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Abstract: Reinforcing steel (RS) is mainly used in building construction and many industries, but it
suffers from corrosion problems, especially in acidic environments. Biopolymers are characterized by
their unique chemical composition, as they contain a variety of functional groups that are capable of
binding strongly to the metal surface and forming a protective layer on it. Herewith, two biopolymers,
viz. dextrin (Dex) and inulin (Inu), were tested as eco-friendly inhibitors for the corrosion of RS
in 1.0 M HCl medium at different temperatures. Various experimental tools were utilized in this
research. The inhibition efficiencies (% IEs) of the tested polymeric compounds were improved by
increasing their doses while reducing with rising temperature. The % IEs of Dex and Inu at a dose of
500 mg/L reached 85% and 93%, respectively. The examined biopolymers displayed cathodic/anodic
behavior (mixed type) with a foremost anodic one. The acquired higher % IEs were demonstrated by
intense adsorption of Dex and Inu on the RS surface fitting the Langmuir isotherm. The influence
of rising temperature in the range of 288–318 K on the corrosion behavior was examined, and the
evaluated thermodynamic and kinetic parameters sustained the mechanism of physical adsorption of
the polymeric inhibitors. Additionally, the kinetics of corrosion, as well as its inhibition by Dex and
Inu, were also investigated. The SEM micrographs of the RS surfaces were accorded with all utilized
experimental tools. The results gained from all used tools were discovered to be in good agreement
with each other.

Keywords: reinforcing steel; eco-friendly corrosion inhibitors; dextrin and inulin biopolymers;
adsorption; kinetics

1. Introduction

Reinforcing steel “rebars” are steel bars that are used with plain cement concrete
to obtain reinforced concrete. Rebars have several rewards, such as the capability to
withstand the rigors, wearing and tearing through the construction activities, the capability
to bend to the wanted specifications, as well as recyclization and reuse for new construction.
Rebars are regarded as a significant type of mild steel plain bars. Reinforcing steel in
concrete structures, especially those exposed to different environments, is susceptible to
corrosion due to many factors, such as pH reduction, carbonation and chloride attack,
etc., that result in a reduction in the strength of concrete structures [1–3]. Generally,
steel corrosion is set to be extremely increased in acidic media, especially hydrochloric
acid [4–12]. The acidizing procedure in manufacturing cleaning systems of steel removes
oxides and/or inorganic layer eliminations [13], and this operation is unavoidable but
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can be controlled [14]. Therefore, extensive efforts are dedicated to advancing proficient
and cost-effectively accommodating ways to reduce steel corrosion [15–21]. Employment
of corrosion inhibitors is regarded as one of such significant ways [22–26]. Corrosion
inhibitors are organic compounds comprising electron donor atoms and unsaturated bonds,
which allow them to be adsorbed on the metal surface and protect such surfaces from
the aggressive media [21–28]. Natural organic compounds are essential kind of ecological
inhibitors for metallic corrosion to meet environmental requests [29–34]. Additionally,
oxygen-rich compounds are desirable inhibitors for corrosion because they are renewable,
biodegradable, and environmentally acceptable. Dextrin (Dex) and inulin (Inu) are natural
polysaccharides (biopolymers). Dextrin is a mixture of polymer of D-glucose unit connected
by α-(1→4) or α-(1→6) glycosidic linkages. It is a low-molecular-weight carbohydrate
produced by hydrolysis of starch and glycogen [35]. It is used as water-soluble adhesives,
in the mining, foundry, and leather industries, in food processing, coatings, glazes, textile
finishing, pharmaceuticals, etc. Inulin is a division of fibers known as fructans that comprise
chain-ending glucosyl moieties with a recurring fructosyl moiety connected by β(2,1)
linkages [36]. It is produced by various kinds of plants, and it is utilized as a means of
storing energy. The two biopolymers, Dex and Inu, have been employed very little as
corrosion inhibitors [37,38]. Dextrin was used as a corrosion inhibitor for mild steel in a 15%
HCl solution with maximum inhibition efficiency of 84.56% at 0.15 g/L Dex [37]. Inulin was
employed for corrosion control of 6061 Al—15%(v) SiC(P) composite in an HCl medium
where it showed maximum inhibition efficiency of 88.8% at 1.0 g/L Inu at 303 K [38].

