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Abstract: Fiber reinforcement orientation in thermoplastic injection-molded components is both a
strength as well as a weak point of this largely employed manufacturing process. Optimizing the fiber
orientation distribution (FOD) considering the shape of the part and the applied loading conditions
allows for enhancing the mechanical performances of the produced parts. Henceforth, this research
proposes an algorithm to identify the best injection gate (IG) location/s starting from a 3D model and
a user-defined load case. The procedure is composed of a first Visual Basic Architecture (VBA) code
that automatically sets and runs Finite Volume Method (FVM) simulations to find the correlation
between the fiber orientation tensor (FOT) and the IG locations considering single and multiple gates
combinations up to three points. A second VBA code elaborates the results and builds a dataset
considering the user-defined loading and constraint conditions, allowing the assignment of a score
to each IG solution. Three geometrical components of increasing complexity were considered for
a total of 1080 FVM simulations and a total computational time of ~390 h. The search for the best
IG location has been further expanded by training a Machine Learning (ML) model based on the
Gradient Boosting (GB) algorithm. The training database (DB) is based on FVM simulations and was
expanded until a satisfactory prediction accuracy higher than 90% was achieved. The enhancement
of the local FOD on the critical regions of three components was verified and showed an average
improvement of 26.9% in the stiffness granted by a high directionality of the fibers along the load
path. Finite element method (FEM) simulations and laboratory experiments on an industrial pump
housing, injection-molded with a polyamide-66 reinforced with 30% of short glass fibers (PA66-30GF)
material were also carried out to validate the FVM-FEM simulation frame and showed a 16.4% local
stiffness improvement in comparison to the currently employed IG solution.

Keywords: injection molding; short fiber reinforced composite (SFRC); injection gate design; fiber
orientation optimization; stiffness optimization; machine learning (ML); gradient boosting (GB)

1. Introduction

Thermoplastic injection molding (TIM) is a widespread and well-established manu-
facturing process with several advantages, among them low cycle time, high dimensions
accuracy and repeatability, low material waste, and recyclability of the material [1,2]. In
recent years, scholars have addressed several weak points related to the TIM process, such
as the defect detection strategies [3], warpage and shrinkage control [4], and weldline
optimization to reduce their negative effect on the overall strength of the molded part [5].
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Much effort has also been directed towards the inclusion of ever longer fibers, or fibers
structures, such as woven reinforcements, within injection molded components. In this
regard, in Jeong et al. [6], a strong improvement in terms of mechanical properties was
achieved by processing a combination of a carbon fibers (CF) woven reticulated structure
within a polypropylene (PP) matrix by the injection molding process. In addition, to
comply with ever stricter regulations related to hydrocarbons, various researchers have
also focused on how to process recycled reinforcements [7] in the TIM process and how to
account for their variability during the part design stage [8]. Within this background, the
design and manufacturing for the injection molding process is following the trend of other
composite-related processes for lightweight design [9] and high-performance component
manufacturing [10]. Another important aspect relevant to all fibers-reinforced composites
(FRC), which also applies to the TIM process, is the influence of the fiber orientation
distribution (FOD) on the mechanical performance of the component. As shown in recent
literature studies, the FOD affects the static strength and fatigue life [11–13], the effect
of the stress triaxiality and loading conditions on the failure behavior [14–16], and notch
sensitivity [17,18].

Considering the strong influence on mechanical performance, the matter of predicting
the FOD development within injection-molded components has attracted the attention of
several scholars. From the analytical point of view, Huang and Zhao [19] proposed a gener-
alized distribution function (GDF) for the FOD prediction based on the ratio between the
shell and core layers developing throughout the thickness of injection molded components.
The GDF formulation proved to be slightly superior (~5%) to the largely employed reduced
strain closure (RSC) model proposed by Wang [20], normally coupled with the Anisotropic
Rotary Diffusion (ARD) model [21], and successfully applied by Favaloro and Tucker [22]
for the prediction of the FOD in the molding process of short FRC. The ARD-RSC model
is easy to employ and calibrate and, for this reason, has been employed in various recent
studies [11,14,17,23], and is also available within the Autodesk Moldflow Insight (AMI)
2023 environment [24–26], also employed in this research.

As concerns the TIM process, the FOD is mainly influenced by two factors, namely
the part geometry and the injection gate location, or locations. For the case of unfilled
polymers, the injection gate is normally designed to achieve a balanced polymer filling and
avoid shortshots [27,28]. In recent years various gate location design algorithms have been
proposed to minimize one or multiple issues related to the TIM process, such as the opti-
mization/reduction of injection pressure, warpage, residual stresses, and weld lines [29,30].
In terms of FRC, Li et al. [31] proposed a methodology based on the backpropagation neural
network and genetic algorithm–particle swarm optimization algorithm for the estimation
of the influence of the main TIM process parameters on the FOD. Although interesting,
the analysis considers a constant position for the injection gate and focuses only on the
influence of the process parameters. Both aspects are crucial, but the latter can be adjusted
during the initial pre-production batches, whereas a variation of the injection gate location
is normally a highly time-consuming and expensive operation.

Considering the available literature, there seems to be a lack of knowledge in terms of
the correlation between the injection gate location/s and the fiber orientation distribution
arising within the component. Indeed, the geometry of the component plays an important
role, but the FOD can be adjusted and designed by optimizing the location/s of the injection
gates. To this aim, this research presents an injection gate (IG) design algorithm, based on a
Visual Basic Architecture (VBA) script, able to automatically set and run FVM simulations,
implemented in Autodesk Moldflow Insight 2023, and to automatically export the fiber
orientation tensor (FOT) for each element of the FVM model mesh. At this point, the
user is asked to define the regions of interest (RoI) in the model along with the relevant
directions along which the FOT should be optimized. This phase can be carried out by
preliminary finite element method (FEM) simulations or by previous analysis of the loading
and boundary conditions applied to the component being investigated.
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To limit the number of FVM simulations, the dataset composed of injection gate
locations and element-based FOTs was employed for the training and validation of a
machine learning (ML) model based on the Gradient Boosting (GB) method. The trained
GB model is then employed to predict the FOT resulting from the application of IG in
positions where no FVM simulations have been run, allowing for a full IG processing map,
customized on the component being investigated. Machine learning approaches have been
largely applied to other manufacturing processes [32,33] but the only application to the TIM
process seems to be related to unfilled polypropylene [34,35] and targeted the end-product
quality rather than its mechanical performances.

