
Citation: Su, Y.; Zhao, X.; Han, Y.

Phase Change Microcapsule

Composite Material with Intelligent

Thermoregulation Function for

Infrared Camouflage. Polymers 2023,

15, 3055. https://doi.org/

10.3390/polym15143055

Academic Editors: Jiangtao Xu and

Sihang Zhang

Received: 19 June 2023

Revised: 9 July 2023

Accepted: 14 July 2023

Published: 15 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

polymers

Article

Phase Change Microcapsule Composite Material with Intelligent
Thermoregulation Function for Infrared Camouflage
Ying Su 1, Xiaoming Zhao 1,2,3,* and Yue Han 1

1 School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
2 Tianjin Key Laboratory of Advanced Textile Composites, Tiangong University, Tianjin 300387, China
3 Tianjin Municipal Key Laboratory of Advanced Fiber and Energy Storage, Tiangong University,

Tianjin 300387, China
* Correspondence: texzhao@163.com

Abstract: The infrared camouflage textile materials with soft and wear-resistant properties can
effectively reduce the possibility of soldiers and military equipment being exposed to infrared
detectors. In this paper, the infrared camouflage textile composites with intelligent temperature
adjustment ability were prepared by different methods, using phase change microcapsule as the
main raw material and high polymer polyurethane as the matrix, combining the two factors of
temperature control and emissivity reduction. It was tested by differential scanning calorimeter,
temperature change tester, infrared emissivity tester, and infrared imager. The results show that
the temperature regulation effect of textile materials finished by coating method is better than dip
rolling method, the temperature regulation ability and presentation effect are the best when the
microcapsule content is 27%. When the bottom layer of infrared camouflage textile composite is
27% phase change microcapsule and the surface layer is 20% copper powder, its infrared emissivity
in the band of 2–22 µm is 0.656, and the rate of heating and cooling is obviously slowed down. It
has excellent heat storage and temperature regulation function, which can reduce the skin surface
temperature by more than 6 ◦C and effectively reduce the infrared radiation. This study can provide
reference for laboratory preparation and industrial production of infrared camouflage composite
material. The infrared camouflage textile composite prepared are expected to be used in the field of
military textiles.

Keywords: phase change microcapsules; infrared camouflage; emissivity; intelligent temperature
regulation; textile composites

1. Introduction

Matter is generally divided into three phases: solid, liquid, and gas. The transition
between different phase states of the same material is called phase transition [1]. The
substance whose state can be changed is called phase change material (PCM). When the
phase change occurs, there is a significant energy exchange between the material and the
environment, which will be strongly coupled with the heat transfer, so that the material
has a certain temperature control and heat release function [2,3]. With this capability of
phase change materials, the temperature around the working source or materials can be
adjusted and controlled to reduce the mismatch between energy supply and demand in
time and speed [4]. Therefore, phase change materials are applied broadly in the field
of energy storage and temperature regulation [5,6]. However, phase change materials
have problems such as large volume changes, easy leakage, and low thermal conductivity.
Microencapsulation of phase change materials is an advanced application method. Mi-
crocapsule phase change material (MPCM), also known as phase change microcapsule,
is a new type of composite phase change material with core-shell structure. It is coated
with a stable polymer film on the surface of solid-liquid phase change material particles.
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The shell structure of microcapsules can provide good protection for phase change core
materials, improve the stability of phase change materials, prevent chemical reactions
with the outside world and leakage during long-term cyclic use, and significantly increase
the contact area with the matrix material to improve thermal conductivity, thereby im-
proving the working performance of phase change materials [7–9]. When the external
temperature changes, the core material in the microcapsule will undergo phase change.
The phase change material absorbs or releases a large amount of heat, and the temperature
of the microcapsule itself remains constant, to achieve the effect of intelligent temperature
regulation [10–13]. Phase change microcapsules with temperature regulation ability are
widely used in construction [14–18], solar energy [19], food industry [20], textile [21,22], and
other fields.