The aim of the present paper is to investigate the effects of two natural biopolymers,
viz. dextrin (Dex) and inulin (Inu), whose chemical formulae are illustrated in Figure 1, on
the corrosion behavior of reinforcing steel (RS) in 1.0 M HCl solution (corrosive medium) at
fixed temperatures. The electrochemical behaviors of RS in the corrosive medium and in the
presence of Dex and Inu were studied utilizing both potentiodynamic polarization (PDP)
and electrochemical impedance spectroscopy (EIS) tools. Furthermore, the mass-loss (ML)
method was employed to evaluate the thermodynamic and kinetic parameters. Finally, the
morphologies of steel surfaces were examined by scanning electron microscopy (SEM).
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Figure 1. Structures of (a) dextrin (Dex) and (b) inulin (Inu).

2. Experimental Section
2.1. Materials

The reinforcing steel (RS) specimens were mild steel plain bars (SABIC company,
Riyadh, Saudi Arabia) which were used as the working electrode for the electrochemical
experiments (PDP and EIS) and as well as for the mass-loss (ML) experiments with the
chemical composition (wt.%): 0.07 C and Si, 0.01 S, 0.02 P, 0.27 Mn, and the rest is iron.
The exposed surface area of the RS working electrode for PDP and EIS was 0.95 cm2. For
ML experiments, each specimen had an exposed surface area of 12.05 cm2. Prior to every
experiment, silicon carbide sheets with different grades (320 to 1200) were utilized to grind
the RS specimens, washed with bidistilled water, degreased with ethanol, and finally dried.
The basic corrosive solution (blank) was 1.0 M HCl solution that was prepared by dilution
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of 37% HCl (Merck, Rahway, NJ, USA) with bidistilled water. Different concentrations
(100 to 500 mg/L) of the examined biopolymers inhibitors, dextrin (C6H10O5)n and inulin
(C6nH10n+2O5n+1), were separately added to the blank solution to compare their effects.
The corrosion measurements were conducted in non-stirring aerated conditions at fixed
temperatures. Each experiment was often repeated about three times to ensure reliability.

2.2. Methods

Different methods were utilized in the present work: electrochemical (PDP and EIS),
chemical (ML) as well as spectroscopic (SEM).

2.2.1. Electrochemical Methods (PDP and EIS)

Both PDP and EIS were conveyed out in a three-electrode double-jacketed cell with RS
as the working electrode, platinum sheet as the counter electrode, and saturated calomel
electrode (SCE) as the reference using a PGSTAT30 potentiostat/galvanostat instrument
with a temperature-controlled technique. Prior to any experiment, the RS working electrode
was prepared, as reported earlier [39–42]. The RS was dipped in the cell comprising the
tested solution (without and with the inhibitor) for a period of time (about 30–40 min) prior
to each electrochemical experiment to attain a steady-state circumstance at open circuit
potential (OCP). For PDP, the electrode potential was automatically changed at a scan rate
of 2.0 mV/s. The EIS measurements were carried out after attaining an OCP value with a
5.0 mV disturbance signal in the frequency range from 100 kHz to 0.1 Hz.

In PDP, the values of % IEs and the degrees of surface coverage (θ) of the tested
compounds were calculated via Equation (1) [42]:

% IE = θ × 100 =

[
1−

icorr(inh)

icorr

]
× 100 (1)

where icorr and icorr(inh) are corrosion current densities without and with the
inhibitor, respectively.

In EIS, the values of % IEs were calculated using the equation [43]:

% IE =

[
1− Rct

Rct(inh)

]
× 100 (2)

where Rct and Rct(inh) are the charge transfer resistance values without and with the
inhibitor, respectively.