The accuracy of the proposed methodology, composed of the VBA interface algorithm,
the FVM simulations, and the ML-GB model, was validated by considering three geometries
with increasing complexity. In addition to that, to verify the effect of the optimized FOT
on the mechanical response of the investigated component, the FVM models have been
coupled with FEM simulations, implemented in Abaqus 2020, through the Autodesk
Advanced Material Exchange (AME) 2019 platform, allowing us to account for the effect of
the element-based FOT (FVM) on the element-based material properties (FEM).

From the FVM-FEM point of view, the proposed IG design algorithm allowed for a
~36% improvement in terms of FOT and a consequent increase in the global stiffness of
26.9%, respectively. To validate the whole FVM-FEM simulation framework, laboratory
experiments have been carried out on an industrial pump housing manufacturing by TIM
and by employing a polyamide-66 reinforced with 30% of short glass fibers (PA66-30GF)
material. The results of the mechanical testing showed a negligible deviation between
numerical and experimental load-displacement curves, while the local stiffness improved
by 16.4% on average. This positive result proves that the FVM simulation is capable of
accurately predicting the FOT and FOD and that the mapping operation (FVM→ FEM)
allows for a precise estimation of the global elastic response, calculated by the FEM sim-
ulations. Summarizing, the proposed approach has been developed considering single,
double, and triple injection gate configurations, which also represent most of the cases
from small to mid-size components manufactured by the TIM process. Moreover, thanks to
its modularity, the algorithm can be extended to other FRC materials by recalibrating the
orthotropic material properties in the FVM simulation.

2. Materials and Methods

This chapter is subdivided into 3 sections devoted to the following key aspects of
this research. Section 2.1 details the material properties of the polyamide-66 reinforced
with 30% of short glass fibers (PA66-30GF) material employed in all the finite volume
method (FVM) simulations. This section also summarizes the process parameters and fiber
orientation distribution (FOD) calculation model employed for the implementation of the
FVM simulations. Section 2.2 presents the global working principle and the details for each
phase for the proposed gate design algorithm and includes the details of the ML model
based on the GB algorithm employed to expand the search for the best IG location. Finally,
Section 2.3 summarizes the implementation strategy for the finite element method (FEM)
simulations and the laboratory experiment procedures.

2.1. PA66-30GF Properties and FVM Simulation Settings

The material properties of the employed PA66-30GF material have been acquired
from the work of Isaincu et al. [36] and inversely calibrated in the FVM simulation for
further mapping into the FEM model. The rheological and thermal properties of the
material, necessary for the implementation of the FVM simulation model, have been
acquired from the Zytel 70G30HSL datasheet, a largely employed PA66-30GF material. The
overall procedure encompassing the material properties calibration, the FVM simulation,
the fiber orientation and material properties mapping, and the FEM simulation steps are
reported in Figure 1. For the calibration of the material properties, BS-EN-ISO-5272012
type 1BA specimens, Figure 2a, have been machined from the central region of an injection
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molded plate (Figure 2b). This approach allows for the achievement of a uniform FOD in
the calibrated region of the specimens, and thus for a precise estimation of the direction-
dependent material properties. Specimens along 0◦, 45◦, and 90◦ have been considered,
resulting in the engineering stress–strain curves of Figure 3a.
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Figure 2. (a) BS-EN-ISO-5272012 type 1BA specimen’s dimensions and (b) 0◦ (injection direction),
45◦, and 90◦ specimens’ machining positions on the injection molded plate (thickness: 2 mm).
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The material properties have then ben input into the Moldflow Insight environment
as they are shown in Figure 3a and, by means of subsequent mapping calibration [11],
the difference between experimental and numerical load-displacement curves have been
minimized, as shown in Figure 3b. The material properties are interpolated considering
the Ramberg–Osgood flow stress model, Equation (1), coupled with a modified Hill ’48
yield function, Equation (2), where α and β parameters refer to the fiber direction (0◦)
and transversal direction (90◦), respectively, and scale the yield function account for the
orthotropic nature of injection molded polymers.

σ = E1/n(K)(n−1)/n
(

εp,e f f

)1/n
(1)

σe f f =

√√√√ (ασ11 − βσ22)
2 + (βσ22 − βσ33)

2 + (βσ33 − ασ11)
2 + 6

[
(σ12)

2 + (σ23)
2 + (σ31)

2
]

2
(2)

Both α and β are calculated for each element of the FVM simulation mesh based on
its relevant fiber orientation distribution, accounted for in terms of its first eigenvalue λI .
The element-based calculation for both parameters is that of Equation (3) but refers to two
different reference values, one for the injection direction (αm) and one for the transversal
direction (βm). In Equation (3), λm,I represents the first eigenvalue of the fiber orientation
matrix in the region of the model with the highest fiber alignment with the polymer flow.

α(λI) = θ +

[
(αm − θ)

(λm,I − 1/2)

]
(λI − 1/2) , β(λI) = θ +

[
(βm − θ)

(λm,I − 1/2)

]
(λI − 1/2) (3)

The material constants relevant to Equations (1) and (3) are reported in Table 1 and
define the full set of constants included in all FVM simulations for the estimation of the
element-based material properties, based on the local fiber orientation, estimated through
the ARD-RSC model [20–22], as hereafter reported.

