the fluid flow u(1)(r) induced by the first polymer chain, namely:

u(1)(r) =
∫

ds f (s)g(s)T(r− s) · (v(1)(s)− u(0)(s)). (62)

A Taylor-series expansion of the Oseen tensor is:

T(r− s) = T(r)− s ·∇T(r) +O(s2), (63)
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where:

s ·∇T(r) =
1

8πηo

(
sr̂
r2 +

r̂s
r2 −

s · r̂
r2 (I + 3r̂r̂)

)
. (64)

Upon substituting in Equation (62) for T, V(1), and u(0), and applying identities for
integrals over s, the induced flow is:

u(1)(r) =
FoαS2

8πηor2
xy
r2 r̂. (65)

The process now advances by iteration. u(1)(r) acts through a vector R1 on chain 2
inducing in it a translational velocity:

V (2) =
FoαS2

8πηoR2
1

X1Y1

R2
1

R̂1, (66)

and a rotational velocity:

Ω(2) =
1
2

FoαS2

8πηoR3
1

[(
X2

1 −Y2
1

R2
1

)
k̂ +

Y1Z1

R2
1

ĵ− X1Z1

R2
1

î

]
. (67)

Here, R1 ≡ (X1, Y1, Z1).
The fluid flow that has been double scattered by chains 1 and 2 is:

u(2)(R1, R2) =

+ α

(
FoS2

8πηo

)2 R̂2

R3
1R2

2

[
X1Y2 + Y1X2

R1R2
(R̂1 · R̂2) +

X1Y1

R2
1

[1− 5(R̂1 · R̂2)
2]

]
. (68)

Phillies [45] supplies the corresponding large expressions for V (3), Ω(3), and u(3).

5.2. Power Dissipated by Chains in a Shear Field

We now advance to calculate the power dissipated by the polymer molecules as they
move with respect to the fluid. The simplest case refers to dilute chains in a shear α, for
which Equation (53) becomes:

P =

〈
M

N

∑
i=1

fi

(
V (1) +

α

2
k̂× si + ẇi − u(0)(Ri)− α(x)sx ĵ

)2
〉

. (69)

V (1) and u(0)(R1) are canceled. In the model, internal chain modes are neglected, so
the ẇi does not modify the viscosity. Changing variables from ∑N

i=1 fi to
∫

ds f (s)g(s),
applying needed identities for the integrals on s, and averaging 〈· · · 〉 over chain configura-
tions and positions,

P1 = Nc
FoS2

6
α2. (70)

The average over chain positions is needed because the shear rate depends on the
position. In the above calculation, the limit k→ 0 could have been taken either before or
after the positional average.

We calculated above the scattering of the shear field by a specific first chain to a specific
second chain, etc. The flow field acting on a given bead includes the original shear field and
also all scattered flows that reach that bead. On the same line, the center-of-mass velocity
and rotation rate of a given chain are simply the sums of the center-of-mass velocities and
rotation rates induced by all flows acting on the given chain.
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We now introduce a systematical notation that includes all scattering events. The chain
locations are more useful as variables than the displacement vectors. The flow created at r
by single scattering from a chain at a2 is:

u(1)(R1) ≡ u(1)(a2, r). (71)

Similarly, the double-scattered flow at r due to beads 2 and 3 is u(2)(a2, a3, r), and
so forth.

The total flow field at r due to single scattering of the shear field by all chains other
than the representative chain 1 is:

u(1T)(r) =
Nc

∑
j=2

u(1)(aj, r). (72)

For double-scattered flows, a similar notation arises,

u(2T)(r) =
Nc

∑
j=1
k=2
j 6=k

u(2)(aj, ak, r). (73)

with the restriction on the double sum being that the last chain in the series cannot be
chain 1.

What we next do is to calculate all of the flow fields at the representative chain 1. This
includes the original shear field at chain 1, and the flow fields created at chain 1 by each
of the other chains in the solution, and the flow fields that were created by one chain and
scattered by a second chain before reaching chain 1. We then calculate the power dissipation
due to chain 1, averaged over all locations of all chains, calculating the total shear gradient,
and finally find the contribution of the representative chain 1 to the viscosity increment.

Chain 1 is a representative chain, it could equally be any chain in the solution.
If chain 1 is at r, so r ≡ a1, the u(1)(aj, a1), u(2)(aj, ak, a1),. . . induce chain motions
V (2)(aj, a1), Ω(3)(aj, ak, a1), etc., as calculated above. The zeroth-scattering-order veloci-
ties V (1) ≡ V (1T) and Ω(1) ≡ Ω(1T) are created by the initial shear field. The higher-order
parts of V (nT) and Ω(nT), the parts with n > 1, are due to scattering by all combinations of
other particles, so:

V (2T)(a1) =
Nc

∑
j=2

V (2)(aj, a1) (74)

and correspondingly:

Ω(3T)(a1) =
Nc

∑
j=1
k=2
j 6=k

Ω(3)(aj, ak, a1). (75)

In these sums, the neighboring arguments of a u(n), V (n), or Ω(n) must be distinct.
The total velocity at chain 1 is:

V =
∞

∑
n=1

V (nT), (76)

while for rotation;

Ω =
∞

∑
n=1

Ω(nT). (77)
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The Debye form for the power dissipated by a representative chain is obtained from a
sum over the N beads of the chains:

P =

〈
N

∑
i=1

fi

(
V (1T) + Ω(1T) × si + V (2T) + Ω(2T) × si + . . .

− u(0)(ri)− u(1T)(ri)− . . .
)2
〉

. (78)

We advance with Taylor series expansions in si. As seen above, to lowest order in s,
V(n+1T) and u(nT) cancel term-by-term for all n, so:

P =
N

∑
i=1

fi[Ω
(1T) × si + Ω(2T) × si + . . .− si ·∇u(0)(a1)− si ·∇u(1T)(a1)− . . .]2. (79)

The square generates three sorts of terms. Averaging over chain configurations,

〈(s ·∇)u(n) · (s ·∇)u(m)〉 ≡
〈

∑
(i,j,m)=(x,y,z)

si
∂u(a)

m
∂xi
· sj

∂u(b)
m

∂xj

〉

=

〈
S2

3 ∑
i,m=(x,y,z)

∂u(a)
m

∂xi

∂u(b)
m

∂xi

〉
. (80)

Terms in sisj with i 6= j average towards zero.
In addition:

〈(Ω(a) × s) · (Ω(b) × s)〉 = 2
3

S2Ω(a) ·Ω(b) (81)

and:
〈Ω(a) × s · (s ·∇)u(b)〉 = 〈Ω(a) · s× (s ·∇u(b))〉, (82)

while from the zero torque condition:

〈s× (s ·∇)u(b)〉 = 2FoS2

3
Ω(b+1). (83)

We obtain the general form for the power dissipation, namely:

P =
∞

∑
a=0

∞

∑
b=0

Pa,b (84)

with:

Pa,b =

〈
FoS2

3

[
3

∑
i=1

3

∑
j=1

[
u(aT)

i,j u(bT)
i,j

]
− 2Ω(a+1T) ·Ω(b+1T)

]〉
. (85)

The Einstein derivative notation:

u(aT)
l,j ≡ (∂u(aT) · l̂/∂xj) (86)

(where j, l = 1, 2, 3 represent the three Cartesian coordinates) is in use. The average is over
all chain locations. In the first sum, a 6= b is allowed. For example, a particle rotating at
Ω(2) is moving not only with respect to the driving flow u(1) but also with respect to the
original imposed shear field u(0).

5.3. The Total Shear Field

In the previous subsection, the bare shear field was uo cos(kx) ĵ. The polymer motions
and the flow fields that they create can all be traced back to the bare shear field and subse-
quent scattering events. However, if one performed a viscosity measurement, one applies
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a force, obtains some shear rate, and measures the required force and the corresponding
shear field.

We considered fluid flows and power dissipation created by an imposed shear field
du(0)

y /dx = u0 sin(kx). The imposed field created further flows u(1), u(2), · · · via scattering
from the polymers in solution. All flows are part of the total flow u(T) and its associated
shear, du(T)

y /dx. Physically, only the total flow can be experimentally measured. The
imposed shear is inaccessible to physical observation, so it must be replaced by the total
shear. There is here a physical analogy with the replacement made in calculating the
dielectric constant, in which the induced dipoles and the total electric field including
material contributions must both be calculated, as discussed in this context by Peterson
and Fixman [85].

The shear field at (X, Y, Z), due to scattering by a polymer a displacement −R1
away, is:

du(1)
y (R1)

dx
=

FoS2

8πηR3
1

(
Y2

1
R2

1
−

5X2
1Y2

1
R4

1

)
u0k sin(k(X− X1)). (87)

A similar but more complex form [45] gives the shear transmitted from double scat-
tering through R1 and R2 to a location (X, Y, Z). An ensemble average over all particle
locations, practicable thanks to Mathematica for doing the final integrals, gives the parts of
the total shear arising from single and double scattering. For single scattering, one has:〈

du(1)
y

dx

〉
=

16π

15
F0S2

8πη
cu0k sin(kx), (88)

where c is the number density of polymer molecules. For the double-scattered shear,〈
du(2)

y

dx

〉
= −16π2

75
F2

0 S4

η2 c2uok sin(kx) (89)

Integrals of r−3 over all space do not converge. Because we chose a spatially oscillatory
imposed shear field, in preparation for later taking a small-k limit, we obtained convergent

integrals for 〈 du(1)
y

dx 〉 and 〈 du(2)
y

dx 〉, at least when R1 and R2 are integrated over ranges [a, b],
the limits b→ ∞ and a→ 0 are then taken. From Equations (52), (88) and (89), we obtain
the total shear through second-order concentration contributions, namely:〈

du(T)
y (x)
dx

〉
= −uok sin(kx)

[
1− 2

15
F0S2

η
c +

16π2

75
F2

0 S4

η2 c2 +O(c3)

]
. (90)

5.4. Linear and Quadratic Terms—The Huggins Coefficient

We now calculate seriatim the contributions Pa,b to the dissipated power, in Equation (84).
On dividing out the square of the total shear, Equation (90), a pseudovirial series for the
viscosity is obtained.

The lowest-order term in the series is P0,0. Combining the results above for u(0) and
Ω(1), and taking needed derivatives and integrals:

P0,0 =

〈
Nc

FoS2

3

[
(uok cos(ka1x) ĵ)2 − 2(

1
2

uok cos(ka1x)k̂)2
]〉

. (91)

where 〈· · · 〉 is the ensemble average over-chain center-of-mass locations. Including contri-
butions by all Nc polymer molecules,

P0,0 =
NcFoS2

6
(uok)2

2
. (92)
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The full power series for P is infinite. To evaluate, we must truncate or resume the
series. Here, we advance by truncation. There are two obvious choices of truncation
variable. Terms could be ordered by the number of scattering events that they include.
Terms could also be ordered by how many different particles they include. The lowest-
order truncation gives the terms with zero scattering events and one polymer chain; these
are the terms analyzed by Kirkwood and Riseman. All higher-order truncations are of
mixed order: either they include all terms with a given number of particles but omit some
terms involving a given number of scattering events, or alternatively they include all terms
involving a given number of scattering events, but omit some terms involving a given
number of particles. Higher-order Pa,b includes terms that only involve a few chains but
incorporate many scattering events, because flow fields can be scattered back and forth
between two chains an arbitrary number of times. However, the forms for u(1), u(2), and
u(3) show that each scattering event reduces the interaction range by an additional factor
of 1/r3. By analogy with the equilibrium theory of electrolyte solutions, we retain the
longest-range interactions, in which a u(n) couples n + 1 distinct chains. These interactions,
the ring diagrams, provide the leading terms of Pa,b. They describe scattering by a series
of scattering chains at a2, . . . , aa, finally reaching chain 1 at a1. Particle 1 is simply a
representative particle; we compute all the scattered flows acting on particle 1, and use
them to compute the total power dissipated by chain 1.