2.2.2. Chemical Method (ML)

The ML experiments were conducted in vessels with temperature control. The RS
specimens were bars and were prepared for such experiments, as stated before [31,32].
The prepared RS specimens were weighed before dipping in the tested solutions, then the
specimens were removed from the solutions, washed, dried, and weighed. The experiments
were performed at various inhibitor doses as well as different temperatures (288–318 K)
with an immersion time of 6 h. The corrosion rate (CR) values of RS were evaluated
according to Equation (3) [44]:

CR (mpy) =
KML
Atd

(3)

where K is a constant (3.45 × 106), ML is the mass-loss (g), A is RS specimen area (cm2), t is
time (h), and d is the RS density (7.86 g/cm3). The values of % IEs and θs of Dex and Inu
were computed via Equation (4) [45]:

% IE = θ × 100 =

[
1− CRinh

CR

]
× 100 (4)

where CR and CRinh are the corrosion rate values without and with the inhibitor, respectively.
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2.2.3. Spectroscopic Method (SEM)

SEM examinations were made using a JEOL SEM model T-200 (Akishima, Tokyo, Japan)
with a repeat voltage of 10 kV. SEM micrographs for the surfaces of RS specimens were
imaged in order to examine their morphologies prior to and after adding 500 mg/L of the
tested inhibitors to verify their effectiveness on the corrosion behavior of RS. Prior to each
morphology examination, the RS specimens were cleaned with bidistilled water and dried
with N2 gas. Then, the dried RS specimens were observed by SEM.

3. Results and Discussion
3.1. PDP Measurements

The PDP results presented as Tafel plots recorded for RS electrode in 1.0 M HCl solution
(blank) and in the presence of different quantities (100–500 mg/L) of Dex and Inu at 298 K
are shown in Figure 2. The values of the corresponding corrosion parameters, viz. corrosion
potential (Ecorr), corrosion current density (icorr), cathodic and anodic Tafel slopes (βc, βa),
were derived from such plots as well as the calculated values of polarization resistance
(Rp), % IE and θ are inserted in Table 1. Figure 2a,b and the corrosion parameters (Table 1)
illuminate that, with the addition of the tested compounds to the blank solution, the PDP
(Tafel) curve of the blank solution shifts to smaller current densities, revealing a reduction
of RS corrosion rate. The evaluated parameters listed in Table 1 demonstrated that, in
comparison with the blank solution, the Ecorr of RS was, in general, somewhat positively
shifted upon the addition of Dex and Inu, indicating the mixed-kind nature of the inhibitors
alongside a foremost anodic one [46,47]. Values of both βa and βc in the blank solution were
diminished upon adding Dex and Inu, recommending a reduction of the anodic dissolution
of RS and hindrance of the cathodic H2 evolution [26–28]. Additionally, the value of icorr
of RS in the blank solution was decreased upon raising the concentrations of the tested
compounds while the values of % IEs were enhanced, as illustrated in Figure 3.

Inspecting the values of % IEs designated the superiority of Inu over that of Dex at
similar concentrations, which can be ascribed to the difference in their molecular structures.
In addition, the calculated Rp value in the blank solution was increased with growing
the inhibitors’ concentrations proving the inhibition effects of Dex and Inu. The gained
outcomes designated that Dex and Inu are proficient inhibitors for RS corrosion in 1.0 M HCl
solution, and this behavior was explained by the adsorption of the inhibitors’ molecules on
the RS surface [48].
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Figure 2. Tafel plots for RS in 1.0 M HCl solution and with: (a) Dex and, (b) Inu at 298 K.
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Table 1. PDP parameters for RS in 1.0 M HCl solution and with Dex and Inu at 298 K.

1.0 M HCl
+

Inh. Conc.
(mg/L)

−Ecorr
(mV(SCE))

βa
(mV/dec.)