Table 1. Material constant for the Ramberg–Osgood and anisotropic Hill ’48 yield function.

Symbol [Unit] Definition Value

K [MPa] Strength coefficient 60.81
n [−] Hardening exponent 15.97

Em [GPa] Polymer matrix elastic modulus 2.21
E f [GPa] Fibers’ elastic modulus 36.52
αm [−] Weight factor for the fiber direction 1.42
βm [−] Weight factor for the direction normal to the fibers 1.17

λm,I [−]
First eigenvalue of the fiber orientation matrix in the region of the

model with the highest fiber alignment with the polymer flow 0.85

As demonstrated in various recent works [11,14,17], the ARD-RSC model, Equation (4),
is capable of accurately predicting the FOT during the thermoplastic injection molding
(TIM) and carries two improvements in comparison to the Folgar–Tucker model [37].

∂aij
∂t = − 1

2

(
wikakj − aikwkj

)
+ 1

2 λ
( .
γikakj + aik

.
γkj − 2

.
γkl

[
aijkl + (1− k)

(
Lijkl −Mijkl · amnkl

)])
+

.
γij

[
2
(

cij − (1− k)cklMijkl

)
− 2k · ckkaij − 5

(
cikakj + aikckj

)
+ 10ckj

(
aijkl + (1− k)

(
Lijkl −Mijkl · amnkl

))] (4)

The former is related to the fiber-to-fiber interaction within the polymeric flow, thus
occurs during the injection phase of the process. This is carried out by the fiber interaction
function (cij), which substitutes the fiber interaction constant of the Folgar–Tucker model. In
this scenario, cij represents a quadratic function calculated on the basis of the fiber orienta-
tion tensor (aij) and of the deformation rate tensor (

.
γij). In addition to that, the reorientation

of the fibers during the injection phase is controlled by an improved closure term identified
by
[
aijkl + (1− k)

(
Lijkl −Mijkl · amnkl

)]
, where Lijkl and Mijkl tensors are calculated as the
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products between eigenvalues and eigenvectors components of the orientation tensor (aij).
The fiber reorientation constant allows for scaling between a fully allowed reorientation
during the injection phase (k ≈ 1) to a highly limited reorientation (k ≈ 0). In this research,
the reorientation constant has been calibrated to k = 0.6, by employing the same procedure
defined and employed in Quagliato et al. [14]. By considering this modeling background,
all FVM simulations related to this research have been implemented in the Autodesk In-
sight 2023 environment considering a tetrahedral mesh where the element side length and
aspect ratio have been set to 3 mm and 4 mm, respectively. The three geometries, employed
for training and validation purposes, are reported in Figure 4 along with their relevant
main dimensions. Given that the injection molded industrial pump housing of Figure 4c is
related to a commercial product, only a few dimensions details can be disclosed.
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Figure 4. Training geometries with increasing complexity as considered in this research. (a) Blind
hole cylinder, (b) multi features shape, and (c) industrial pump housing. The arithmetic average
thickness is calculated as the ratio between the volume and external area of the part.

In all FVM simulations, the injection gate (IG) has been modeled without the relevant
injection channels and runners. Although injection channels and runners might have an
influence on the FOT, especially for complex geometries, in this study, they have been
neglected to reduce the modeling and computational effort. In terms of process parameters,
for the injected plate of Figure 2 and the three components of Figure 4, the details are
reported in Table 2 and are related to the injection phase, post-pressure, and cooling phase.
Since this research aims at the investigation of the influence of injection gate location,
fiber orientation distribution, and component stiffness, the warpage calculation phase was
omitted from the FVM simulations. In Table 2 the velocity/pressure switchover refers to
the part volume filling percentage whereas the post-pressure refers to the percentage with
respect to the maximum pressure during the filling phase.

Table 2. Autodesk Moldflow Insight FVM simulations process settings for injection molded plates
and training geometries.

Parameter Injection
Molded Plate

Blind
Hole Cylinder

Multi
Features Shape

Industrial
Pump Housing

Molten material temperature 290 ◦C 285 ◦C 285 ◦C
Mold temperature 85 ◦C 110 ◦C 110 ◦C

Injection time 1.51 s Automatic Automatic
Velocity/pressure switch-over 98.7% 99% 98%

Packing–cooling time 10 s 20 s 30 s
Post-pressure 80% 80% 85%
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2.2. Single and Multiple Injection Gate Design Algorithm

The injection gate (IG) design algorithm is composed of three main sections, as sum-
marized in Figure 5. The first phase (1), based on an Ilogic script implemented in Autodesk
Inventor 2023, handles the CAD model and is responsible for the definition of all the possi-
ble injection locations on the considered geometry. The locations are defined considering
a user-defined spacing strategy, in which the bounding box enveloping the component is
used to project the IG locations on the inner and outer surfaces of the CAD geometry.
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Figure 5. Main phases and tasks of the injection gate design algorithm.

The grid spacing employed for all the considered components of Figure 4 is, in general,
equal to 15 mm and is the result of a grid size optimization considering 10 mm, 15 mm, and
20 mm, carried out before the beginning of phase (1). Although highly time-consuming,
if the grid size is intended to be further optimized, the whole procedure of Figure 5 can
be repeated considering different grid size values until convergency is reached. The IG
candidate locations are defined by an (x,y,z) vector on the model and by the orthogonal
versor v to the part surface (Figure 5). Using this approach, the defined IG candidates are
constrained from belonging to inner or inaccessible surfaces and, once the IG candidates
set is defined, it is automatically stored in an Excel VBA database (IG points/versors VBA
DB storage 1©).