The model here leads to a power series in c[η], thus agreeing with the phenomenological
observation that [η] is a good reducing variable for c. P0,0, evaluated above, is proportional
to (c[η])1. In Pa,b, in the factors u(aT)

i,j u(bT)
i,j and Ω(a+1T) ·Ω(b+1T), the chains in the a and

b terms may be the same or may be entirely or partly different. For each independent aj,
the ensemble average yields a factor Nc, which is the number of different polymer chains
that j could have represented. Each chain appearing in one of the ui,j corresponds to a
scattering event, each event giving a factor FoS2/ηo. The leading terms of the Pa,b are thus
(NcFoS2/ηo)a+b ∼ (c[η])a+b, so the power series for P itself is an expansion in powers of c[η].

At long range, the hydrodynamic interaction tensors describing the Ω(n) and u(n)

depend on interparticle spacings as r−3. Divergences were avoided because we took a
sinusoidal imposed flow ∼ uo cos(kx) and then took the long-wavelength k → 0 limit.
The hydrodynamic interaction tensors also diverge at short range. We supply an effective
short-range cutoff, because the physical u(n) and Ω(n) are finite at small r. Peterson
and Fixman [85] proposed a related cutoff, namely that two overlapped chains were
approximated as moving as a rigid dumbbell.

We now compute the O(c2) contributions to η, these being the Pa,b with a + b = 1 or
a = b = 1. Terms with two chains and more scattering events are allowed by the formalism
but will be smaller because the interactions will be shorter-ranged. For a + b = 1:

P1,0 = P0,1 =
∫

da1 da2 . . . daNc exp(−β(WNc − ANc)×

[
Nc

∑
p 6=q=1

FoS2

3
(−2Ω(1)(ap) ·Ω(2)(aq, ap) +

3

∑
i,j=1

[
u(0)

i,j (ap)u
(1)
i,j (aq, ap)

]
)

]
. (93)

Here, kB is Boltzmann’s constant, β = (kBT)−1, T is the absolute temperature, WNc

is the potential energy, ANc is the normalizing factor, and the p and q label chains. The
average over internal chain coordinates gives an S2.

All terms of the sum over p and q are identical save for the label. The ensemble average is:

P1,0 =
FoS2Nc(Nc − 1)

3

∫
da1 da2

[(
3

∑
i,j=1

[
u(0)

i,j (a1)u
(1)
i,j (a2, a1)

]

−2Ω(1)(a1) ·Ω(2)(a2, a1)
) ∫

da3 . . . daM exp(−β(WM − AM)

]
. (94)
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The non-zero derivative of u(0) is:

u(0)
,x = −uok sin(ka1x) ĵ (95)

where a1x is the x component of a1. The matching derivative of u(1) is:

u(1)
,x = uok sin(k(a1x − X1))

FoS2

8πηo

[(
Y1

R4
1
−

5X2
1Y1

R6
1

)
R̂1 +

X1Y1

R5
1

î

]
. (96)

a1x refers to the final particle in the scattering sequence; R1 ≡ (X1, Y1, Z1) points from the
penultimate to the ultimate particle of the scattering sequence.

The angular velocities appear in Equations (61) and (67). In these equations, α is the shear
at the first particle of the scattering series, namely −uok sin(ka1x)ĵ and uok sin(k(a1x − X1))ĵ,
respectively. The identity sin(ka1x) sin(k(a1x − X1)) = (− cos(2ka1x − kX1) + cos(kX1))/2
is then applied. The ensemble average only depends on a1 through cos(2ka1x− kX1), which
vanishes on averaging over a1.

Recalling the standard form:

g(2)(r)
V2 =

∫
da3 . . . daM exp(−βW(r, a3, . . . aM))∫
da1 . . . daMc exp(−βW(r, a3, . . . aMc))

(97)

for the radial distribution function, here with r = a2 − a1,

P1,0 = −
(

u2
ok2

2

)(
Nc(Nc − 1)(FoS2)2

24πηoV

) ∫
dR g(2)(R)

cos(kX)

R3

[
X2 + Y2

R2 − 10X2Y2

R4

]
. (98)

In the radial integral, the lower cutoff is not required for P1,0. Without the cos(kx),
the

∫
dR diverges at a large R; the angular integral vanishes; and the

∫
dR is improper.

The proper long-wavelength limit results from taking
∫

dR and then taking k → 0. If
the shear were linear and not oscillatory in space, P1,0 would be undefined, as observed
three-quarters of a century ago by Saito [10].

Choosing k to be parallel to the X axis, a useful identity is [86]:

cos(k ·R) = 4π
∞

∑
l=0

il + (−i)l

2
jl(kr)(4π(2l + 1))1/2Yl0(θ). (99)

Here, jl is a spherical Bessel function, and θ is the angle between k and R.
On invoking spherical coordinates, recourse to Mathematica gives:

P1,0 = −ηo
N2

c − Nc

V
48π

5

(
FoS2

6ηo

)2(u2
ok2

2

)
. (100)

How can this term be negative? Mathematically, in the intrinsically positive form
(a− b)2 the term −2ab can be negative; in the calculation here, P1,0 can play the role of a
−2ab. Physically, Equation (100) is negative because u(1) causes chain 1 to rotate, thereby
reducing the velocity difference between chain 1’s beads’ velocities and u(0), so dissipation
is reduced by this term.

We now turn to P1,1. Writing Ω(2T) and u(1T) as sums over all the other particles in
the system,

P1,1 =

〈
NcFoS2

3

(
−2

Nc

∑
p,q=2

Ω(2)(ap, a1) ·Ω(2)(aq, a1)+

Nc

∑
p,q=2

3

∑
i,j=1

[
u(1)

j,i (ap, a1)u
(1)
j,i (aq, a1)

])〉
. (101)
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Only the self (p = q) terms of Equation (101) are significant; the distinct (p 6= q) terms
give an effect cubic in concentration. To O(c2):

P1,1 =
Nc(Nc − 1)FoS2

3V

∫
da1 da2 g(2)(a1, a2)

(
Ω(2)(a2, a1) ·Ω(2)(a2, a1)

+
3

∑
i,j=1

[
u(1)

j,i (a2, a1)u
(1)
j,i (a2, a1)

])
+ . . . (102)

The convergence here at large R is sufficiently strong that the integrals and the k→ 0
limit can be exchanged, giving:

P1,1,s =
c2VFoS2

6
α2
(

FoS2

8πηo

)2

×
∫

V
dR

1
R6

[
6X2Y2 − X4 −Y4 + Z4

R4 +
2X2 + 2Y2 − Z2

R2

]
g(2)(R). (103)

P1,1,s requires a short-range cutoff a for the convergence of
∫

V dR. Such a cutoff is
physically appropriate. Equations (65) and (67) represent the long-range parts of series
expansions. Short-range terms that prevent divergence are represented herein by the cutoff
distance. Inserting such a cutoff into P1,0 has little effect.

Via integration, one obtains:

P1,1,s =

(
FoS2

8πη

)2 4πFoS2

15a3 c2 (uok)2

2
. (104)

Combining Equations (90), (92), (100) and (104),

η

〈du(T)
y

dx

〉2

= ηo

[
1 +

FoS2

6ηo
c +

(
−4πF2

o S4

15η2
o

+
F3

o S6

240πη3
o a3

)
c2
]
×

[
1− 2

15
F0S2

η
c +

16π2

75
F2

0 S4

η2 c2

]−2
〈du(T)

y (x)
dx

〉2

. (105)

In terms of the series kH of:

η/ηo = 1 + [η]c + kH [η]
2c2, (106)

the Huggins coefficient being kH ,

[η] =
13FoS2

30ηo
(107)

and:

kH =
88− 240π − 384π2

169
+

225[η]
4394πa3 . (108)

The cutoff radius a is a crude approximation. A sound treatment of hydrodynamics of
interpenetrated random coils is needed. One reasonably expects a to be moderately smaller
than S.

6. From Pseudovirial Series to Higher Concentrations

The above discussion shows how power series expansions may be used to determine
the concentration dependence of Ds and η. The series approaches face the challenge that
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at elevated concentrations more and more terms are needed in order to obtain accurate
predictions, while at the same time, the scale of the calculations required to obtain additional
forms becomes larger and larger. To overcome this difficulty, alternative approaches to
computing Ds(c) and η(c) at large c have been employed. We here discuss two, namely
self-similarity and the Altenberger–Dahler positive-function renormalization group. Self-similarity
advances by physical arguments about chain–chain interactions. The positive-function
renormalization group approach proposes to advance by noting that Ds(c) and η(c) both
depend on concentration c and on a coupling parameter R, and their values at large c and
some R are equal to their values at a smaller c and some other value of R, the values of Ds(c)
and η(c) being easier to compute at the smaller c and some other R. The positive-function
renormalization group advances by calculating the needed “other” R.

6.1. Self-Similarity Approach

This subsection considers the original [23] self-similarity derivation of the universal
scaling equation for polymer self-diffusion. The derivation has several basic assumptions.
First, at all concentrations, the dominant polymer–polymer interactions are taken to be
hydrodynamic, with chain crossing constraints provided at most secondary corrections.
The interchain hydrodynamic interactions are approximated as being the same, except for
numerical coefficients, as the hydrodynamic interactions between hard spheres. Second, the
effects of sequential infinitesimal concentration increments on Ds are said to be self-similar,
whencefrom the name of the derivation. Third, polymer chains in good solvents are taken
to contract as polymer concentration is increased.

The form of the hydrodynamic interactions between polymer chains has been calcu-
lated above. A velocity V (1) of the first polymer chain in a sequence creates a flow field
u(1) in the solvent. The flow field acts on chain 2. The translation and rotation of chain
2 create a further flow field u(2) and so forth. At every step after chain 2, the final flow
field u( f ) can act back on chain 1, inducing in chain 1 an additional translational velocity
δV = u( f ), with u( f ) as evaluated at chain 1. Take fch = 6πηRh to be the drag coefficient
of the first chain. The force the first chain would apply to the solvent, if it moved relative
to a quiescent solution, is f o

chV (1). Multiplying through the entire calculation by f o
ch, the

force the final flow field would exert back on chain 1 in response to chain 1’s motions
is f o

chV ( f ). In Brownian motion, no forces external to the polymer–solvent system act on
the polymer chains. The chains move because hydrodynamic fluctuations create flows in
the solvent, the chains being moved by the fluctuations, but the fluctuation–dissipation
theorem requires that the correlations in the displacements arising from the hydrodynamic
fluctuations must be the same as the correlations in the displacements that would appear if
chain 1 was subject to an external force that moved chain 1 in the same way with respect to
the solvent.

The self-diffusion coefficient of a polymer is determined by its drag coefficient fch via
the Einstein equation Ds = kBT/ fch. fch differs from f o

ch in that it includes contributions
to the hydrodynamic drag on a chain due to the chain’s interactions with other chains. To
determine the concentration dependence of Ds, it is sufficient to determine the concentration
dependence of fch.