In the modern battlefield, the infrared radiation energy of general military targets is
higher than the background, so it is easy to find out by using infrared detectors. According
to Stefan Boltzmann’s Law (1) [23], the total infrared radiation energy of an object is directly
proportional to the fourth power of its emissivity and absolute temperature. Therefore,
the possibility of the target being discovered by the infrared detector can be reduced
by reducing the emissivity and controlling the temperature, to achieve its camouflage
effect in the infrared band. Therefore, infrared camouflage materials that protect military
targets without changing the shape and structure of the target have attracted extensive
attention in the national defense and military industry [24]. Various infrared camouflage
materials developed around fibers and fiber products are called infrared camouflage textile
materials. Infrared camouflage textile materials are soft, portable, and wearable. They
are the main raw materials of infrared camouflage clothing, backpacks, camouflage nets
and tents. They can provide guarantee for the survival of soldiers and weapons and
equipment, and plays an extremely important role in the battlefield [25,26]. In terms of
reducing infrared emissivity, it mainly includes developing new low emissivity fibers [27–30],
modifying existing fibers [31–33] or coating low infrared emissivity coatings [34–36]. In
terms of temperature control, in addition to thermal insulation and structural design [37–40],
the temperature regulating textile [41–44] and infrared camouflage textile [45–47] are
prepared by combining phase change microcapsules with textile, which can effectively
reduce the infrared radiation energy of the target [48–50]. However, it is difficult to use
phase change microcapsules for infrared camouflage alone. Its phase change temperature,
latent heat of phase change, and thermal conductivity can hardly meet the requirements
of thermal camouflage. Only by combining with other functional materials can infrared
camouflage be better realized [51]. According to Kirchhoff’s law, opaque objects with
high reflectivity generally have low emissivity. Metal is a typical low-emissivity material,
which is generally used in the field of infrared camouflage in the form of coating. Among
them, copper and aluminum have become the main force of metal fillers due to their low
cost and easy availability, excellent performance, and wide application. In this paper,
phase change microcapsules are finished on the fabric, and the temperature-regulated
fabric is obtained by changing different parameters. On this basis, the infrared camouflage
fabric was prepared by adding low emissivity materials. Then its temperature adjustment
ability, infrared camouflage effect, and mechanism are analyzed systematically. Compared
with the untreated fabric, the prepared textile has a certain degree of infrared camouflage
ability, which can delay the speed of temperature rise and effectively reduce the infrared
thermal radiation.

E = σεT4 (1)

where E is the infrared radiation (J/(s·m2)), σ is Stefan Boltzmann constant, ε is the emissivity
of the target surface, and T is the thermodynamic temperature of the target surface (K).

2. Materials and Methods
2.1. Materials

The fabric used in the experiment was cotton fabric, which was purchased from
Hongfei Textile Manufacturing, Baoding, China. Phase change microcapsules are prepared
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by in-situ polymerization with paraffin as core material and urea-formaldehyde resin as
wall material. Urea and formaldehyde aqueous solutions were purchased from Meryer
(Shanghai) Chemical Technology, Shanghai, China. Paraffin, OP emulsifier, triethanolamine,
citric acid and petroleum ether were purchased from Beijing enokai Technology, Beijing,
China. Polyurethane resin was purchased from Guangzhou Yuheng environmental pro-
tection materials, China. Hollow glass beads were purchased from Henan Bairun casting
materials, Zhengzhou, China. Silicon dioxide was purchased from Jiangsu Tianxing’s new
materials, Huaian, China. The copper powder was purchased from Nangong Xindun
alloy welding material spraying, Xingtai, China. Aluminum powder was purchased from
Shanghai Aladdin Biochemical Technology, Shanghai, China. All reagents were of an-
alytical grade and used directly without further purification. The details are shown in
Table 1.

Table 1. Material Information.

Material Particle Size/Model Manufacturer

Hollow glass beads 30–100 µm Henan Bairun casting materials, China
Silicon dioxide 20 nm Jiangsu Tian xing’s new materials, China
Copper powder 38 µm Nangong Xindun alloy welding mate-rial spraying, China

Aluminum powder 25 µm Shanghai Aladdin Bio-chemical Technology, China
Polyurethane PU2540 Guangzhou Yuheng environmental protection materials, China

Defoamer AFE-1410 Shandong Yousuo Chemical Technology, China
Thickener 7011 Guangzhou Dianmu Composite Materials Business Department, China
Dispersant 5040 Shandong Yousuo Chemical Technology, China

Urea, Formaldehyde aqueous solutions Meryer (Shanghai) Chemical Technology, China
Paraffin, OP emulsifier, Triethanolamine,