−βc
(mV/dec.)

icorr
(µA/cm2)

Rp
(ohm cm2)

% IE θ

- 0 451 109 88 474 45 - -

Dex

100 456 102 76 204 93 57 0.57
200 459 103 78 123 157 74 0.74
300 447 99 73 81 226 83 0.83
400 445 96 72 71 252 85 0.85
500 450 95 81 71 268 85 0.85

Inu

100 450 105 85 161 127 66 0.66
200 464 97 83 100 194 79 0.79
300 461 104 77 66 291 86 0.86
400 459 94 75 47 386 90 0.90
500 468 97 79 33 567 93 0.93

The explanation of the adsorption mechanism of the examined compounds on the
RS surface and their nature were discussed as follows. In acidic solutions, the examined
biopolymers (Dex and Inu) are suggested to protonate and become positively charged.
Thus, it is essential to compute the potential of zero charges (ZCP) of the examined steel (RS)
at the zero point to recognize its surface charge that can be calculated via Equation (5) [49]:

Ecorr − Eq = 0 (5)

where Ecorr and Eq are Ecorr and ZCP of Fe, respectively. As mentioned earlier, the Eq
of Fe vs. SCE in the HCl solution was −530 mV [50]. When using Equation (5), if the
computed values of Fe-ZCP are larger than zero, the steel surface is suggested to be
positively charged [51]. As was listed in Table 1, the Ecorr values recorded at 500 mg/L
for both Dex and Inu are −450 and −468 mV, correspondingly. In our present research,
the computed values of Fe-ZCP were 80 and 62 mV, correspondingly designating that the
surface of the RS steel was positively charged. In addition, in HCl solutions, the surface of
the steel is predicted to be covered with Cl− ions, i.e., it became negatively charged. Thus,
an electrostatic attraction will be amongst the Cl- ions and the protonated molecules at the
metal/medium interface. As a result, Dex and Inu molecules will be attached to the surface
of RS via chloride bridges to construct the first adsorbed film. Therefore, the adsorption of
the examined compounds on the RS surface will be physical in its nature, constructing an
adhesive protective film on its surface, resulting in a decrease in the corrosion rate of RS, as
documented in Table 1.
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3.2. EIS Measurements

In order to obtain more information about the inhibitory effects of the examined
biopolymers (Dex and Inu) on the corrosion of RS in 1.0 M HCl solution, EIS measurements
were performed. The measurements were recorded after dipping the RS electrode in the
tested solutions for about 30 min. or until attaining the OCP. The gained EIS spectra were
presented as Nyquist plots shown in Figure 4a,b for Dex and Inu, respectively. The Nyquist
plots were recorded for the blank solution and in the presence of various concentrations
of the examined compounds at 298 K. Such plots showed single-capacitive semicircles
signifying that the molecules of the examined compounds were adsorbed on the RS surface
by simple surface coverage and the corrosion of RS is chiefly regulated by charge transfer
mechanism [52,53]. The plots shown in Figure 4 indicate that raising the concentrations of
Dex and Inu were caused by an increase in the radius of the blank semicircle designating a
decrease in the corrosion rate of RS due to the increase in the adsorbed film constructed on
the RS surface.
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Figure 4. Nyquist plots for the corrosion of RS in 1.0 M HCl solution and with: (a) Dex and,
(b) Inu at 298 K.