The ability of chain 2 to affect the drag coefficient of chain 1 is determined by the
strength of chain 2’s hydrodynamic interactions with the solvent, here approximated by the
drag coefficient fch and by the coupling coefficient α describing the strength of interchain
interactions. We advance by considering the effect of successive infinitesimal concentration
increments on fch. The first increment δc gives us:

fch(δc) = fch(0) + α fch(0)δc = fch(0)(1 + αδc). (109)

Here, we have applied the approximation that the change in fch due to the first
concentration increment is proportional to fch of the chains in the increment. We now apply
a second infinitesimal concentration increment δc. The self-similarity step is to assert that
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the chains of the second concentration increment affect not only the chain of interest but
also equally the chains of the first concentration increment, so that:

fch(2δc) = fch(0) + α fch(0)δc + α fch(δc)δc. (110)

On the right-hand-side of the equation, the first two terms are fch(δc). The third term
is the effect of the second concentration increment δc, written in terms of the drag coefficient
fch(δc) of the chain at concentration δc. Moving the first two terms from the rhs to the lhs
of the equation and dividing by fchδc, one finds:

fch(2δc)− fch(δc)
fch(δc)δc

= α. (111)

In the limit δc→ 0, the left side is recognized as the logarithmic derivative of fch(c),
so the integration gives:

fch(c) = fch(0) exp
[∫ c

0
dc α(c)

]
. (112)

and correspondingly:

Ds(c) = Ds(0) exp
[
−
∫ c

0
dc α(c)

]
. (113)

At the time of the original derivation of the hydrodynamic scaling model [23] on
the basis of self-similarity, the chain–chain hydrodynamic interaction tensors seen above
had not yet been obtained. It was instead proposed that Equations (25) and (27), which
describe the mobility µii for the pairs of hard spheres, are dimensionally correct for chains,
even though they do not supply precise numerical coefficients, and are therefore good as a
first approximation to the chain–chain hydrodynamic interaction tensors. The conclusion
was that:

α(c) = QRh1R3
g2. (114)

Here, Q includes numerical coefficients and the average of r̂ij r̂ij/r4
ij over the chain–

chain radial distribution function, while the sum over spheres in Equation (25) becomes
the
∫

dc of Equation (113).
The final approximation was to estimate the concentration dependence of the chain

radii from the results of Daoud et al. [57]. In the original calculation [23], the radii were
taken to scale as:

R2 ∼ Mc−x, (115)

with x = 1/4. The original prediction only referred to long chains with c greater than
some overlap concentration c∗. For long chains at lower concentrations, the degree of chain
contraction was predicted to be less. For short chains, the Daoud et al. model predicts
x ≈ 0. Combining the above three equations, one finds the prediction:

Ds(c) = D0 exp(−Q′Mc1−2x). (116)

Q′ includes Q and other numerical coefficients arising from the integration. Compar-
ing with the universal scaling Equation (5), if one identifies 1− 2x = ν, one predicts:

(a) For large polymer chains, ν = 0.5, except perhaps at very low concentrations.
(b) For short polymer chains at all concentrations, ν = 1.0.
(c) For the probe diffusion coefficient Dp, the radius Rh1 of the probe does not depend on

the concentration, so ν = 1− 3x/2 ≈ 5/8.

Finally, identifying α of Equation (5) with Q′M, one predicts α ∼ Mδ for δ = 1.0. As
discussed below, all of the above predictions have been experimentally confirmed.
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6.2. Positive-Function Renormalization Group

This subsection develops the mathematical structure of the Altenberger–Dahler positive-
function renormalization group (PFRG) approach [49–53]. In Section 7, the approach
is directly applied to treat the self-diffusion coefficient and the low-shear viscosity. In
Section 8, a fixed-point structure for the viscosity is inferred and then applied via an ansatz
to infer the frequency dependencies of the loss and storage moduli.

Altenberger and Dahler noted that renormalization group methods have been invoked
in several branches of physics to deal with superficially different mathematical challenges.
Renormalization group methods were inserted into high-energy theory to cope with the
difficulties arising from cutoff wavelengths and the presence of infinities in series expan-
sions. Renormalization group methods appear in statistical mechanics in the applications
of self-similarity methods, such as block renormalization, where the methods are used to
eliminate insignificant fine details from the descriptions of critical fluctuations. Of more sig-
nificance here, renormalization group methods can be used to extend the range of validity
of lower-order power series expansions. The effort here pursues the last of these uses. We
are not facing divergences or systems with a multiplicity of unimportant short-range length
scales. We have on hand a low-order power-series expansion that would be inordinately
tedious to extend to a very high order.

Because the Altenberger–Dahler PFRG method has not been used extensively, we first
sketch the physical rationales that lead to the method and then consider the mathematical
forms. The starting point is that many physical properties of a solution can be written as a
pseudovirial expansion, e.g.,

A(c) = ao + a1c′ + a2c′2. (117)

Here, A is the physical property, c′ is the solute concentration in physical units, and the
ai are the pseudovirial coefficients. The ai are typically obtained from cluster expansions.
It is not claimed—that would be incorrect—that all concentration-dependent physical
properties have pseudovirial expansions. A is actually a function of two parameters,
namely the concentration c′ and a coupling parameter R, so one may write A = A(c′, R).
The coupling parameter R determines the values of the ai. Cases in which there are multiple
coupling parameters are included by treating R as a vector. The c→ 0 limit of A is simply ao.
The limit of noninteracting solute molecules can also be obtained as R→ 0, in which case,
once again, A = ao. The introduction of a reference concentration cr and dimensionless
concentration units c = c′/cr leads to:

A(c) = ao + [a1cr]c +
[

a2c2
r

]
c2. (118)

At elevated concentrations, the above pseudovirial series become inaccurate. The
familiar virial approach is to improve the accuracy of the series by adding additional terms
a3, a4, etc. In the PFRG approach, the series of Equation (118) is taken to be exact, but the
bare coupling parameter R is replaced with a dressed, concentration-dependent coupling
parameter R̄(R, c). The values of R̄ are chosen so that the ai calculated using R̄, when
inserted into Equation (118), give the correct values for A even at large concentrations.

The Altenberger–Dahler calculation has two major parts. First, constraints on the
behavior of A are used to determine functional requirements for the dressed coupling
parameter R̄(R, c). Second, at low concentrations, R̄ = R to high precision. A group of Lie
differential equations and infinitesimal generators for the dependencies of A and R̄ on c are
then determined by the group properties of R̄. The polymer calculation has three further
parts. First, the multichain Kirkwood–Riseman model described above is used to obtain
the actual ai, including the dependencies of the ai on R. These dependencies determine
Lie group generators and equations needed to compute R̄ and A for Ds or η. For an object
of fixed R, numerical integration determines A(c) (here, either Ds(c) or η(c)) at the level
of precision of the input calculations. Finally, applying the results of Daoud et al. [57] and
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King et al. [58], on chain contraction at elevated polymer concentration, one obtains an
approximation to the universal scaling equation for polymer self-diffusion. The approxima-
tion is valid to a specific order in the dressed coupling parameter R̄.

To open the renormalization group calculation, the constraint on A is that it is positive
definite, never zero or negative, so A may always be written in the form A = exp(B). It is
convenient to transform A(c′, R) into dimensionless units by normalizing with respect to
A at some non-zero concentration co, namely:

Ā(c′, R) = A(c′, R)/A(co, R). (119)

Here, Ā(c′, R) is the normalized and hence dimensionless transformation of A(c′, R).
co and cr are independent, but for simplicity, we will choose co = cr in the following.
Because Ā is also positive definite, it may be written as:

Ā(c′, R) = exp(
∫ c′

co
dsL(s, R)), (120)

where:

L(s, R) =
∂ ln(Ā(s, R))

∂s
. (121)

Equations (120) and (121) are an identity. They enforce, and are valid because of, the
requirement that Ā(c′, R) is positive definite.

In the integral of Equation (120), we introduce an intermediate concentration z′, and
divide the one integral into two, giving:

Ā(c′, R) =
(

exp(
∫ z′

co
dsL(s, R)

)(
exp(

∫ c′

z′
dsL(s, R)

)
. (122)

We now go to dimensionless concentration units, choosing co as a reference concentra-
tion with c = c′/co, and make a change of variables s→ yz, finding:

Ā(c, R) = Ā(z, R)
[

exp
(∫ c/z

1
dyL(yz, R)

)]z

. (123)

Because z′ (in physical units) is intermediate between co and c′, z (dimensionless units)
must be ≥1. Here, exp(az) = (exp(a))z has been applied. The above equation supports
the introduction of a dressed coupling parameter R̄. The dressed coupling parameter is
chosen so that, at each z and R,

L(yz, R) = L(y, R̄(z, R)), (124)

so that L at an elevated concentration yz can be replaced by L at a lower concentration
y by replacing R with the appropriate R̄. There is an implicit assumption that such an R̄
exists. A representative contrary outcome would be that L(y, R) saturates with changes in
R, so that there is no value of R̄ that satisfies Equation (124). This issue does not arise for
the calculation here, but should be kept in mind as a general possibility. Replacing R with
R̄ has an analogy in the direct self-similarity calculation of Ds, namely in those calculations
where each chain’s bare drag coefficient fo was replaced with a dressed drag coefficient f
of the chain at the concentration of interest.

On applying Equation (124) to Equation (123), and applying exp(ln(A)) = A, one has:

Ā(c, R)
Ā(z, R)

=
[

Ā
( c

z
, R̄(z, R)

)]z
. (125)

In order for this equation to be correct, we must be working in dimensionless units, so
that the lower bound of the integral in Equation (123) is unity. Equation (125) represents a
numerical renormalization of Ā(c, R), in that Ā(c, R)/Ā(z, R) = 1 if c = z. Equation (125)
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also represents a group property, namely showing how the effect on Ā of a change in the
concentration c can be replaced with a different change in the concentration c together with
a corresponding dressed coupling parameter R̄.

Multiplying Equation (125) by Ā(z, R), and adopting a new concentration variable via
c→ cz, one has:

Ā(cz, R) = Ā(z, R)[Ā(c, R̄(z, R))] (126)

The form of the left-hand-side of the equation forces the right-hand-side of the equa-
tion to be symmetric under the interchange of variables c and z. In consequence, severe
constraints are placed on the possible functional forms for R̄. In particular, as shown
by Altenberger and Dahler [50], in Appendix 1 of their paper, Equation (126) forces
the requirement:

R̄(c, R) = R̄(c/z, R̄(z, R)). (127)

We have now finished the first part of the derivation. We made two assumptions, the
first being that Ā as a variable is never ≤ 0, and the second being that there is an effective
coupling parameter R̄ that is consistent with Equation (125).