Citric acid, Petroleum ether Beijing enokai Technology, China

2.2. Methods
2.2.1. Preparation of Phase Change Microcapsules

Mix urea and formaldehyde aqueous solution in a certain proportion, drop triethanolamine
to adjust the pH value of the solution to be weakly alkaline, react at 70 ◦C for 1 h, and add
deionized water to form a stable urea/formaldehyde prepolymer solution. Add a certain
amount of OP emulsifier and paraffin into deionized water, heat and melt, emulsify and
disperse for 30 min (3000 r/min) at 60 ◦C, and form a stable emulsion. Drop the prepolymer
solution into the emulsion and stir for 20 min after dropping. Then slowly add citric acid
solution, adjust the final pH value of the solution to be acidic, keep the temperature at
60 ◦C for reaction for 1 h, and then raise the temperature to 90 ◦C, and keep the temperature
for reaction for 2 h. After the reaction, the microcapsule lotion was poured out, cooled,
separated and filtered. The obtained microcapsules were washed twice with petroleum
ether and deionized water, and dried to obtain white powder microcapsules.

2.2.2. Preparation of Phase Change Microcapsule Temperature Regulating Textile by
Dip Rolling

Disperse the phase change microcapsule particles in water, add dispersant, adhesive,
and penetrant, mix evenly to obtain the phase change microcapsule solution. The cotton
fabric with 10 × 10 cm2 was washed and dried. Put it into a beaker containing phase
change microcapsule solution and fully wet it, with a bath ratio of 1:20. The phase change
microcapsule fabric was obtained by two dipping and two rolling processes, drying at
80 ◦C for 5 min, and then baking at 120 ◦C for 2 min. Two groups of phase change
microcapsule fabrics were prepared by changing the microcapsule content and adhesive
content respectively.

2.2.3. Preparation of Phase Change Microcapsule Temperature Regulating Textile by
Coating Method

Disperse the phase change microcapsule particles in water, add adhesive, thickener,
dispersant and defoamer, and stir evenly to obtain phase change microcapsule coating.
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Take 20 × 20 cm2 cotton fabric, washed, dried, and ironed flat. The coating was evenly
coated on the cotton fabric by a small sample coating machine, dried at 80 ◦C for 10 min,
and dried to obtain the phase change microcapsule fabric. Three groups of phase change
microcapsule fabrics were prepared by changing the content of phase change microcapsule,
the thickness of coating and the type of thermally conductive materials.

2.2.4. Preparation of Infrared Camouflage Textile

In this paper, aluminum powder and copper powder are selected as coating materials
with low emissivity, combined with phase change microcapsules to achieve a better-infrared
camouflage effect on the fabric. Firstly, aluminum powder or copper powder is directly
added into the phase change microcapsule solution, mixed evenly to obtain the infrared
camouflage coating, and according to Section 2.2.3 to prepare infrared camouflage fabric. In
addition, aluminum powder or copper powder shall be directly mixed with the adhesive to
obtain low emissivity coating, and then phase change microcapsule coating can be obtained
according to Section 2.2.3. The infrared camouflage fabric was prepared by coating phase
change microcapsule coating and low emissivity coating on cotton fabric in turn.

2.3. Characterizations and Measurements

The characteristic functional groups of samples were measured by infrared spectrom-
eter (FRONTIER, FT-IR, made by PerkinElmer, Waltham, MA, USA). The phase change
microcapsules and fabrics were observed by scanning electron microscope (HITACHI,
SEM, made by Hitachi Limited, Tokyo, Japan), and the distribution of microcapsules and
metal particles on the fabric surface was compared. The enthalpy values of phase change
microcapsules, unfinished fabrics and phase change microcapsule temperature regulat-
ing fabrics were measured by differential scanning calorimetry (NETZSCH, DSC200F3,
made by Netzsch Group, Bavaria, Germany). The heating temperature range was 20–50 ◦C,
the cooling temperature range was 50–20 ◦C, and the heating and cooling rates were 5K/min.
The time when the sample rises to a specific temperature is measured by a self-made temper-
ature rising instrument to evaluate its temperature regulation ability. The infrared thermal
source is an infrared lamp (Philips 175R, made by Philips, Amsterdam, The Netherlands).
The temperature rising range is 20–60 ◦C. The unfinished fabrics and infrared camouflage
fabrics with different parameters were heated on a constant temperature (simulating human
body surface temperature) test bench, and the infrared thermal image was taken with an
infrared thermal imager (FlIR®TG165, made by FLIR Systems, Wilsonville, OR, USA) to
test their thermal insulation and infrared camouflage properties. The emissivity of infrared
camouflage fabric was measured by far infrared emissivity tester (TSS-5X, made by Japan
sensor corporation, Tokyo, Japan).