Afterward, in phase (2), a second VBA script automatically creates all the FVM sim-
ulation input files and runs them automatically. All FVM simulations are based on the
same mesh and process conditions, defined in a reference FVM simulation, which must be
manually defined by the user. To this aim, as also carried out in this research, the process
conditions and mesh should be checked a priori. In principle, there are no limitations to
the number of FVM simulation cases within the same Autodesk Moldflow Insight (AMI)
file, but for practical file handling reasons, the number of cases for a single simulation file
is constrained to 350. Thus, if the IG test points are more than 350, more than one AMI
simulation file is created. After all the FVM simulations relevant to the IG test points have
been completed, a results export macro, directly implemented in the AMI environment,



Polymers 2023, 15, 3094 8 of 23

exports the fiber orientation tensor for each element of the mesh and combines them with
the relevant IG coordinates (FOT and IG points VBA DB storage 2©), as shown in Figure 5.

At this point, preliminary considerations can be carried out considering the relation-
ship established between the IG locations and the relevant FOT on the critical regions
of the component. However, to create a direct correlation between IG locations and the
mechanical response of the component, two additional steps for phase (3) are required.

First, an FEM simulation with isotropic material properties is set considering the
loading and boundary conditions (BC) applied to the component being designed and, in
this research, it is employed to define the critical regions of the model. By considering
isotropic material properties in the reference FEM simulation, the load path developing
within the component depends only on the geometry and on the applied loading and
boundary conditions. At this point, the user is requested to define the number of regions of
interest (RoI) on the model and the relevant control volume (CV). The RoI are defined as
positions in the considered geometry where the design engineer is interested in optimizing
the FOD to achieve a better reinforcement efficiency. On the other hand, the CV is defined
in terms of spherical volume within which the stress tensor components are exported
and averaged after the completion of each FEM simulation. In the developed algorithm
each RoI is associated with a customizable CV, set here to a 5 mm radius, allowing for the
estimation of the influence of the IG location/s on the elastic response of the component.

After these two preliminary steps of phase (3), the normalized FOT and the normalized
stress tensor estimated from the reference FEM simulation are calculated. In Equation (5),
the FOT tensor (Tn,k) is estimated for each of the n-th FVM simulations, for every k-th RoI,
and by considering the previously defined CVs.

Tn,k =

 Txx Txy Txz
Tyy Tyz

Tzz

 ⇒ |Normalize| ⇒ T̂n,k[0 ∼ 1]

σ =

 σxx σxy σxz
σyy σyz

σzz

 ⇒ |Normalize| ⇒ σ̂[0 ∼ 1]

(5)

Moreover, both FOT and stress tensor (σ) are considered positive values since the
directionality of the fibers is considered beneficial in the same way both for tensile and
compressive stress states. Afterward, considering the k-th RoI in the n-th FVM simulation,
the relevant score is calculated as in Equation (6) by separately considering the normal and
shear stress components. The global IG score for the n-th FVM simulation is then estimated
by a weighted average of all the k-th scores from each RoI according to Equation (7). The
weights associated with each RoI (δk) allow the designer to assign a higher or lower priority
to different regions of the model while accounting for all of them at the same time.

Sk = ∑
(
T̂ii · σ̂ii

)
+ ∑

(
T̂ij · σ̂ij

)
[0 ≤ Sk ≤ 1] (6)

Sn =
1
K

K

∑
k=1

Sk · δk [0 ≤ δk ≤ 1] (7)

By repeating this procedure for all the N-FVM simulations for the considered compo-
nent the weighted scores considering all the RoI are estimated, and the best and worst IG
locations for the considered loading and boundary conditions can be defined, as shown
in Figure 5. To verify the stiffness improvement, the FVM simulation results are mapped
through the AME module to the Abaqus 2020 FEM simulation model.

Since the geometry, loading, and boundary conditions are the same, the stiffness
variation predicted by the FEM simulations is influenced only by the FOT, which is in
turn influenced by the IG gate location/s. After the normalization and scores calculation,
the user has also the option of expanding the search for the optimal IG by employing
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a machine learning (ML) Gradient Boosting model (GB), as defined and employed in
Mirandola et al. [32], Equation (8).

Y(w) = Lδ(y, f ) =

{
1
2 (y− f )2 if |y− f | < δ

δ|y− f | − 1
2 δ2 otherwise

(8)

In Equation (8), Lδ is defined as the loss function and is employed to update the
prediction between the m-step and the m + 1 step. The new prediction is based on the
difference between predicted and true values between two consecutive iterations. In the GB
algorithm, only one tree ( f ) is built and progressively updated according to Equation (9),
where η is the learning rate and defines the speed at which the loss function is minimized.

fm+1 = fm + η · rm+1 where ri,m+1 = −
∣∣∣∣∂Lδ(yi, fi)

∂ fi

∣∣∣∣
fm

(9)

The GB model is trained on the basis of the FVM simulation results, in terms of IG
(x,y,z) coordinates and Sk scores. The objective function is defined in terms of coordinates
of the IG gate, or gates, that allow for the maximization of the Sk scores or the weighted Sn
score. To assess the accuracy of the training, a 5-fold validation is automatically carried
out after the training, allowing the user to decide whether to include additional FVM
simulation and repeat the training process or accept the proposed solution. After the
training process, the GB algorithm is requested to predict either the Sk scores or the Sn
score on a user-defined and finer grid than that employed in phase (1), Figure 5. This
approach allows for more accurate tuning of the IG location design while also granting the
estimation of a feasible solution. The consideration of a post-processing phase based on the
GB algorithm allows for finer tuning of the IG location, thus for a better improvement of
the component stiffness, especially for the case of complex geometries.

The Ilogic script (Autodesk Inventor 2023), the two VBA scripts for phases (1) and (2),
the normalization VBA script for phase (3), the GB Phyton script, and the output DB of
phase (2), FOT and IG points VBA DB, are available as Data Availability Statement to this
paper, stored on an online repository, or on request to the corresponding author.