The gained EIS spectra were analyzed using the equivalent circuit shown in Figure 5,
which comprises solution resistance (Rs), charge transfer resistance (Rct), and constant
phase element (CPE). Table 2 includes the fitting results of EIS parameters, which indicates
that the addition of the examined compounds to the blank solution significantly increased
its Rct value. This behavior signifies that the examined compounds were adsorbed at the
metal/medium interface leading to a decrease in their electrical capacities due to their
displacement of H2O molecules and other ions initially adsorbed on the RS surface [54],
resulting in an inhibition of the RS corrosion. This is due to the volumes of the inhibitors’
molecules being larger than that of H2O molecules, and their dielectric constants are lesser
than that of H2O molecules leading to increasing in the thickness of the double layer on
the RS surface and a reduction in the local dielectric constant. As a result, the value of
CPE recorded in the blank solution was discovered to decrease with the increase in the
inhibitors’ concentrations, signifying that the inhibitor molecules were effectively adsorbed
on the RS surface, which reduces the exposed area of RS and also increases the thickness of
the double layer. Consequently, the values of % IEs of Dex and Inu were increased with
raising their concentrations, proving that such compounds are proficient inhibitors for the
RS corrosion in 1.0 M HCl solution. The results of % IEs gained from both EIS and PDP
measurements are set to be chiefly consistent, which illuminated that the values inhibitory
effect of Inu is larger than that of Dex at similar concentrations.
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Table 2. EIS parameters for RS in 1.0 M HCl solution and with Dex and Inu at 298 K.

1.0 M HCl
+

Inh. Conc.
(mg/L)

Rs
(ohm cm2)

Rct
(ohm cm2)

10−2 CPE
(µF/cm2) % IE θ

- 0 2.73 66 29.07 - -

Dex

100 1.69 144 13.15 54 0.54
200 2.31 236 10.34 72 0.72
300 3.40 300 9.31 78 0.78
400 4.97 367 8.21 82 0.82
500 7.23 388 7.37 83 0.83

Inu

100 3.05 154 12.76 57 0.57
200 2.16 287 9.66 77 0.77
300 0.82 367 8.14 82 0.82
400 4.07 413 7.51 84 0.84
500 3.42 471 7.06 86 0.86

3.3. ML Measurements
3.3.1. Effect of Inhibitors’ Concentrations

ML measurements were conveyed to confirm the results gained from both PDP EIS
techniques. ML results for RS in 1.0 M HCl solution and with various concentrations of
Dex and Inu at 298 K are presented as the mass-loss versus immersion time plots, which
are illustrated in Figure 6a,b. From these plots, the values of the corrosion rate (CR in
mpy) of RS were calculated using Equation (3) and are inserted in Table 3. In addition, the
values of both % IEs and θs of the examined compounds are also computed via Equation (4)
and are also listed in Table 4. The data of Table 4 indicates that the CR value of RS in the
blank solution decreases, and the values of both % IEs and θs of Dex and Inu increase with
rising inhibitors’ concentrations. These outcomes confirm the inhibitory action of such
compounds for RS corrosion in 1.0 M HCl solution. In accordance with the results gained
from PDP and EIS tools, the order of inhibition efficiencies is Inu > Dex confirming the
validity of the outcomes of the employed techniques, as illustrated in Figure 7.
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Figure 6. ML vs. immersion time for RS in 1.0 M HCl solution and with: (a) Dex and, (b) Inu at 298 K.
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Table 3. ML data for RS in 1.0 M HCl solution and with Dex and Inu at different temperatures.

1.0 M
HCl +

Inh. Conc.
(mg/L)

Temperature (◦K)

288 298 308 318

CR
(mpy) % IE θ

CR
(mpy) % IE θ

CR
(mpy) % IE θ

CR
(mpy) % IE θ

- 0 169 - - 224 - - 258 - - 282 - -

Dex

100 78 54 0.54 114 49 0.49 144 44 0.44 164 42 0.42
200 47 72 0.72 72 68 0.68 98 62 0.62 113 60 0.60
300 32 81 0.81 47 79 0.79 65 75 0.75 82 71 0.71
400 22 87 0.87 36 84 0.84 46 82 0.82 68 76 0.76
500 20 88 0.88 29 87 0.87 44 83 0.83 59 79 0.79

Inu

100 63 63 0.63 92 59 0.59 121 53 0.53 144 49 0.49
200 39 77 0.77 60 73 0.73 77 70 0.70 99 65 0.65
300 24 86 0.86 38 83 0.83 54 79 0.79 76 73 0.73
400 17 90 0.90 31 86 0.86 44 83 0.83 62 78 0.78
500 14 92 0.92 22 90 0.90 39 85 0.85 59 79 0.79

Table 4. Values of thermodynamic parameters and Kads for RS corrosion in 1.0 M HCl solution and
with Dex and Inu at different temperatures.