3. Results
3.1. Characterization and Analysis of Phase Change Microcapsules

The phase change microcapsules used in this experiment are prepared with paraffin
as the core material and urea formaldehyde resin as the wall material. The structural
diagram is shown in Figure 1a. From the SEM Figure 1b,c, it can be seen that the phase
change microcapsule is spherical with a particle size of 10 µm or so. According to the
infrared spectrum in Figure 1d, the phase change microcapsule has 7 absorption peaks. The
absorption peaks at 2926 cm−1 and 2855 cm−1 are related to the asymmetric and symmetric
stretching vibration of C-H, the absorption peak at 1467 cm−1 is caused by the bending
vibration of C-H2, the absorption peak at 721 cm−1 is caused by the rocking vibration of
C-H2, and the absorption peak at 1745 cm−1 is caused by the stretching vibration of C=O,
the absorption peaks at 1171 cm−1 and 1111 cm−1 are caused by the stretching vibration
of C-N, and the band at 804 cm−1 corresponds to the bending vibration of N-H. It can be
seen that there are both characteristic peaks of paraffin and urea formaldehyde resin in
the infrared spectrum, which also proves that the microcapsule is composed of wall urea
formaldehyde resin and core paraffin. Figure 1e shows the DSC curve of phase change
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microcapsules. The heat storage and temperature regulation performance of phase change
microcapsules are mainly determined by the solid-liquid phase change of its core paraffin.
During heating up, the phase change microcapsules began to melt and absorb heat at
24.4 ◦C, and the phase change temperature range was 24.4–34.7 ◦C. During cooling, the
phase change microcapsules began to solidify and release heat at 25.6 ◦C, and the phase
change temperature range was 25.6–19.0 ◦C. According to the indicators formulated by
outlast, the body surface contact air layer is 18.3–29.4 ◦C, belonging to the cold climate
temperature area, the body surface contact air layer is 26.7–37.8 ◦C, belonging to the mild
or comfortable temperature area, and the body surface contact air layer is 32.2–43.3 ◦C,
belonging to the temperature area during hot or intense exercise [52]. The phase change
microcapsule used in this paper can be combined with fabric to adjust the temperature and
infrared radiation energy of the body surface air layer in cold climates.
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Figure 1. (a) Structure diagram of phase change microcapsule, (b,c) SEM of phase change mi-
crocapsules under different magnification of electron microscope, (d) Fourier transform infrared
spectroscopy of phase change microcapsules, (e) DSC curve of phase change microcapsules.

3.2. Preparation and Performance Analysis of Phase Change Microcapsule Temperature
Regulating Fabric

According to the steps described in Sections 2.2.2 and 2.2.3, phase change microcap-
sules are combined with cotton fabric by dip rolling and coating (Figure 2a,b). Before
finishing, the surface of cotton fiber is smooth and tidy, flat and longitudinally twisted
(Figure 2c). The phase change microcapsule solution was treated on the cotton fabric by
dip rolling. The observation of the SEM (Figure 2d) showed that the phase change micro-
capsule particles were attached to the bending and depression of the cotton fiber through
the adhesive. The phase change microcapsule coating was applied to the cotton fabric. It
can be seen from the SEM image (Figure 2e) that the adhesive wrapped the phase change
microcapsule and covered the surface of the cotton fabric to form a complete coating.