In the second part of the derivation, we show that Equations (125) and (127) lead to differ-
ential equations for R̄. Note that, at the reference concentration co, one has
R̄(co, R) = R̄(1, R) = R, which gives the boundary condition for integrating the differential
equations we are about to obtain. The differential equations are obtained from
Equations (125) and (127), beginning by taking derivatives with respect to c. From the deriva-
tive of Equation (125), one sets c = z and notes Ā(1, R̄(z, R)) = 1 (directly following from
Equation (125)), leading for u = c/z to:

∂ ln(Ā(z, R))
∂z

=
∂Ā(u, R̄(z, R))

∂u

∣∣∣∣
u=1

= γ(R̄(z, R)). (128)

γ(R̄(z, R)) is a differential generator. At z = 1, the generator becomes:

∂Ā(z, R)
∂z

∣∣∣∣
z=1

= γ(R). (129)

From the derivative of Equation (127) with respect to c, upon setting c = z, one obtains:

∂R̄(z, R)
∂ ln(z)

=
∂R̄(u, R̄(z, R))

∂u

∣∣∣∣
u=1

= β(R̄(z, R)) (130)

as the definition of β. Alternatively, the definition in Equation (130) can be obtained from
Equation (128) by taking a derivative of γ with respect to z, leading to:

∂R̄(z, R)
∂z

=
(Ā′′(z, R))/Ā(z, R)− (Ā′(z, R)/Ā(z, R))2

∂γ(R̄(z, R)/∂R̄(z, R))
. (131)

Here, Ā′(z, R) = ∂Ā(z, R)/∂z and Ā′′(z, R) = ∂2 Ā(z, R)/∂z2. On setting z = 1, a
further result for β is obtained from the above two equations, namely:

β(R) =
Ā′′(1, R)/Ā(1, R)− (Ā′(1, R)/Ā(1, R))2

(∂γ(R)/∂R̄)
. (132)

This final equation gives β as a function of R rather than R̄, at least at the initial
concentration. β(R̄) and γ(R̄) provide the infinitesimal generators for Lie equations for the
concentration dependencies of Ā and R̄.

A variety of methods for integrating these equations are available. The calculation
requires as inputs A and its derivatives evaluated at z = 1. Altenberger and Dahler [49,50]
proceed by approximating A with its low-order series expansion. For reasonable choices of
the initial concentration (in physical units) co, this approximation is not very demanding.
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Indeed, Altenberger and Dahler use a cubic approximation for P of a hard sphere gas,
choose an initial volume fraction co = 0.16, and obtain the P predicted by an eight-term
virial fraction for c up to 0.62.

7. From Renormalization Group to Universal Scaling

In this section, we advance from the hydrodynamic calculations of Sections 4 and 5
and the positive-function renormalization group approach developed in Section 6.2 to
extrapolate the concentration dependence of Ds and η. We invoke the Altenberger–Dahler
positive-function renormalization group and Equation (51) for the concentration and chain
radius dependencies of Ds to extrapolate Ds(c) to larger concentrations. Equation (51)
includes both Rh and Rg; these are approximated as being a single radius R′. We identify
the concentration variable of the renormalization group calculation as the physical concen-
tration c, and choose R = R′/Ro as the dimensionless coupling parameter. Ro is identified
as R′ at c = 1.

Equation (51) is now:

Ds(c) = Do(1 + aR4c + bR7c2) (133)

All dependence on R is now explicit. The renormalized pseudovirial coefficients are:

a = − 9
16

4π

3ao
R4

ocr (134)

and:

b = −9.3 · 10−4

ao
(

4π

3
)2R7

oc2
r . (135)

At concentration cr, c = R = 1, and c and R are both dimensionless. These equations
differ from the expressions employed by Altenberger and Dahler [49,50] in one significant
way. In the earlier calculations, c and R always appeared as the product cR, so that the
nth term of their virial expansion depended on R as Rn. Here, the c and R dependencies
are distinct.

Ds is transformed into Ds by dividing by Ds(1) = Do(1 + aR4 + bR7). A of the prior
section is identified as Ds. All dependence of Ds on R can be moved to the numerator via
the expansion (1− x)−1 → 1 + x + x2 + . . .. So long as one truncates at R7, which is the
highest-order limit of the original hydrodynamic series, one finds:

Ds(c) = 1 + aR4(c− 1) + bR7(c2 − 1). (136)

Identifying the concentration variable z of the prior section with c here, γ(R) arises
from the logarithmic derivative of Ds(c) as:

γ(R) = aR4 + 2bR7. (137)

The other generator, β(R), is determined by Ds(c), its first and second derivatives
evaluated at c = 1, and ∂γR/∂R to be:

β(R) =
2bR7 − (aR4 + 2bR7)2

4aR3 + 14bR6
≈
(

bR7

4aR3

)
. (138)

The final approximation follows from a � b after expanding the denominator in
powers of b/a, applying a geometric series expansion, and only retaining terms of order
O(R6) and lower. Altenberger and Dahler now offer the approximation that the dependence



Polymers 2023, 15, 3216 32 of 50

of ∂R(c, R)/∂c on R for c 6= 1 is given by the dependence of β(R) on R at c = 1 by replacing
R in the latter with R. With this approximation:

∂R
∂ ln c

=
b R6

2a
. (139)

Noting R(c) |c=1= 1, an integral with respect to ln(c) yields:

R(c) =

[
1− 3

2
b
a

ln(c)

]−1/3

. (140)

b and a have opposite signs, with b/a � 1, and c ≥ 1, so R(c) is well behaved. The
prediction for Ds(c) is:

Ds(c) = Ds(1) exp
(∫ c

1
dx (aR4

(x) + 2bR7
(x))

)
. (141)

with the functional behavior of R(x) appearing in Equation (140). Ref. [41] performed
a numerical integration of these equations, showing that Ds(c) is very nearly a simple
exponential in c, and that the calculated Ds(c) is very nearly independent of cr so long as
cr is small enough that Ds(cr) ≈ 1. The reference further noted evidence from the viscosity
measurements that the renormalization group development could have an interesting
fixed-point structure, but that here only the fixed point at the origin would be taken
into account.

As the final step in the analysis, the issue of the concentration dependence of Rg
was considered at the level of approximation of the Daoud formula, in Equation (115).
The proposed approach to calculating Ds(c) was to imagine using the positive-function
renormalization group separately for each final concentration, in each case performing
the process with chains whose size was independent of concentration but which were the
correct size for the target final concentration. The needed integration of Equation (141) was
analytically performed by limiting terms to the O(R4) level, leading to:

Ds = Do exp(−aR4
gc1) (142)

or finally:
Ds = Do exp(−aR4

oc1−2x). (143)

which is the universal scaling equation. The above analysis finds that this result is the
O(R4) approximation of a more accurate result.

Reference [41] also demonstrates that exponentials and stretched exponentials in c and
R are invariants of the positive-function group transformation: If you start with a stretched
exponential in c and R, you end up with a stretched exponential in c and R as the outcome
of the renormalization transformation.

8. Polymer Solution Viscoelasticity from Two-Parameter Temporal Scaling

We now make a change of pace. The use of renormalization group procedures to
extrapolate Ds(c) and η(c) to elevated concentrations suggested using renormalization
group approaches to infer the frequency dependencies of those properties. In the above,
the calculations of hydrodynamic interactions were primary, with the self-similarity or the
positive-function renormalization group being used to extend those calculations to elevated
polymer concentrations. In this section, we focus almost entirely on the renormalization
group properties of the calculation, deducing the aspects of the fixed-point structure of
the renormalization group for the viscosity from empirical evidence. We then extend this
analysis to a two-parameter form, thereby inferring the functional form for the frequency
dependence of the loss and storage moduli.
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The approach was put into effect in Ref. [42], which introduced a two-parameter
temporal scaling to calculate how the loss modulus G′′(ω) depends on frequency. The
approach was entirely successful so far as it went, but has limitations that still need to be
overcome. First, temporal scaling predicts the functional dependence of G′′(ω) and there-
fore the storage modulus G′(ω) on ω; however, in its current form temporal scaling gives
no information on any numerical parameters found in the predicted functions. Temporal
scaling does not yet predict how those parameters depend on polymer concentration or
molecular weight, let alone what values the parameters have. Second, temporal scaling
does not invoke a molecular model of a polymer solution. As a result, its predictions are
substantially noncommunicating with the treatments of polymer viscoelasticity that begin
with detailed models for molecular motions and intermolecular forces, such as those by
Graessley [87,88], Bird et al. [89,90], and Raspaud et al. [91].

Two-Parameter Temporal Scaling: Fundamental Approaches

The two-parameter temporal scaling approach has five theoretical parts and an experi-
mental confirmation.

The five theoretical parts lead us to the frequency dependence of g′′(ω). First, the
renormalization group derivation of the universal scaling equation for Ds is used to treat
the low-shear solution viscosity η. Second, the phenomenological [21] behavior of the solu-
tion viscosity is examined. Third, the experimental phenomenology for η is used to infer
the fixed-point structure of the full renormalization group treatment of η(c). Fourth, we
advance from one- to two-parameter scaling by recognizing that η(c) is the low-frequency
limit of η(c, ω). Fifth, from the inferred fixed-point structure of the associated renormaliza-
tion group, we infer how η(c, ω) depends on ω at a fixed c. Finally, a comparison is made
with the experimental literature, finding that the two-parameter temporal scaling approach
correctly predicts the observed frequency dependencies. In more detail:

First, as discussed above, the hydrodynamic scaling model for self-diffusion leads to
power series for Ds, which the positive-function renormalization group approach trans-
forms into an exponential concentration dependence for Ds. The corresponding hydrody-
namic calculation for the viscosity, and the same renormalization group approach, leads to
an exponential concentration dependence for η. In each case, the effect of chain contraction
with increasing polymer concentration is to replace the simple-exponential concentration
dependence with a stretched-exponential concentration dependence.

The remainder of the analysis only invokes the renormalization group aspect of the cal-
culation, and depends not at all on the assumption of the hydrodynamic scaling model that
interchain interactions in the solution are dominated by hydrodynamics. If interchain inter-
actions were instead dominated by chain crossing constraints or by cryptocrystallites [92], the
low-concentration behavior was still a power series in concentration, the renormalization
group part of the analysis would only suffer quantitative changes.

Second, there is an extensive experimental phenomenology for polymer solution
viscosity. Reviews [21,59] of nearly the entirety of the phenomenological literature on η(c)
find that η(c) indeed has the predicted stretched-exponential concentration dependence.
In many but not all systems, there is an elevated concentration c+ above which η instead
depends on c as a power law:

η = η̄cx (144)

in c and not as a stretched exponential in c. Here, η̄ and x are phenomenological constants.
We describe the transition at c+ as the solutionlike-meltlike transition. When the transition
occurs, the transition concentration is typically c+[η] ≈ 24− 40, with [η] being the intrinsic
viscosity. In other systems, c+[η] is found to be as large as 150 or as small as 4. In yet other
systems, no transition is observed. In all systems, the stretched-exponential curve admits
Equation (144) as a local tangent. This local tangential behavior is not the solution-like–
melt-like transition.

Milas et al. [93] and Graessley et al. [94] report viscoelastic parameters in various
studies, including the low-shear viscosity, steady-state compliance Jo

e , and characteristic
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shear rate γ̇r for non-Newtonian behavior for the solutions of linear [93,94] and star poly-
mers [94]. These results were systematically reanalyzed [37]. For each system examined,
all viscoelastic parameters measured consistently showed either the same solution-like
behavior or the same melt-like behavior. When a solution-like–melt-like transition occurred,
it occurred at the same concentration for all parameters measured.

Third, the transition at c+ might be envisioned to have either a physical or a mathe-
matical basis. As a physical transition, at c+, there could be a crossover in the nature of
the dominant force controlling the solution dynamics. For example, the crossover could be
from domination by hydrodynamic interactions at lower concentrations to domination by
chain crossing/entanglement interactions at elevated concentrations. On the other hand, as
a mathematical transition, there could be a change in the nature of the mathematical solu-
tions, for example, because the identity of the fixed point controlling the renormalization
process changes with increasing c.