1.0 M HCl
+

Temp.
(◦K)

10−3 Kads
L mol−1

∆Go
ads

kJ mol−1
∆Ho

ads
kJ mol−1

∆So
ads (298)

J mol−1 K−1

Dex

288 3.86 −29.39

−12.82

57.53
298 3.12 −29.82 57.05
308 2.56 −30.32 56.82
318 2.36 −31.17 57.70

Inu

288 7.03 −30.82

−9.64

73.54
298 6.01 −31.45 73.19
308 5.31 −32.19 73.21
318 4.81 −33.06 73.65
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Figure 7. Comparison of % IEs of: (a) Dex and, (b) Inu, with their concentrations in the corrosion of
RS in 1.0 M HCl solution at 298 K using PDP, EIS, and ML techniques.

3.3.2. Effect of Temperature

The effect of rising temperature in the range of 288–318 K on the corrosion behavior of
RS in 1.0 M HCl solution and in the presence of the examined compounds was examined
using ML measurements in order to evaluate thermodynamic and kinetic parameters and to
understand the nature of the inhibitors adsorption on the RS surface. Alike plots illustrated
in Figure 6 were obtained but are not shown here, and the related ML parameters are
inserted in Table 4. These parameters illuminate that the value of CR of RS increases
while those of % IEs of the examined compounds decrease with rising temperature, as
illustrated in Figure 8. Decreasing the % IEs values as the temperature rises is related to the
acceleration of the H2 gas evolution and reduction of the inhibitor adsorption leading to
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acceleration of the dissolution rate of RS [4]. This behavior proposes that the mechanism of
adsorption of the inhibitors’ molecules is physical [43,55,56].
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Figure 8. Variation of the values of % IEs of: (a) Dex and, (b) Inu with temperature in the corrosion of
RS in 1.0 M HCl.

3.3.3. Adsorption Isotherms Examination

It has been stated [57] that inhibition of metal corrosion by organic molecules is
ascribed to the adsorption of such molecules on the metal surface. Adsorption isotherm is
a valuable way to suggest the adsorption nature of the examined inhibitors on the metal
surface [58]. Therefore, the results (mainly the values of degrees of surface coverage, θ),
derived from mass-loss measurements at various temperatures, with respect to inhibitors’
concentrations, were utilized in various adsorption isotherm models (Freundlich, Temkin,
Langmuir, Frumkin, etc.) to explain the best-fit isotherm of the investigated inhibitors.
Linear plots of Cinh/θ versus inhibitor concentration (Cinh), at different temperatures, with
almost unit slopes, were obtained and are presented in Figure 9. These results indicate
that the inhibitor adsorption was set to be in good agreement with Langmuir isotherm,
represented by Equation (6) [59,60]:

Cinh
θ

=
1

Kads
+ Cinh (6)

where Kads is the equilibrium constant of the adsorption (listed in Table 4). Indeed, it
was reported [10–12] that in higher acidic solutions, the Langmuir isotherm model for
the adsorption of molecules on the metal surface is suggested to explain the inhibition
of metal corrosion. The calculated values of Kads were set to decrease with a rising tem-
perature, signifying potent adsorption of the inhibitor molecules on the RS surface at
lower temperatures, but at higher ones, the adsorbed molecules tend to desorb from the
RS surface.
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Figure 9. Langmuir adsorption isotherms for: (a) Dex and, (b) Inu adsorbed on RS surface in
1.0 M HCl solution at different temperatures.
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3.3.4. Thermodynamic Parameters

Thermodynamic parameters regarding the adsorption process were investigated to
donate significant information about the mechanism of the corrosion process and its
inhibition. The standard free energy (∆Go

ads) was computed at various temperatures using
Equation (7) [61]:

∆Go
ads = −RT ln(55.5 Kads) (7)

Values of ∆Go
ads for Dex and Inu were computed at various temperatures and are

inserted in Table 4. The acquired higher values of ∆Go
ads signify that Inu is more effectively

adsorbed on the RS surface than the inhibitor Dex. This agrees with the values of % IEs of Dex
and Inu gained from all used tools. In addition, the obtained values of ∆Go

ads illuminated
that the mechanism of adsorption is physical/chemical adsorption (mixed type) [62,63].