2.3. FEM Simulation Settings and Validation Experiments

The FEM simulations, partially introduced in the previous section of the paper, have
been implemented in Abaqus 2020 considering a static/implicit solution scheme. All three
models of Figure 4 have been meshed considering a C3D10H element with a general size
of 2 mm and refinement of 0.8 mm, for a total of 442,639 (a), 130,051 (b), and 374,401 (c)
elements, respectively. The meshes have been tested considering two coarser and one
finer mesh approaches, allowing us to conclude that the employed strategy is the best
tradeoff between accuracy and computational time. For all meshes, a quadratic integration
scheme has been employed to allow a better representation of the stress distribution within
the element, thus catching the complex behavior related to an element-based material
properties mapping. The loading and boundary conditions applied to the models are
reported in Figure 6a–c. For the setting of the reference FEM models needed for phase (3)
of Figure 5, isotropic material properties have been considered as E = 14 GPa and ν = 0.37.
Since the aim of the reference FEM simulation is only the identification of the load path,
in terms of RoI and directions of maximum stress, the selected material properties do not
affect the score calculation, as presented in the previous section of the paper.
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Figure 6. Mesh, loading, and boundary conditions for the (a) Blind hole cylinder, (b) Multi features
shape, and (c) Industrial pump housing. (d) Experimental setup for the industrial pump housing.

As concerns the validation experiments, the testing conditions of Figure 6d were
employed together with the same BC for the bottom of the part employed in the relevant
FEM simulation, as shown in Figure 6c. Moreover, since this research focuses only on the
elastic response, the experiments have been carried out right across the yield point and
then stopped before severe deformation arose on the component. For the experiments,
the MTS 809 axial/torsional test machine was employed where the reaction force was
measured by the embedded load cell and the vertical displacement by the machine encoder.
A total of 5 pieces were tested with a 2 mm/min downward speed, and the relevant load-
displacement curves, together with the FVM-FEM estimation, are reported in Section 3.3.

3. Results

According to the research implementation frame presented in Section 2 of the paper,
this section is organized in a similar manner to provide a one-to-one connection with the
relevant methodological background.

3.1. IG Solutions and RoI Scores Calculation

Considering the automatic IG generation algorithm from Section 2.2, an example of the
IG grid on the three components of Figure 4 is displayed in Figure 7. In the FVM simulation
environment, the IGs are considered one by one, in the case of a single injection gate
(IG = 1), in couples, in the case of a double injection gate (IG = 2), or in triplets, in the case
of a triple injection gate (IG = 3). For the case of a single gate, each one of the IGs represents
a single FVM simulation, whereas for IG = 2 and IG = 3, the combinations between the
different locations are randomly generated to assure the absence of biases, especially for
the training and validation of the GB-ML model, as presented in following Section 3.4.
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Figure 7. Examples of IGs generated on the user-defined grid on (a) blind hole cylinder, (b) multi
features shape, and (c) industrial pump housing.

Starting with the simplest geometry, the blind hole cylinder of Figure 4a, the appli-
cation of bending and tensile loads, coupled with isotropic material properties, results
in the von Mises equivalent stress distribution reported in Figure 8a, allowing for the
identification of two RoIs. As previously mentioned, this preliminary FEM simulation
aims to identify the regions of the model where the FOD ought to be aligned with the load
path to improve the local stiffness. Accordingly, FVM simulations considering IG = 1, 2, 3
have been implemented and their total number, for all three geometries, is summarized in
Table 3. The number of simulations reported in Table 3 has been progressively increased to
achieve a sufficient training dataset for the GB-ML model of Section 3.4.

Table 3. Number of FVM simulations for the three components (IG and FOT DB of Phase 2).

Component IG = 1 IG = 2 IG = 3

Blind hole cylinder 90 90 90
Multi features shape 110 110 110

Industrial pump housing 160 160 160

For each FVM simulation, and each RoI, the scores have first been calculated, according
to Equation (6), allowing for the determination of the total score for each case, Equation (7),
and for the definition of the best and worst IG configuration, for single, double, and triple
injection gates. In Figure 8b–d, the FOD resulting on the blind hole cylinder component
when the best and worst IG configurations, for IG = 1, 2, 3, are considered and reported,
along with the relevant RoI-based and total scores. In addition, in Figure 8e,f, the FOT
components, for IG = 1, 2, 3, for the best and worst IG configurations, are reported for RoI#1
and RoI#2. Following the same strategy, the summary of the results relevant to the multi
features shape and industrial pump housing are reported in Figures 9 and 10, respectively.
In the case of these two components, since three RoIs are considered, three comparison
charts reporting the components of the FOD are reported.

Considering altogether the results relevant for the variation of the FOD between the
best and worst IG location, the improvement in directionally of the FOT, calculated between
the worst and best total scores among those reported in Figures 8–10, is estimated at 63.2%
for the blind hole cylinder, 35.7% for the multi feature shape, and 10.7% for the industrial
pump housing, respectively.

At this point, to verify the stiffness improvement granted by the higher directionally
of the fiber reinforcement, FEM simulations have been implemented considering the local
mechanical properties by mapping them onto the structural simulation mesh by means of
the Autodesk AME interface [11,14], as reported in the following section of the paper.
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Figure 8. Blind hole cylinder results. (a) Von Mises stress distribution and RoI identification from
isotropic FEM simulation. FOD on best and worst IG location for (b) IG = 1, (c) IG = 2, and (d) IG = 3.
FOT components on the best and worst IG location for IG = 1, 2, 3 for (e) RoI#1 and (f) RoI#2.
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Figure 9. Multi features shape results. (a) Von Mises stress distribution and RoI identification from
isotropic FEM simulation. FOD on best and worst IG location for (b) IG = 1, (c) IG = 2, and (d) IG = 3.
FOT components on the best and worst IG location for IG = 1, 2, 3 for (e) RoI#1, (f) RoI#2, and
(g) RoI#3.
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Figure 10. Industrial pump housing results. (a) Von Mises stress distribution and RoI identification
from isotropic FEM simulation. FOD on best and worst IG location for (b) IG = 1, (c) IG = 2, and
(d) IG = 3. FOT components on the best and worst IG location for IG = 1, 2, 3 for (e) RoI#1, (f) RoI#2,
and (g) RoI#3.
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3.2. FVM-FEM-Based IG Design and Stiffness Improvement

Considering the same rationale employed in Section 3.1, the results relevant to the
structural FEM simulations for the worst and best IG locations identified from the results
of the FVM simulations, as reported in Section 3.1, are summarized in this chapter.