A physical transition might plausibly occur at the same c[η] in different systems
(because chain crossing constraints are not sensitive to the chemical details of the chain
structure), covering a wide range of concentration (because near c+, the dominant forces
would be competitive), and show a discontinuity in dη/dc near c+ (because there is no
reason for the different forces that dominate below and above c+ to give the same slope as
c→ c+). On the other hand, a mathematical transition might plausibly occur over a narrow
range of concentrations, occur at very different c[η] in different systems, and be analytic
(first derivative dη/dc continuous) at c+.

As it happens, the transition in the concentration dependence of η shows precisely the
traits expected for a mathematical transition. Furthermore, a transition that is rather similar
to the solution-like–melt-like transition is seen for η(c) of spherical microgel melts and
hard-sphere colloids, so the transition cannot be due to any hypothetical crossover to chain
reptation at elevated polymer concentrations. After all, spheres cannot reptate. For the
purpose of motivating the investigations of the remainder of this section, we take as a postulate that
c+ marks a mathematical fixed-point transition. The low-concentration stretched-exponential
behavior corresponds to the fixed point at c = 0, while the elevated-concentration power-
law behavior corresponds to a fixed point at some large concentration.

Fourth, the discussion thus far has taken η to be a function of the single variable c.
However, polymer solutions are viscoelastic. Their viscoelastic responses are characterized
by a frequency-dependent loss modulus G′′(ω) and a frequency-dependent storage mod-
ulus G′(ω). The moduli are also concentration-dependent, but in the usual convention,
one writes G′′(ω) and not G′′(ω, c). The viscosity η(c) is the low-frequency limit of a
frequency-dependent viscosity:

η(c, ω) =
G′′(ω)

ω
. (145)

The discussion so far considers η(c), so when we extend to frequency dependence,
we consider G′′(ω)/ω and G′(ω)/ω2 and not G′′(ω) or G′(ω). G′′(ω)/ω and G′(ω)/ω2

have the appropriate property that they go to constants when ω → 0.
Fifth, it is assumed that η(c, ω) is dominated by the same fixed points that determine

the behavior of η(c, ω)|ω→0. Consider a (c, ω) plane, the c axis being horizontal and the
ω axis being vertical. If one proceeds away from (c, ω) = (0, 0) by moving along the line
ω = 0, one observes the dependence of η(c, 0) on c. With increasing c, one eventually
encounters the solution-like–melt-like transition. At smaller c, η(c, 0) depends on c as a
stretched exponential, corresponding to a renormalization group fixed point at the origin.
Above the transition, η(c, 0) depends on c as a power law in c, corresponding to the
dominance of a second fixed point that is not at the origin. If, instead of staying at ω = 0,
one instead advanced away from the ω = 0 axis by moving perpendicular to the ω = 0 axis,
thereby staying at fixed c, the same fixed points would control the behavior of η(c, ω). The
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ω dependence would then be a stretched exponential at smaller ω, due to the fixed point at
(0, 0), and a power law at larger ω, due to the second fixed point at some larger (c, ω).

G′′(ω)

ω
=

{
G20 exp(−αωδ), if ω ≤ ωt

G20ω−x, if ω ≥ ωt.
(146)

Similar two-case formulae are expected to describe G′(ω)/ω2 and η(κ), where κ
is the shear rate. The six parameters G20, α, δ, ωt, G20, and ωt are numerical constants
appropriate to the particular polymer, its molecular weight, and its solution concentration.
Because the transition is predicted and found to be continuous and analytic (functions and
first derivatives the same at the transition frequency ωt), these six parameters are not all
independent from each other. Between them, there are only four independent parameters.

The ansatz given here is not a complete derivation. However, as shown in the original
paper [42] and in Ref. [21], chapter 13, Equation (146) and the corresponding equations
for G′(ω)/ω2, and separately for η(κ), are in excellent agreement with the experimental
studies of the storage and loss moduli and of shear thinning. Furthermore, as would be
expected for physically significant variables, the six parameters found in these equations
all show smooth dependencies, often power laws, on c.

9. Brief Description of Individual Historical Papers

In this section, we present the short summaries of the papers that developed and
tested the hydrodynamic scaling model. The original paper in the series was Ref. [22],
Phenomenological Scaling Laws for “Semidilute” Macromolecule Solutions from Light
Scattering by Optical Probe Particles, which was the first systematic review of optical probe
particles diffusing through matrix polymer solutions. The probes were polystyrene latex
spheres and bovine serum albumin, diffusing through solutions of several water-soluble
polymers and bovine serum albumin. Probe motion was determined using quasi-elastic
light scattering. The paper set themes for later work, identified areas that were explored
later, and made it clear that the experiment did not match some contemporary models. The
probe diffusion coefficient Dp was found to follow the stretched exponential:

Dp = Dp0 exp(−αcν MγRδ), (147)

with c, M, and R being the polymer concentration and molecular weight, and the probe ra-
dius, respectively, Dp0 and α being constants. The exponents were found to be ν = 0.6− 1.0,
γ = 0.8± 0.1, and δ ranging from 0 to −0.1, contrary to some theoretical expectations [95]
that one should find γ = 0 and δ = 1. For small polymers, Ds tracked the solution fluidity
η−1. For large (M ≥ 100 kDa) polymers, probes diffused faster than expected from η−1,
even when the probes were extremely large (R ≈ 0.62 µm).

The successor paper [23] Universal Scaling Equation for Self-Diffusion by Macro-
molecules in Solution extended the work in the previous paper to the polymer self-diffusion
coefficient Ds. It was shown that the then-available measurements of Ds at elevated concen-
tration uniformly fit stretched exponentials in c, but did not fit the power laws predicted
by some scaling models. Also, the stretched exponential accurately described Ds(c) over
a full range of concentrations, with no indication of a discontinuity at some elevated
’entanglement’ concentration c∗. These results were not widely expected on the basis of
other polymer models, leading to the criticism that the finding was purely phenomenologi-
cal, and the emphatic suggestion [68] that a derivation of the universal scaling equation
was needed.

The skeleton of a derivation for the universal scaling equation for polymer self-
diffusion was soon supplied [23]. Dynamics of Polymers in Concentrated Solution: The
Universal Scaling Equation Derived obtained the stretched exponential for Ds. The model
was non-reptational; collective (hydrodynamic) modes were taken to dominate the local
(entanglement) mode at all concentrations. The derivation reached the stretched expo-
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nential via a self-similarity argument, an assumed form for chain–chain hydrodynamic
interactions, and the known tendency of random-coil polymer coils to contract in concen-
trated polymer solutions. The model predicted that α ∼ M1, and that ν changes from 1
to 1/2 with increasing polymer molecular weight—results which were confirmed by the
review of the literature.

The mathematical structure of the derivation did not rely on transport properties
unique to self-diffusion. The same approach, with numerical modifications reflecting
the quantity being calculated, was therefore expected to be applicable to other transport
properties. Indeed, this author and Peczak [25] showed in The Ubiquity of Stretched-
Exponential Forms in Polymer Dynamics that the polymer solution transport properties
generally follow stretched-exponential concentration dependencies.

A simplest form of Kirkwood–Riseman model [27] for polymer dynamics appears
in Quantitative Prediction of α in the Scaling Law for Self-Diffusion, where it was used
to compute α. For 1 MDa polystyrene, the calculation gave α = 2, while α ≈ 0.7 is the
experimental number. As M is reduced, the calculated α decreases more rapidly than the
measured α, so the error in the calculated α at smaller M is closer to 50% than it is to a factor
of three. However, the calculation did not incorporate intrachain hydrodynamics, and
took the distance of the closest approach of two polymer chains to be twice the monomer
radius, both of these approximations tending to increase α, so it is not surprising that our
approximation for α gave a value larger than the experimental one.

The calculation of Ref. [27] was extended to treat self-diffusion by star polymers. In
Chain Architecture in the Hydrodynamic Scaling Model, it was shown [29] that if one
compares the self-diffusion of linear polymers and of many-armed star polymers, the
polymers being of equal total molecular weight, a solution of matrix polymers is modestly
more effective at delaying the linear polymer. However, if one compares the self-diffusion
of the linear and star polymers at an equal arm molecular weight, a linear polymer being a
two-armed star, the matrix polymer is far more effective at delaying the star polymer than
at delaying the linear polymer.

The short paper The Hydrodynamic Scaling Model for Polymer Dynamics [30] notes a
series of experimental tests distinguishing between the hydrodynamic scaling and reptation-
scaling models, including (i) the presence or absence of multiple dynamic regimes, (ii) the
difference or lack of difference between sphere and random-coil polymer diffusion, and
(iii) power-law or stretched-exponential concentration and molecular weight dependencies
of Ds and η, the strong or weak effect of probe radius on Dp/Dp0, and the effect of
chain architecture on Ds. For every test, hydrodynamic scaling is preferred to reptation-
scaling, showing that the ongoing theoretical project to refine the hydrodynamic scaling
model was on the right track. The paper echoed the analysis in the extended article The
Hydrodynamic Scaling Model for Polymer Self-Diffusion [28], particularly that there was a
need for substantial additional measurements on the solutions of small-M (say, ≤ 100 kDa)
polymers and a requirement that measurements should be systematically carried down to
a zero matrix concentration. Furthermore, based on particular studies of how Dp depends
on R, it was clear that polymer solutions are qualitatively not like chemically cross-linked
gels, even on short time scales.

The paper Range of Validity of the Hydrodynamic Scaling Model [33] observes that
solvent-mediated interactions are absent in the melt (except as one views the melt as its
own solvent), and therefore with increasing concentration, there should be a transition in
dynamic behavior. In this paper, the transition was identified with the change from the
stretched-exponential to the power-law concentration dependencies. This interpretation
was not sustained by more modern work, but the solution-like–melt-like transition still
played an important role in understanding the polymer dynamics.

In their paper Higher-Order Hydrodynamic Interactions in the Calculation of Polymer
Transport Properties, Phillies and Kirkitelos [35] examined the consequences of higher-
order bead–bead interactions. Bead–bead interactions are usually modeled using the Oseen
tensor. However, it is entirely clear from the calculations of the self- and mutual-diffusion
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coefficients of colloidal spheres [96] that the Oseen tensor is totally inadequate as an
approximation for the true hydrodynamic interaction tensor, and that higher-order (in a/R,
a being the bead radius and R being the distance between beads) terms must be included.
Phillies and Kirkitelos included higher-order terms in calculating Ds. Furthermore, they
calculated the effect of interchain interactions on the polymer bead and free-monomer
mobilities, showing that the effects are not the same. Inferring a concentration dependence
for the friction coefficient of individual polymer beads from the concentration dependence
of the friction coefficient of free small molecules in solution (the monomer friction coefficient
correction) is therefore fundamentally invalid.

Phillies and Quinlan [36], in Analytic Structure of the Solutionlike-Meltlike Transition
in Polymer Solution Dynamics, reported a high-precision detailed study of the analytic
structure of the solution-like–melt-like transition in the viscosity. η(c) of several hydrox-
ypropylcellulose samples shows a stretched-exponential concentration dependence at
smaller c and a power-law concentration dependence at larger c. Phillies and Quinlan
showed that the viscosity transition is analytic—the functions and their first derivatives are
both continuous—at the transition concentration. A later analysis of the literature in Viscos-
ity of Hard Sphere Suspensions [46] shows that hard and soft-sphere suspensions show the
same solution-like–melt-like transition in η(c), at a concentration well below the concen-
tration of the known phase transition, thus demonstrating that the solution-like–melt-like
transition does not arise from the topological effects unique to long linear polymers.