The values of standard heat of adsorption (∆Ho
ads) were evaluated via Equation (8) [64]:

ln Kads =
−∆Hoads

RT
+ Constant (8)

The plots of ln Kads vs. 1/T were set to be linear, as shown in Figure 10. From their
slopes, the values of ∆Ho

ads were gained and are listed in Table 4. The gained negative
values of ∆Ho

ads suggest that the adsorption process is exothermic with a physical kind
(physisorption) [4].
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Figure 10. Van’t Hoff plots for Dex and Inu adsorbed on RS surface in 1.0 M HCl solution.

The values of standard entropy of adsorption (∆So
ads) were determined from

Equation (9):
∆Go

ads = ∆Ho
ads − T∆So

ads (9)

The computed values of ∆So
ads (Table 4) showed an increase in the randomness

(disorder) at the metal/medium interface through the adsorption of inhibitors’ molecules
on the RS surface. Such an increase in disorder may be due to the desorption of more H2O
molecules from the RS surface and their replacement by inhibitors’ molecules [65].

3.3.5. Kinetic Parameters

The relation between the CR and temperature is expressed by the Arrhenius equation,
Equation (10) [66]:

ln CR = ln A− Ea
∗

RT
(10)

where Ea
* is the activation energy. The plots of ln CR vs. 1/T are illustrated in Figure 11.

From these plots, the values of Ea
* were computed and are inserted in Table 5. The gained

Ea
* values in the presence of Dex and Inu were greater than that obtained in the blank.

These findings signify the adsorption of Dex and Inu on the RS surface, constructing a
barrier to separate such surface from the corrosive solution [67]. The values of Ea

* were
smaller than 80 kJ/mol that required for chemical adsorption, indicating that the kind of
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adsorption was physical [68]. These outcomes are in agreement with those based on ∆Go
ads

and ∆Ho
ads values, signifying the validity of the gained results.
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Figure 11. Arrhenius plots for RS corrosion in 1.0 M HCl solution and with: (a) Dex and, (b) Inu.

Table 5. Activation parameters for RS corrosion in 1.0 M HCl solution and with Dex and Inu.

1.0 M HCl
+

Inh. Conc.
(mg/L)

Ea
*

kJ mol−1
∆H*

kJ mol−1
∆S*

J mol−1 K−1

- 0 12.88 10.35 −81.10

Dex

100 18.87 16.39 −95.67
200 22.53 20.01 −95.59
300 24.02 21.55 −94.01
400 27.69 25.12 −84.03
500 27.93 25.37 −91.10

Inu

100 21.03 18.69 −98.17
200 23.28 20.80 −94.84
300 29.09 26.54 −79.02
400 32.42 29.78 −69.86
500 37.07 34.69 −55.29

The enthalpy of activation (∆H*) and entropy of activation (∆S*) are evaluated via
Equation (11) [69]:

ln
(

CR
T

)
=

(
ln

R
Nh

+
∆S∗

R

)
− ∆H∗

R
1
T

(11)

The plots of ln(CR/T) vs. 1/T were set to straight (Figure 12). The evaluated values
of ∆H* and ∆S* are listed in Table 5. The gained positive values of ∆H* propose that the
corrosion process was endothermic, where the negative values of ∆S* in the blank solution
and with the examined biopolymers illuminate a high reduction in the randomness due to
the formation of activated complexes [70].
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Figure 12. Transition state plots for RS corrosion in 1.0 M HCl solution and with: (a) Dex and, (b) Inu.
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3.3.6. Kinetics of Corrosion and Its Inhibition