First, to verify the variation of the elastic response in the RoI, as a consequence of
the applied external loads and boundary conditions, the equivalent stress–strain curves
calculated according to the von Mises criterion, averaged within each CV relevant for each
RoI, for three parts, are reported in Figures 11–13, respectively. In all charts, the increase in
the local stiffness granted by the best IG location, compared to the worst one, shows the
benefit provided by the proposed IG design algorithm and is only related to the number
and locations of the IG and no modifications of the components’ geometry.
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Figure 11. After-mapping local stiffness variation and major elastic strain component distribution for
the blind hole cylinder in (a,b) RoI#1 and (c,d) RoI#2.

Considering the blind hole cylinder, seen in Figure 11, the variation between the best
and worst IG locations results in a 12.1% stiffness improvement in RoI#1 (Figure 11a) and
13.6% in RoI#2 (Figure 11c), respectively. In addition, as shown in the images comparison
of Figure 11b,d, the variation of the IG location from worst to best allows for a reduction
in the strain component along the main direction of the load path, namely the y-direction
(LE22) for both RoI#1 and RoI#2.

As concerns the multi features shape, the results are summarized in Figure 12 following
the same approach as Figure 11 but considering the three RoIs identified in Figure 9. For
the case of this component, it is interesting to underline that the load path direction is not
the same for the three RoIs. In fact, both RoI#2 and RoI#3 show the highest deformation
along the y-direction, thus the relevant images show the elastic strain distribution along
this direction (LE22). On the other hand, for RoI#1, the load path is most critical along
the x-direction (LE11). Regardless of the direction along which the load path creates the
highest deformation, the best IG, identified in double gate #494, allows for a reduction
in the equivalent strain for the same equivalent stress, resulting in an average increase in
the elastic modulus of 27%. In addition, it must also be considered that the mentioned
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reduction of the equivalent elastic strain does not necessarily refer to a tensile strain, but to
a reduction in the magnitude of the strain component along the considered major direction.
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Figure 12. After-mapping local stiffness variation and major elastic strain component distribution for
the multi features shape in (a,b) RoI#1, (c,d) RoI#2, and RoI#3 (e,f).

The results relevant to the industrial pump housing, seen in Figure 13, as those for
the multi features shape, offer another interesting insight into the possible conflict that
might arise when optimizing multiple RoIs on the same component and at the same
time. Regarding the first RoI, located in the proximity of the load application area, the
improvement granted by the proposed IG design algorithm is equal to 18.6% but is rather
lower than that on the other two RoIs. In fact, RoI#2 and RoI#3 are located on rib regions
and show a far higher stiffness improvement, quantified in 39.3% and 51.1%, respectively.

Regardless of the IG configuration, when an RoI is selected close to a load application
area, the non-uniformity of the load path results in a multiaxial stress state, which makes
the optimization of the fiber orientation complex to achieve. Nevertheless, when the stress
state becomes close to a hydrostatic, a random fiber orientation results in a better response
of the material since no clear uniaxial load path can be identified.
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On the other hand, for the case of RoI#2 and RoI#3, the load path follows the ge-
ometrical shape of the rib, with a consequent higher benefit from the alignment of the
reinforcement towards the relevant direction. Considering the results of Figure 13, the
following section shall provide a validation of the FEM and FVM simulation framework as
well as the improvement granted by the proposed IG design with respect to that currently
employed for the industrial pump housing.

3.3. FVM/FEM Validation and Benefits of IG Design Improvement

To evaluate the accuracy of the implemented FVM and FEM numerical simulation
frame, the FOD resulting from the FVM simulation considering the original IG configuration
and that of the best IG reported in Figure 13 have been mapped onto the FEM simulation
model, replicating the loading conditions reported in Figure 6d. For this purpose, the load
has been applied considering a flat punch, defined as analytically rigid, where the same
20 kN load conditions of Figure 6c were applied, as shown in Figure 14a. This modeling
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approach allows a closer replication of the experimental loading conditions as well as an
easier export of the results from the reference point (RF) located on the rigid geometry. As
shown in Figure 14b, the FVM-FEM simulation replicating the original IG condition well
matches the experimental curve until it starts to bend due to the beginning of the yield
phase in the material. In addition, the variation in the rigidity of the parts resulting from
the variation of the IG (original→ IG = 2 #293), estimated in terms of the ratio between
load and displacement, shows a reduction of approximately 5.4%, which is fairly negligible
and comparable to calculation errors in both FVM and FEM simulation models.
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Figure 14. (a) FEM model implementation replicating the experimental conditions with the addition of
the pressure plate on the top and (b) load-displacement curve comparison including the experimental,
original IG FVM-FEM, and optimized IG configurations (double gate #293).

As concerns the stiffness improvement on the three RoIs identified for the industrial
pump housing, the comparison between the equivalent elastic stress–strain curves, with
respect to the original IG configuration (Figure 14b), is reported in Figure 15. For the case
of RoI#1, the proximity with the load application area makes it complicated to improve
the FOD effectiveness in this area, as also testified by the similarity in stiffness response
between the original and double gate #293 IG = 2 solutions (Figure 15a).