Writing in Hydrodynamic Scaling of Viscosity and Viscoelasticity of Polymer Solu-
tions, Including Chain Architecture and Solvent Quality Effects, Phillies [37] applied the
universal scaling equation and power law forms to the concentration and molecular weight
dependencies of various viscoelastic parameters, including the results on linear and star
polymers and systems having various solvent qualities. This paper was primarily a phe-
nomenological study; model calculations corresponding to the viscoelastic parameters have
not yet been made.

The paper Quantitative Experimental Confirmation of the Chain Contraction As-
sumption of the Hydrodynamic Scaling Model [39] takes advantage of a unique feature of
dielectric relaxation spectroscopy, namely with some polymers, the technique can measure
both the rotation of the chain end-to-end vector as well as the length of that vector. The
hydrodynamic scaling model asserts that the deviation of the concentration dependence
of transport properties from a simple exponential in concentration is caused by chain
contraction at elevated polymer concentrations. The dielectric relaxation measurements
confirm that the model’s assertion is quantitatively exact.

Phillies et al.’s [40] paper Probe Diffusion in Sodium Polystyrene Sulfonate—Water:
Experimental Determination of Sphere-Chain Binary Hydrodynamic Interactions made a
quantitative test of the hydrodynamic model used here. The Dc of three sizes of polystyrene
sphere was determined in the solutions of seven different monodisperse polystyrene
sulphonates (1.5 ≤ M ≤ 1188 kDa), each at ten or more concentrations of up to 20 g/L. The
initial slopes dDp/dc|c→0 were compared with theory. The one uncertainty is the diameter
to be assigned to the polymer’s monomeric subunits. Fortunately, for large probes, the
slopes are very nearly independent of the assumed subunit diameter. For M > 10 kDa,
quantitative agreement between the measurement and theory was obtained, confirming
the validity of the hydrodynamic calculation.

The paper Derivation of the Universal Scaling Equation of the Hydrodynamic Scaling
Model via Renormalization Group Analysis [41] replaced the self-similarity approach of
Ref. [23] with a calculation based on the positive-function renormalization group [49,50].
The hydrodynamic scaling model’s universal scaling equation was again obtained, via a
very different approach.

The use of renormalization group techniques in the prior paper led to a much more
radical paper [42] Polymer Solution Viscoelasticity from Two-Parameter Temporal Scaling,
which proposed to find the frequency dependence of the loss modulus from a consideration
of the fixed points of a hypothetical renormalization group derivation of the viscosity
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η(c), made on the lines of Ref. [41], after identifying η(c) as a one-dimensional slice of
η(c, ω). The ansatz in the paper leads to the conclusion that G′′(ω)/ω is a stretched
exponential in ω at lower frequencies and a power law in ω at elevated frequencies, the
transition between the two regimes being continuous and analytic. Preliminary tests against
the literature data were highly satisfactory. Further tests reported in Temporal Scaling
Analysis: Viscoelastic Properties of Star Polymers [43], Temporal Scaling Analysis: Linear
and Crosslinked Polymers [44], and Viscosity of Hard Sphere Suspensions [46] were equally
satisfactory. In particular, it was confirmed that the predicted forms, with fitted parameters,
agreed with Kronig–Kramers relations. Furthermore, the forms that effectively describe the
G′′(ω) and G′(ω) of linear polymers also effectively describe G′′(ω) and G′(ω) of spherical
microgel melts, showing that the chain topology does not make a qualitative contribution
to the functional forms of the loss and storage moduli.

In Low-Shear Viscosity of Non-Dilute Polymer Solutions from a Generalized Kirkwood-
Riseman Model [45], the model of Ref. [27] was employed to calculate the concentration
dependence of the viscosity, including interacting pairs and the trios of polymer chains.
An extended computation leads to values for the initial slope dη/dc and for the Huggins
coefficient. The results of this calculation were used in Self-Consistency of Hydrodynamic
Models for the Low-Shear Viscosity and the Self-Diffusion Coefficient [6] to calculate α of
Equation (5). Taking the Huggins coefficient from the viscosity calculation as an experi-
mental input, α for self-diffusion was determined, as a function of the polymer molecular
weight, with no free parameters. The comparison with experimental determinations α
found almost exact agreement over four orders of magnitude in M and α.

Finally, the renormalization group treatment of Ds(c) requires as input a power-series
expansion for Ds(c). As the first step toward advancing on that expansion, in Fourth-Order
Hydrodynamic Contribution to the Polymer Self-Diffusion Coefficient [47], Merriam and
Phillies used a hydrodynamic multiple-scattering approach to compute the chain–chain–
chain–chain–chain hydrodynamic interaction tensor, which could be used to calculate the
c3 correction to Ds.

10. Phenomenological Evidence

This section presents phenomenological evidence on polymer dynamics. As will
be seen, the evidence supports the hydrodynamic scaling model. In understanding the
evidence and what it means, it is worthwhile to begin with the philosophical observations
of Thomas Kuhn [97] on how theories compete. Kuhn’s fundamental thesis is that one’s
model of the world influences which experiments need to be made, which quantities need to
be calculated or elsewise predicted, and which sorts of data are important. An experiment
that is viewed as a critical test of one model may for a different model appear to only be of
marginal relevance. In the end, a successful model predicts all experimental observations
within its scope, but at the earlier stages of adoption, some sorts of measurements taken to
be central and others are taken to be marginal, to be considered later.

As an example of the above matter, Kuhn treated the early-19th century competition
between phlogiston models for chemical structure and Dalton’s law of multiple proportions.
The phlogiston model was widely accepted because it was extremely successful. It ordered
and explained vast amounts of descriptive chemical information, for example, the model
explained why pure metals are more similar to each other than their oxides are similar to
each other. While it was entirely possible to weigh the amount of each element needed to
form a particular chemical compound, within the phlogiston picture, such measurements
did not appear to matter. Dalton’s law of multiple proportions put that interpretation on
its head, proposing that the weight of each element in a pure compound was the central
chemical fact. The descriptive material explained well by the phlogiston models, such as the
colors of the metallic oxides, were set aside, to be explained as it turned out a century and a
half later with quantum mechanics. Materials that were in fact the solid solutions of several
compounds, leading to material substances in which the law of multiple proportions was
not followed, were viewed as anomalous special cases—not as disproofs of the model. In
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moving from the phlogiston model to Dalton’s law, not only did science change how one
described matter, but it also changed which experimental findings were to be treated as
marginal results, and which experimental findings were to be treated as central tests of
the theory.

The difference in world view between the hydrodynamic scaling and reptation-scaling
models already arises in data presentation and experimental plans. The models predict
that transport coefficients depend on concentration and molecular weight as stretched
exponentials and as power laws, respectively. Furthermore, the hydrodynamic scaling
model, if correct, is valid from dilute solution up to some large concentrations, while
reptation-scaling models, if correct, are only valid at concentrations above some overlap
concentration c∗ and extending to the melt. In consequence, an experiment whose plan
arises from hydrodynamic scaling concepts includes measurements on dilute as well as
concentrated solution behavior. Experiments whose plans arise from reptation-scaling
concepts often only report measurements on solutions having c > c∗, and are therefore not
always helpful for testing hydrodynamic scaling. Correspondingly, in making the graphical
presentations of transport coefficients against c or M, data testing reptation-scaling models
are usefully set out on log-log plots, while data arising from hydrodynamic scaling models
are usefully set out on linear or semilog plots.

The following sections treat the experimental tests of various aspects of the hydro-
dynamic scaling model. Section 10.1 presents an experimental test of the accuracy of the
generalized Kirkwood–Riseman model for intermacromolecular hydrodynamic interac-
tions. Section 10.2 considers the tests of the predicted functional dependencies of Dp on
c and M. Predictions for Ds and η require a notional bead radius a. Section 10.3 demon-
strates that the values of a from Ds and from η are mutually consistent. In the model,
non-exponentiality arises from chain contraction; Section 10.4 uses the literature on the
dielectric relaxation of polymers in the solution to demonstrate that chain contraction
quantitatively accounts for the deviations of the concentration dependence of the dielectric
relaxation time from simple exponential behavior. Chain contraction and expansion are
also affected by solvent quality. Section 10.5 examines the results of Dreval et al. [98] that
compare concentrated-solution viscosity and solvent quality, and the results of Phillies and
Clomenil [34] on probe diffusion through polymers in good and theta solvents. Finally, at
some concentration, the simple model presented here is obliged to become inapplicable,
because the polymer molecules are too close together to treat the solvent as a continuum.
When this concentration is exceeded, a transition must take place. Section 10.6 presents
evidence that this predicted transition has been observed.

10.1. Measurements of the Hydrodynamic Interaction Tensor

The simplest test of the Kirkwood–Riseman model refers to a single polymer chain. In
the Kirkwood–Riseman model, the self-diffusion coefficient of a single random-coil chain
is substantially determined by hydrodynamic interactions between the different parts of
the same chain. A test of the Kirkwood–Riseman model for isolated chains is reported
by Pesce et al. [99] studying intrinsically disordered proteins and regions. They made
molecular dynamics simulations on a series of 11 such proteins. For each protein, they
calculated the average size and the self-diffusion coefficient as predicted by the Kirkwood
Riseman model. Comparison with small-angle X-ray scattering confirmed that their size
calculations were accurate. Comparison with pulsed-gradient spin-echo nuclear magnetic
resonance measurements confirmed that the Kirkwood–Riseman model accurately pre-
dicts the self-diffusion coefficient, i.e., the Kirkwood–Riseman model accurately treats the
hydrodynamics of polymer random coils.

The hydrodynamic scaling treatment is based on an extended Kirkwood–Riseman
model. Is the extended Kirkwood–Riseman model accurate? Phillies, Lacroix, and Yam-
bert [40] made a quantitative experimental test of the model of Section 3. The test was
successful. They used quasi-elastic light scattering spectroscopy to measure the diffusion
coefficient Dp of polystyrene latex spheres of three known sizes through the solutions of
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seven polystyrene sulphonates, 1.5 ≤ M ≤ 1190 kDa, at a series of polymer concentrations.
Anomalous polyelectrolyte effects were suppressed by working in 0.2M NaCl. The initial
slopes α = limc→0 dDp/dc were determined.

Comparison was then made with the hydrodynamic calculations of Phillies and
Kirkitelos [35], in which bead–bead hydrodynamic interactions were truncated at the r−3

(Rotne–Prager) level. Probe spheres were treated as a single polymer bead having a known
large radius. What size a should be assigned to the monomer beads in the polymer?
The algebraic answer is a function of the sum of the monomer and probe radii. The
polymer beads were much larger than the polymeric monomer units, so the exact size
assigned to the monomers has little effect on the calculation. The polymer radii of gyration
and hydrodynamic radii were calculated from their molecular weights using the data of
Pietzsch et al. [100]. The Phillies–Kirkitelos calculation thus has no free parameters. It predicts
numerical values of α. For M < 10 kDa, it appears inaccurate to model the somewhat
rigid polystyrene sulphonate as a Gaussian-random cloud of monomer beads. For polymer
M > 10 kDa, nearly quantitative agreement between the calculated and measured values
of α was found, as seen in Ref. [40], Figure 4. α for a 1 MDa polymer was calculated to be
≈0.15, and was experimentally found to be ≈0.13. Over nearly a hundred-fold range of
polymer molecular weights, α ∼ Mγ for γ = 1 was found, in agreement with the Phillies
and Kirkitelos calculation.