The kinetics of RS corrosion in 1.0 M HCl solution and with various concentrations
of Dex and Inu were studied. In this context, the plots of –ln(ML) vs. time were linear, as
illustrated in Figure 13, signifying that the kinetics of RS corrosion in 1.0 M HCl solution
and its inhibition by Dex and Inu were negatively first-order processes. The slopes of such
plots refer to the first-order rate constant values, k1, that are inserted in Table 6. Additionally,
the values of half-life times, t1/2, were calculated (Table 6) via the following equation [71]:

t1/2 =
0.693

k1
(12)
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Figure 13. First-order plots for RS corrosion in 1.0 M HCl solution and with: (a) Dex and, (b) Inu
at 298 K.

Table 6. Values of k1 and t1/2 for RS corrosion in 1.0 M HCl solution and with Dex and Inu at 298 K.

Inh. Conc.
(mg/L)

Dex Inu

103 k1, h−1 t1/2, h 103 k1, h−1 t1/2, h

0 84 8.25 84 8.25
100 77 9.01 74 9.36
200 74 9.36 76 9.12
300 70 9.90 73 9.49
400 66 10.51 72 9.63
500 63 11.02 66 10.50

In addition, the order (n) of corrosion inhibition of RS by Dex and Inu was evaluated
using Equation (13) [72]:

log CR = log k + n log Cinh. (13)

where k is the specific rate constant.
The plots of log CR vs. log Cinh for Dex and Inu at 298 K were linear, as shown in

Figure 14. Values of n were calculated and were found to be −0.86 and −0.89 for Dex and
Inu, respectively. The acquired values of n suggest that the corrosion inhibition process is
a negative fractional-first-order reaction with respect to Cinh. The negative n values and
the opposite proportionality of the CRs with Cinh (Figure 14) indicate good % IEs of the
examined compounds [73].
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3.4. SEM Examinations

The morphologies of the surfaces of RS specimens in 1.0 M HCl solution and in the
presence of 500 mg/L of the examined compounds (Dex and Inu) are shown in Figure 15a–d.
Figure 15a,b shows the polished RS surfaces before and after 12 h immersion in the blank
solution, respectively. Figure 15b shows the appearance of a large number of corrosion pits
on the RS surface. Figure 15c,d, in the presence of 500 mg/L of Dex and Inu, respectively,
show a noteworthy change in the RS surface where the corrosion pits shown in the RS
surface disappeared, and the surface was chiefly covered with the inhibitor molecules on
the whole surface. This could be ascribed to the effective adsorption of the molecules of
the examined compounds on the RS surface, constructing an adhesive layer that protects
the surface from the corrosive solution, and displaying outstanding inhibition properties.
Thus, the SEM micrographs of the RS surfaces were set to accord with the various utilized
experimental tools.
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4. Conclusions

1. Two biopolymers, dextrin (Dex) and inulin (Inu), were tested as inhibitors for the
corrosion of reinforcing steel (RS) in 1.0 M HCl using various experimental tools.

2. The inhibition efficiencies (% IEs) of the tested biopolymers were improved by aug-
menting their doses while reducing with rising temperature.

3. The % IEs of Dex and Inu at a dose of 500 mg/L reached 85% and 93%, respectively.
4. The tested biopolymers displayed mixed type with a foremost anodic one.
5. The acquired high % IEs were demonstrated by intense adsorption of Dex and Inu on

the RS surface fitting the Langmuir isotherm.
6. The influence of rising temperature in the range of 288–318 K was examined.
7. Thermodynamic and kinetic parameters sustained the mechanism of physical adsorp-

tion of the inhibitors.
8. The kinetics of corrosion and its inhibition by Dex and Inu were also investigated.
9. The SEM results were set to accord with the various utilized experimental tools.
10. The results gained from all used tools were discovered to be in good agreement with

each other.
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