Polymers 2023, 15, x FOR PEER REVIEW 18 of 23 
 

 

that of the best IG reported in Figure 13 have been mapped onto the FEM simulation model, 

replicating the loading conditions reported in Figure 6d. For this purpose, the load has been 

applied considering a flat punch, defined as analytically rigid, where the same 20 kN load 

conditions of Figure 6c were applied, as shown in Figure 14a. This modeling approach al-

lows a closer replication of the experimental loading conditions as well as an easier export 

of the results from the reference point (RF) located on the rigid geometry. As shown in Fig-

ure 14b, the FVM-FEM simulation replicating the original IG condition well matches the 

experimental curve until it starts to bend due to the beginning of the yield phase in the ma-

terial. In addition, the variation in the rigidity of the parts resulting from the variation of the 

IG (original→ IG = 2 #293), estimated in terms of the ratio between load and displacement, 

shows a reduction of approximately 5.4%, which is fairly negligible and comparable to 

calculation errors in both FVM and FEM simulation models. 

 

Figure 14. (a) FEM model implementation replicating the experimental conditions with the addition 

of the pressure plate on the top and (b) load-displacement curve comparison including the experi-

mental, original IG FVM-FEM, and optimized IG configurations (double gate #293). 

As concerns the stiffness improvement on the three RoIs identified for the industrial 

pump housing, the comparison between the equivalent elastic stress–strain curves, with 

respect to the original IG configuration (Figure 14b), is reported in Figure 15. For the case 

of RoI#1, the proximity with the load application area makes it complicated to improve 

the FOD effectiveness in this area, as also testified by the similarity in stiffness response 

between the original and double gate #293 IG = 2 solutions (Figure 15a). 

 

Figure 15. Equivalent stress–strain curves showing the stiffness variation in the pump housing 

between the original and double gate #293 IG solutions for (a) RoI#1, (b) RoI#2, and (c) ROI#3. 

On the other hand, for RoI#2 and RoI#3, the improvements are quantified in 30.5% 

and 12.7%, respectively, and show the improvement of the predicted IG design with re-

spect to that currently employed solution. In addition to that, the stiffness improvements for 

all three RoIs are within the ranges previously presented in Figure 13, proving that the 

Figure 15. Equivalent stress–strain curves showing the stiffness variation in the pump housing
between the original and double gate #293 IG solutions for (a) RoI#1, (b) RoI#2, and (c) ROI#3.

On the other hand, for RoI#2 and RoI#3, the improvements are quantified in 30.5%
and 12.7%, respectively, and show the improvement of the predicted IG design with
respect to that currently employed solution. In addition to that, the stiffness improvements
for all three RoIs are within the ranges previously presented in Figure 13, proving that
the implemented algorithm can, in fact, define the upper and lower boundaries of the
fiber alignment capabilities, and thus stiffness improvement, in the considered regions of
the model.



Polymers 2023, 15, 3094 19 of 23

3.4. Gradient Boosting-Based IG Design Optimization

This last section aims to provide insights on the additional improvements obtainable
by considering the post-processing optimization where the results of the FVM simulations,
as reported in Section 3.1, are used as a training dataset for the GB-ML model presented in
Section 2.2. The training dataset is composed of the coordinates of the IG and the scores for
each RoI identified from the results of the FVM simulation with respect to the preliminary
FEM model. The target of this ML-based post-processing optimization is the identification
of possible alternative IG locations that may allow for further improvement and that were
not included in the initial grid, as shown in phase (1) of Figure 5.

First, the training and validation of the GB model have been carried out for the three
considered geometries, thus the hyperparameters have been calibrated separately based on
the GridSearch algorithm, as reported in Table 4. In the same table, the average deviations,
calculated in terms of accuracy between the true and predicted score for each IG, are
also reported and are the average of the 5-fold validation process. During the training
and validation process, 80% of the dataset has been employed for training, whereas the
remaining 20% is for validation.

Table 4. Optimized hyperparameters for the three geometries and average accuracies for the training
and validation k-fold (k = 5) process.

Parameter Blind Hole Cylinder Multi Features Shape Industrial Pump Housing

Max depth 10 9 9
Min samples leaf 7 7 7
Min samples split 8 6 5

Estimators number (M) 100 100 100
Learning rate (η) 0.1 0.1 0.1
Loss function (δ) 0.9 0.9 0.9

Training accuracy (5-fold average) 94% 97.7% 98.1%
Validation accuracy (5-fold average) 91.4% 97.4% 97.8%

Considering the trained GB-ML model, a search on a 5 mm grid was carried out on
the whole inner and outer surfaces of the three geometries. The results, reported in Table 5,
show the GB-predicted IG locations and the comparison with those previously estimated
through the FVM-FEM modeling process. The notations IG = 2(#1) and IG = 2(#2) refer to
the first and second IG locations in the considered best double gate configuration. The Pre
GB-ML results are those relevant for the IG locations predicted only considering the results
of the FVM simulations, whereas the Post GB-ML are those predicted by the trained GB
model by adding virtual results on a finer grid size. Considering the Post GB-ML in Table 5,
each ML prediction for the three best IG configurations has been further investigated by
an FVM simulation, subsequent mapping, and FEM simulation, allowing us to verify the
correctness of the predicted IG solution. The stiffness improvement results of Table 5 refer
to the best IG reported in Figures 11–13.

Table 5. Optimized hyperparameters for the three geometries and average accuracies for the training
and validation k-fold (k = 5) process.