These experimental results directly confirm the validity of the hydrodynamic approach
for calculating interchain hydrodynamic interactions, at least for the self terms bii of the
calculated mobility. These experiments did not test self-similarity, the positive-function
renormalization group process, or the size of the two-chain tensor Tij.

10.2. Concentration and Molecular Weight Dependencies

The hydrodynamic scaling model, via either self-similarity or the positive-function
renormalization group, predicts that transport coefficients have stretched-exponential
dependencies on the concentration and molecular weight. The scaling prefactor α and
scaling exponent ν of the stretched exponential are predicted by the model to depend on M
but to be independent of polymer concentration. The PFRG mathematical structure has a
route permitting a transition to a power-law concentration dependence at large c.

Experimentally [101], Ds, Dp, and η follow stretched exponentials in c, beginning at
extreme dilution and extending out to an elevated polymer concentrations, often c[η]� 1.
For Ds and Dp, there are no indications of a discontinuity or change in slope of the con-
centration dependence for some c[η] near unity. The lack of a discontinuity agrees with
the hydrodynamic scaling model presumption that the same dynamics apply in dilute
and non-dilute solutions. The same lack of a discontinuity rejects proposals that polymer
dynamics change qualitatively, in a way that affects the concentration dependence, at some
concentration c∗ ≈ [η]−1, at which polymer chains overlap and entangle.

The hydrodynamic scaling model for Dp predicts that α ∼ Mγ for γ ≈ 1; also, with
increasing M, ν should decrease from 1 to 5/8 or 1/2. Phillies and Quinlan measured η
and Dp of 20.4 and 230 nm polystyrene spheres, for dextran solutions having M in the
range of 10–500 kDa and a range of concentrations. Values for α and ν were extracted from
each set of measurements. Over nearly two orders of magnitude in M, α ∼ M0.84, while as
predicted by the model, ν decreased from 1 to 5/8.

If the matrix polymer is replaced with a globular matrix species such as a protein,
Dp(c) for probe spheres diffusing through the protein solution continues to have a stretched-
exponential form. This result is consistent with the hydrodynamic scaling expectation that
replacing a random-coil matrix with a hard-sphere matrix changes numerical coefficients
in the hydrodynamic interaction tensor, but has no qualitative effect on Dp(c). This result
is inconsistent with reptation-tube model expectations that the dynamics of entangling and
non-entangling matrix species should not be similar at high concentrations. [66]

A comparison [29] of Ds for linear and star polymers diffusing through a matrix
solution of dissolved linear polymers, as studied by Wheeler and Lodge [102,103], finds
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that a large concentration of linear polymers is approximately equally effective at delaying
the motion of linear and star polymers having the same total molecular weight. However,
comparing linear and 12-armed star polymers having the same arm molecular weight, a
linear polymer being a two-armed star, the same matrix solutions are far more effective at
delaying the motion of the 12-armed star than at retarding the motion of a linear polymer.
These measurements of Wheeler and Lodge [102,103] were shown by this author [29] to be
consistent with the hydrodynamic scaling model.

At elevated polymer concentrations, Dp often shows non-Stokes–Einsteinian behavior,
i.e., κ ≡ Dp(c)η(c)/Dp(0)η(0) � 1, up to κ ≈ 103, even for large (e.g., 1 µm diameter)
probes. Non-Stokes–Einsteinian behavior is equally found for probes in non-entangling
bovine serum albumin solutions [66,101], showing that non-Stokes–Einsteinian behavior is
not an indicator for the presence of reptational motion by the matrix.

For η(c), γ̇r, and Jo
e , in some systems but not others, the concentration dependencies

show at elevated c a transition from a stretched-exponential to a power-law concentration
dependence [37]. On one hand, reptation-tube models do predict scaling (power law)
behavior at a large c. On the other hand, reptation-tube models indicate that the transition
should be universal, appreciably independent of the details of a polymer chemical structure,
and therefore should consistently appear at about the same c[η]. Experimentally, the
transition is not uniform and occurs at greatly different concentrations c[η] in different
systems, contrary to expectations from tube-type models.

Tube-type models for concentrated solutions ascribe to polymer chains a mode of
motion—reptation—that is inaccessible to large spheres, implying that chains will diffuse
through the concentrated solutions of large polymer molecules considerably more rapidly
than will spheres that have the same hydrodynamic radius. Brown and Zhou [104,105]
compared the Dp of spheres and Ds of random coil probes through the solutions of the
same polymer. For large probes and chains in the solutions of a smaller matrix polymer,
Dp(c)/Ds(c) was approximately independent of the concentration as Dp(c)/Dp(0) de-
clined by more than two orders of magnitude. For smaller probes in the solutions of a large
matrix polymer, with increasing matrix c, the matrix polymer was much more effective at
retarding the motions of the random coil polymer than at retarding the motion of spher-
ical probes. Their findings are consistent with hydrodynamic scaling models that view
hydrodynamic radii as the central variable, but are inconsistent with tube-type models.

10.3. The Bead Diameter a

Calculations of the concentration dependencies of the self-diffusion coefficient and
the viscosity lead to outcomes determined in part by a notional bead diameter a. It could
be proposed that, in each of these calculations, there is a free parameter, so quantitative
comparisons between the data and the theoretical model are impossible. (For probe
diffusion, this difficulty does not arise, because a has little effect on dDp/dc, as discussed
in Section 10.1.)

a can be estimated from the viscosity calculation. This a will be denoted aη . Pear-
son [106] and Yamakawa [107] reported that kH is in the range of 0.3–0.6. Noting for
non-draining spheres [η] = 2.5v̄ and in appropriate units v̄ = 4πR3/3, one finds from
Equation (108) aη = 0.18R. The estimated aη does not strongly depend on the assumed kH .

Second, in Ref. [41], the same hydrodynamic approach was applied to the self-diffusion
coefficient Ds, obtaining [41]:

α = − 9
16

R2
h1

RgaD

4πR3
g

3
NA
M

. (148)

Here, Rg is the radius of gyration, Rh is the hydrodynamic radius, aD is the notional
bead size inferred from self-diffusion, NA is Avogadro’s number, and M is the polymer
molecular weight. For [108], 1.27 × 106 Da polystyrene in benzene [108], Rg ≈ 620Å,
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Rh ≈ 380Å, and from a systematic review [21] of the published literature α ≈ −0.6 with c
in g/L at this molecular weight. Combining these findings, aD ≈ 0.17Rg.

The two paths to estimating a indicate that a is 0.18R or 0.17Rg, i.e., aη ≈ aD. Given the
approximations needed to reach this point, the two estimates of a agree within experimental
error and calculational imprecision. The determinations of a from two separate types of
data after separate calculations [23,27,35,41] based on the hydrodynamic scaling model
lead to about the same notional bead diameter. This outcome would be expected if the
hydrodynamic scaling model supplied the legitimate physical treatment, but is unlikely if
aη and aD were simply fitting parameters that had no physical meaning.

10.4. Dielectric Relaxation Spectroscopy

Dielectric spectroscopy is sensitive to the size and temporal behavior of polymer
dipole moments. The understanding of polymer dipole moments may be traced back
to Stockmayer [109], who identified three classes of polymer dipole moment and their
relaxations, namely: (1) dipoles whose orientation is determined by the orientation of
pendant side groups, and which therefore change direction on very short time scales;
(2) dipoles whose direction is determined by the chain contour, and which are aligned in
perpendicular to the chain contour, so that they are relaxed via local segmental motion;
and (3) dipoles associated with the chain contour that point along the chain contour, so
that the magnitude of the dipole moment is determined by the end-to-end-vector of the
polymer chain, and which change direction on the slow time scales on which the polymer
and its end-to-end vector rotate in space. Stockmayer classed polymers with type 3 dipoles
as type-A polymers. Dielectric relaxation spectroscopy associated with solutions of type-A
polymers has been reviewed by Adachi and Kotaka [110].

A type-A polymer can be viewed as a series of short segments, where each segment
i has a dipole moment di aligned in parallel to the segment. The time-dependent dipole
moment M(t) of the polymer is the sum of the moments of the N segments:

M(t) =
N

∑
i=1

di(t). (149)

For identical segments, di(t) ∼ ri(t), ri(t) are the segment end-to-end vector. The
mean-square of the polymer end-to-end vector Re is therefore 〈R2

e 〉 ∼ 〈M(t) ·M(t)〉. The
dipole relaxation function:

Φ(t) =
〈M(t) ·M(0)〉
〈M(0) ·M(0)〉 (150)

describes the relaxation of the polymer end-to-end vector. Φ(t) is usually said to describe
rotational diffusion. However, for a random-coil polymer as opposed to a rigid body, the
length of the end-to-end vector and hence |M(t)| fluctuates in time, so Φ(t) must capture
the relaxation of fluctuations in the magnitude as well as the direction of M(t).

With dielectric relaxation, one can measure both Φ(t) (and hence, the polymer ro-
tational diffusion coefficient) and 〈R2

e 〉. As demonstrated by Adachi and Kotaka [110]
and by Ref. [39], the end-to-end vectors of the pairs of polymer molecules are almost cer-
tainly very nearly uncorrelated in direction, so dielectric relaxation spectroscopy measures
single-chain properties, even in concentrated solutions. Adachi et al. [111–113] exploited
their demonstration by measuring the dielectric relaxation strength ∆ε and relaxation time
τn of the cis-polyisoprenes of multiple molecular weights in good and theta solvents at
concentrations of 0–500 g/L. τn increases by as much as several hundredfold over this
range. In the same systems ∆ε decreased with increasing c, in some cases, by as much
as 50%.

Phillies [39] reconsidered the experimental findings of Adachi et al. [111–113]. Simple
phenomenological forms that quantitatively describe the concentration dependence of 〈R2

e 〉
were identified. The chain–chain hydrodynamic interaction tensor for rotation–rotation
coupling was proposed, based on the comparable sphere–sphere coupling, to scale as
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R6/r6, with R as a chain radius and r as a distance between chains. The 1997 analysis
proposed that the ensemble average over chain positions had an effective lower limit a ∼ R,
so that the self term of the rotation–rotation coupling had a strength ∼ R3. Invoking the
self-similarity rationale, the renormalization group treatment, which was not developed at
the time of this paper, Ref. [39] proposed:

τn(c) = τn0 exp(αc〈(Re(c))2〉3/2). (151)

The effect of the concentration-dependent chain contraction is then to determine the
curvature of τn(c).

For dielectric relaxation, τn and 〈(Re(c))2〉 have been measured directly [111–113]. A
fit of Equation (151) to the experimental measurements has two free parameters, namely
τn0 and α. On a semilog plot, these parameters give an intercept and an initial slope.
However, any deviation of τn(c) from pure exponential behavior is determined by the
known quantity 〈(Re(c))2〉.