IG Coordinates
Blind Hole Cylinder Multi Features Shape Industrial Pump Housing

x y z x y z x y z

Pre GB-ML IG = 2 (#1) 76.8 76.8 72.0 13.7 28.0 41.6 10.45 13.96 36.8
IG = 2 (#2) 13.8 76.8 87 60 10 60 22.7 25.2 57.2

Post GB-ML IG = 2 (#1) 73.9 79.5 67.4 63.8 10 56 15.5 18.4 45.8
IG = 2 (#2) 60.6 79.7 0 12.9 31.6 41.8 24.8 25.2 36.0

Average ROI Stiffness improvement 8.6% 5.1% 6.3%
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As shown in Table 5, the predictions obtained by the trained GB model are not al-
ways similar to those previously predicted by the FVM-FEM simulations (Table 5 and
Figures 11–13) but nevertheless allow for the plastic flow to obtain an FOD distribution
aligned with the load path in the considered RoI. This fact shows that the best IG configura-
tion is not univocal but, instead, more than one best IG candidate with similar potential
can be identified within the same component and for the same load/constraint conditions.
On the other hand, the ML predictions confirmed that the best IG solutions for all three
components are represented by an IG = 2, as also shown in Figures 11–13.

4. Discussion

As demonstrated at different points in the previous chapter, the proposed IG design
algorithm proved its reliability in proposing the best locations for where to inject the
polymer in order to maximize the fibers’ reinforcement in specific locations of the part. To
this aim, the definition of the RoI plays a pivotal role in the performance of the proposed
methodology. In this research, the RoIs were chosen according to the locations of maximum
equivalent stress defined through preliminary FEM simulation implemented with isotropic
material properties. The RoI can also be chosen according to the user’s experience, but the
definition of a preliminary FEM result allows for a better understanding of the results of
phase (3), Figure 5. As important as the RoI selection, the definition of the grid size for the
IG location in the FVM simulations database, phase (1), is essentially the highest influencing
parameter for the computational time involved. The grid size employed in this research
(15 mm) is the result of progressive iterations aimed at defining the best compromise
between results accuracy and computational effort and might also be a fairly good starting
point for other components. On the other hand, if the complexity or size of the investigated
subject differs from those analyzed in this research, a preliminary phase considering a
relatively rough grid size is suggested to avoid excessive computational effort.

As concerns the performances of the algorithm, some key elements ought to be pointed
out. First, when a multiple RoI optimization is attempted, the need for a compromise
naturally arises. In fact, the best IG configuration for a specific RoI might not be the same
for another, and vice-versa. Thus, assigning different weights to each RoI might be of help
to choose the IG configuration that allows for the prioritization of the most critical regions
first. In addition, a limitation might reside in the choice of an RoI that is representative of a
position in the model where the stress field is close to a hydrostatic state. In this condition,
the optimization is, in fact, counterintuitive and represented by a random FOD state, since
a strong alignment with only one direction might result in a weakening of the material
towards the matrix-dominated directions. To avoid this issue, the proposed algorithm is
based on the scores system, in turn, based on the isotropic FEM simulation, specifically
aimed at identifying the key directions of the load path. This is clearly the case of the
industrial pump housing, where RoI#1, close to the load application area, has a stiffness
improvement between the best and worst IG far lower than the other two RoIs, located
on ribs, thus with a higher directionality of the load path. Regardless of this fact, the IG
design algorithm performed well under both circumstances, proving the efficacy of the
scores-based system from more uniaxial to close to hydrostatic stress states.

Another key aspect to be highlighted is the difference between local and global stiffness
optimization. In this research, the focus has been placed on the optimization of the FOD in
specific regions of the model, which differs in nature and purpose from a global stiffness
optimization. In fact, as also shown in Figure 14b, optimizing the local FOD in specific
regions of the model (RoI), has a negligible effect on the global stiffness of the component,
but promotes a better effectiveness of the fibers’ reinforcement in selected areas (RoI).
Another key point relevant to the proposed methodology is related to the increase in the
equivalent stress experienced together with the increase in stiffness. This is common to
most geometries and RoIs, as shown in Figures 11–13. On the other hand, it must be
considered that the mentioned increase in equivalent stress is caused by a higher alignment
of the fibers with the load path direction, thus also in a higher strength of the material, as
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inferable from Figure 3. Although out of the scope of this research, the ratio between the
equivalent stress and the material’s yield for the considered FOT remains approximately
the same or decreases, while the stiffness of the RoI increases, benefitting from the higher
directionality of the fibers with the load path. In addition to that, since the geometry of the
component, the load, and boundary conditions are fixed, the global stress state in the part
cannot be altered but its redistribution within the component can be controlled by means
of the FOD, which is indeed the aim of the proposed algorithm.

Although the proposed algorithm offers a viable solution to effectively design the
FOD in specific regions of the part, future work should address the complex tradeoff
between local and global stiffness optimization. As also demonstrated in this research,
local stiffness optimization has little to no effect on the global rigidity of the component.
However, in some applications, rather than local stiffness optimization, global stiffness
optimization might be the target. In addition to that, the proposed approach still requires
the definition of a component-based FVM database, for both end tasks of phase (3), as
seen in Figure 5. Thus, more work should be focused on a general-purpose tool capable
of identifying the main geometrical features of the component, already available in a
trained database, and providing a close to real-time solution for the best IG design that
allows for the optimization of the FOD. Finally, although the current work is based on
the commonly employed stiffness design approach, the addition of strength as one of
the evaluation criteria would significantly increase the applicability and usefulness of the
proposed methodology.

5. Conclusions

This research presented an innovative methodology for the design of the injection gate
location of components manufactured by short fibers-reinforced polymer in the thermo-
plastic injection molding process. The methodology was tested and validated against three
geometries of increasing complexity and showed a substantial increase in the local stiffness,
quantified in an average of 26.9%. Furthermore, when compared to experimental results
on a real component, currently manufactured by the TIP process, the developed IG design
algorithm showed an average local stiffness improvement of 16.4% in comparison to the
currently employed IG solution. All in all, the proposed methodology proved to be effective
in optimizing the local FOD in the user’s defined regions of interest within the component.
This approach, combined with the very effective FVM-FEM simulation framework, allows
for accounting for the influence of the IG location/s on the elastic performances of the
component being designed and, for this reason, might be of help to process engineers
dealing with TIM tool design and design optimization.
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