There is quantitative agreement between Equation (151), in its determination of the
dependence of τn(c) on Re, and the experiment. In theta solvents, the polymer sizes are
independent from polymer concentration, so τn(c) is predicted to be a simple exponential,
precisely as found. In good solvents, 〈(Re(c))2〉 decreases with increasing c, leading to a
τn(c) that increases less rapidly than a pure exponential, also as observed. The degree of
non-exponential behavior is determined by the amount of chain contraction, as quantita-
tively confirmed in Ref. [39], precisely as predicted by the hydrodynamic scaling model
and Equation (151). The results in Ref. [39] may be seen as a significant advance over
the self-similarity and renormalization group treatments in one key respect, namely since
an assumed theoretical dependence of Rg on c has been replaced with the experimen-
tal dependence, thereby creating a quantitative agreement between the calculation and
the experiment.

10.5. Viscosity and Solvent Quality

Dreval et al. [98] reviewed an extremely extensive set of viscoelastic studies not readily
available in the Western literature. They considered a reduced viscosity η̃ = (η − η0)/(η0c[η]).
For a series of homologous polymers in the same solvent, c[η] was found to be a good
reducing variable, the intrinsic viscosity [η] collapsing η(c) for different M onto a single
curve. However, when the same polymer samples were dissolved in several different
solvents, the plots of η̃ against c[η] were found to lie on different curves. Dreval et al.
showed that the various curves could all be reduced onto each other by introducing a
new variable KM and plotting η̃ against KMc[η]. With a correct choice of KM for each
solvent:polymer pair, all measurements of c̃ of the same polymer in different solvents could
be reduced to a single master curve.

Dreval et al. then introduced a chain expansion parameter αη , defined via:

α3
η =

[η]s
[η][theta]

. (152)

Here, [η]s is the intrinsic viscosity of the polymer in the solvent of interest, and [η][theta]
is the intrinsic viscosity of the same polymer in a theta solvent, where it is unexpanded.
Dreval et al. then demonstrated that KMα3

η is approximately a constant, i.e., KM ∼ α−3
η .

The solvent quality thus enters η(c) exactly as predicted by the hydrodynamic scaling
model and seen in Equation (151), namely that η(c) is a function of c〈(Re(c))2〉3/2, and Re
is determined in part by the solvent quality. The reducing variable KM divides out the
effect of the solvent quality on Re, so that plots for a given polymer of η(c) against c in
different solvents are all reduced to the same master curve.

Phillies and Clomenil [34] measured the diffusion of 67 nm polystyrene spheres
through aqueous solutions followed of 139 kDa hydroxypropylcellulose at temperatures
of 10 and 41 C, these being good and near-theta solvent conditions. At both temperatures,
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the diffusion coefficient of the spheres followed a stretched exponential exp(−αcν), with
ν = 3/4 under good solvent conditions and ν = 1 under theta conditions. Recalling
the hydrodynamic scaling prediction ν = 1− 2x, where x is the concentration exponent
for chain contraction, with x > 0 under good solvent conditions and x ≈ 0 under theta
conditions, one sees that the observed values of ν were consistent with the hydrodynamic
scaling predictions for the effect of solvent quality on Dp(c).

10.6. Transition to the Melt

In its present form, the hydrodynamic scaling model refers to dilute and concentrated
solutions, not to melts or plasticized melts. As the polymer concentration is increased from
the dilute solution, less and less solvent is present. At some concentration, one can no
longer invoke the image of a polymer solution as lines of polymer beads separated from
each other by a continuum fluid. With increasing concentration, the average gap between
polymer chains eventually becomes smaller than the size of a polymer molecule, render-
ing continuum hydrodynamic descriptions inapplicable. When continuum descriptions
become inapplicable, the system switches over from solution behavior (molecules floating
in a solvent) to plasticized melt behavior (solvent molecules in pockets intercalated within
a mesh of polymer coils). The hydrodynamic scaling model thus predicts that there should
be a qualitative change in polymer dynamic properties at some very high concentration.

Such a transition has actually been observed. Studies showing this effect include work
by von Meerwall et al. [114], Pickup and Blum [115], and Kosfeld and Zumkley [116]. The
diffusion coefficient of solvent molecules in polymer solutions typically follows a simple
exponential dependence on concentration, for polymer concentrations up to ≈400 g/L.
At larger polymer concentrations, the solvent diffusion coefficient decreases considerably
more rapidly, namely as a stretched exponential in concentration with exponents in the
range of 2.4–3.8. For the actual fits showing this transition, see Phenomenology of Polymer
Solution Dynamics, Section 5.3.

A similar transition has been seen in segmental reorientation times [117,118] τ in some
systems but not others [119]. For concentrations out to 0.3 g/g polystyrene in toluene,
Viovy and Monnerie [117] and Tardiveau [118] found that τ increased gradually, perhaps by
two-fold, with increasing c; between 0.3 and 0.5 g/g, τ increased far more rapidly, namely
nearly 30-fold. On the other hand, Johnson et al. [119] studied the rotational diffusion by
center-labeled polyisoprene and a small-molecule probe in polyisoprene: tetrahydrofuran
for polymer matrix volume fractions ranging from 0.0 to 1.0. The matrix polymer was much
more effective at delaying the rotation of the small-molecule probe than at the retarding
motion of the labeled polymer. However, as τ was consistently a stretched exponential in
matrix concentration, there was no indication of a transition at some elevated concentration.

A transition is also found near volume fraction 0.4 in the viscosity of hard sphere
systems. An analysis of the literature supporting this observation is found in Phillies [46].
The viscosity shows a stretched-exponential increase at lower concentrations and a much
sharper power-law increase at larger concentrations. The dynamic crossover is found at
0.4 ≤ φ ≤ 0.45 and 5 ≤ ηr ≤ 15, so the viscosity crossover is very clearly not the same as
the hard sphere melting transition found at φ ∼= 0.5 and ηr ∼= 50± 5.

11. Summary and Directions for Future Development

This review has presented a comprehensive treatment of the hydrodynamic scaling
model of polymer solution dynamics. The hydrodynamic scaling model differs from some
other treatments of non-dilute polymer solutions in that it takes polymer dynamics up
to high concentrations to be dominated by solvent-mediated hydrodynamic interactions.
Many other models take the opposite position, namely that chain crossing constraints dom-
inate the dynamics of non-dilute polymer solutions. We began by examining single-chain
behavior, emphasizing the Kirkwood–Riseman model that forms the basis of our calcula-
tions. We then developed an extended Kirkwood–Riseman model that gives interchain
hydrodynamic interactions. The model was used to generate pseudovirial series for the
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concentration dependencies of the self-diffusion coefficient and the low-shear viscosity.
Extrapolations to a large polymer concentration were made, either based on self-similarity
or on the Altenberger–Dahler positive-function renormalization group. The observed
stretched-exponential concentration dependencies were predicted. An inferred fixed-point
structure for the renormalization group led to a two-parameter temporal scaling ansatz
from which the frequency dependencies of the storage and loss moduli were inferred.

This section notes possible directions for future research. Topics needing further con-
sideration include: (i) inclusion of intrachain hydrodynamic interactions; (ii) incorporation
of segmental dynamics; (iii) explanation of the solution-like–melt-like viscosity transition
and (perhaps a different reflection of the same phenomenon) the neutral polymer slow
mode, (iv) extension, refinement, or replacement of the Positive-Function Renormaliza-
tion Group approach to extrapolating to elevated concentrations; (v) direct treatment of
frequency or time dependence, leading to results for the plateau modulus, steady state
compliance, characteristic shear rate, and the Cox–Merz rule. On a longer time scale, note
that (vi) the treatment of the polymer as its own (viscoelastic) solvent leads to the modeling
of melt systems; and (vii) the extension to polyelectrolyte systems.

The hydrodynamic calculations considered above only treat interactions between
polymer chains. Intrachain hydrodynamic interactions have not yet been incorporated into
the model, though Kirkwood and Riseman [5] show how this incorporation might advance.
These interactions are important because the motion of each bead partially entrains the
surrounding solvent, so that the beads near the center of a polymer coil are less effective
than might have been expected upon creating fluid motion in the surrounding solvent.

The model as treated above remains true to the Kirkwood–Riseman spirit, namely the
fact that it focuses on whole-body translations and rotations, but neglects internal chain
motions. Experimental techniques including dielectric relaxation and NMR have been used
to examine segmental dynamics, the relative motions of parts of a longer polymer chain,
but the theoretical interpretation of these measurements in terms of the hydrodynamic
scaling model is lacking.

The experimental development that led to the hydrodynamic scaling model began
with probe diffusion, the measurements of the motion of rigid spheres or other particles
through polymer solutions. The current theoretical treatment is appropriate when the probe
and polymer coils are similar in size. If the probe is much smaller than the matrix polymers,
probe diffusion may be enhanced by the relative motion of parts of nearby chains, i.e., by
segmental dynamics. The extension of the hydrodynamic scaling model to treat segmental
dynamics would advance our understanding of both of these issues.

Some concentration dependence issues are not yet resolved. Phillies and Quinlan
demonstrated for hydroxypropylcellulose the existence of a solution-like–melt-like transi-
tion, in which the concentration dependence of the viscosity switches over from a stretched-
exponential to a power law in concentration. Similar transitions can be observed for η(c)
of many but not all polymers. However, the transition is not universal, in the sense that
it occurs in different polymers at very different concentrations, regardless of whether the
transition concentration is expressed as a polymer weight concentration (approximately a
volume fraction) or as a concentration in natural units c[η], [η] being the polymer’s intrinsic
viscosity. Furthermore, the transition is observed for solutions of hard and soft spheres in
small-molecule solvents. The experiment thus rules out interpretations of the transition
as arising from long-chain topological effects. Quasi-elastic light scattering from other
polymer and probe solutions finds the appearance of a slow mode in the light scattering
spectrum at elevated concentrations, without an accompanying significant change in the
light scattering static intensity [120], ruling out cluster formation as an explanation for the
slow mode. The slow mode appears in the light-scattering spectrum at approximately the
concentration at which the solution-like–melt-like transition is observed in the viscosity,
suggesting that the two effects have a common origin, perhaps arising from the fixed-point
structure of the positive-function renormalization group for this problem.
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The extension of the hydrodynamic calculations to elevated concentrations was based
on the positive-function renormalization group. The renormalization group calculation
does yield answers that agree with the experiment, but the path is obscured by the indirect
nature of renormalization group methods. A clearer calculation might also permit one to
calculate higher-order corrections to the basic renormalization group forms.

The model as presented herein gives an average diffusion coefficient or a low-frequency
viscosity. A two-variable renormalization group ansatz was introduced to predict the
functional form of the frequency dependencies of the storage and loss moduli and the
dependence of shear thinning on the shear rate. The prediction is an ansatz, not a theoretical
derivation. The replacement of the ansatz with a full calculation should replace qualitative
statements with quantitative predictions. In particular, the predicted functional forms for
the frequency dependencies embody a series of parameters, each with concentration and
molecular weight dependencies. A direct calculation should give numerical values for
these parameters. Also, polymer solution dynamics includes linear and non-linear vis-
coelastic effects. The analytic calculation would predict the plateau modulus, steady-state
compliance, and characteristic shear rate for shear thinning. One might also reasonably
expect that such calculations would both explain the approximate validity of the Cox–Merz
rule and predict the quantitative corrections to that rule.

Finally, while the simulational tests of concentrated solutions are non-trivial, because
vast numbers of solvent molecular must be included, they are not impossible. The simula-
tional studies of whole-chain translation and rotation in melts, including correlations in the
whole-body translations and rotations of neighboring chains, would speak to the validity
of the models.

Calculations on melts and polyelectrolyte systems remain well into the future.
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