When the phase change microcapsule temperature regulating fabric is prepared by
dip rolling, the process parameters shall be consistent, the content of phase change mi-
crocapsules and adhesives is the main factor affecting the related properties of fabrics.
Therefore, we analyzed the effects of different content of phase change microcapsules and
adhesives on the temperature regulation ability of the fabric. The reference sample in the
figure is untreated cotton fabric. It can be seen from Figure 3a that the content of phase
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change microcapsules basically does not affect the phase change initial temperature of the
sample. The initial temperature of exothermic and endothermic is around 28 ◦C. The latent
heat of phase transformation of the sample increases with the increase of the content of
microcapsules, and the latent heat of phase transformation of the sample is the largest
when the percentage content is 36%, because the more the content, the more phase change
microcapsules attached to the fabric after dip rolling treatment, and the greater the overall
latent heat of phase change. The fabric treated by phase change microcapsule can absorb or
release a certain amount of heat, so as to achieve the purpose of temperature regulation.
As can be seen from Figure 3b, the phase transition latent heat of the sample increases
with the increase of the binder content. Because the larger the binder content, the more
phase change microcapsules adhere to the fabric surface. The greater the latent heat of
phase change of fabric, the more obvious the effect of heat absorption and release. With
the increase of binder content, the phase transition temperature of the sample will also
change. The reason is that the added adhesive can block the heat transfer and increase the
phase transition temperature of the sample. Figure 3c shows the temperature rise curve of
samples with different content of phase change microcapsules. When the content of the
phase change microcapsule is 9%, the heating rate of the sample is the fastest, and it takes
65 s to rise from 20 to 60 ◦C. When the content of the phase change microcapsule is 27%,
the heating rate of the sample is the slowest, and it takes 83 s to rise from 20 to 60 ◦C. That
is when the content of phase change microcapsule is 27%, the temperature regulation and
heat storage effect of the sample is the best. The reason is that the existence of phase change
microcapsules will delay the rate of fabric temperature change, that is, the heat released and
absorbed will be temporarily supplemented and stored through phase change materials.
When the content of phase change microcapsules is 36%, the heating rate of the sample
is not the slowest. The reason is that when the content of phase change microcapsules in
the solution is too high, agglomeration will occur in the mixing process, resulting in poor
dispersion effect of phase change microcapsules, which affects the overall heat storage
capacity of the sample. Figure 3d is the temperature rise curve of the sample with different
adhesive content. When the adhesive content is 50%, the heating rate of the sample is the
slowest, and the time is 95 s. When the content of adhesive is 20%, the heating rate of the
sample is the fastest, and the time is 60 s. This may be because when the binder content is
low, the content of phase change microcapsules entering the fabric interior and attached to
the fabric surface after dip rolling treatment is relatively small. When the binder content is
high, the proportion of the binder solidified on the fabric surface will increase, and a layer
of film will be formed on the fabric surface, which will inhibit the heat transfer and slow
down the heating rate of the sample. At the same time, the high content of adhesive will
also increase the phase change microcapsules adhered to the fabric surface and immersed
into the fabric, and further reduce the heating rate of the sample.

When the phase change microcapsule temperature regulating fabric is prepared by
coating method, the process parameters shall be consistent, the content of phase change
microcapsules and coating thickness are the main factors affecting the related properties of
fabrics, and the thermal conductivity also has a great influence on the temperature regula-
tion ability of materials. Therefore, we analyzed the effects of phase change microcapsule
content, coating thickness and thermal conductivity on the temperature regulation ability
of the fabric. The reference sample in the figure is untreated cotton fabric.

Figure 4a,c show the DSC curves of samples with different content of phase change
microcapsule, different coating thickness and different thermal conductivity materials. It
can be seen from Figure 4a that the adhesives and other additives have no influence on
the phase change temperature and latent heat of the phase change microcapsule fabric.
With the increase of the content of phase change microcapsules in the coating, more
and more microcapsule phase change materials are attached to the surface of the fabric,
which improves the heat storage and temperature adjustment ability of the prepared
sample. However, in the experiment, it is found that when the content of phase change
microcapsules in the coating is too high, the phenomenon of agglomeration and uneven
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dispersion will appear, and cracks will appear on the surface of the prepared coating.
Therefore, the content of phase change microcapsules in the coating was fixed at 27% in the
subsequent experimental study. It can be seen from Figure 4b that the coating thickness also
has a certain effect on the phase transformation latent heat of the sample. When the phase
change microcapsules melt endothermically, the phase change latent heat of the samples
with coating thickness of 1.5 mm and 2.0 mm is close and relatively large. When the phase
change microcapsules solidify exothermically, the phase change latent heat of the samples
with coating thicknesses of 1.0 mm and 1.5 mm is close and relatively large. There is no
positive correlation between thickness and latent heat of phase change. The main reason is
that the sample taken in the DSC test is very small, and the larger the thickness, the smaller
the sampling area, which cannot completely guarantee the content of dispersed phase
change microcapsules in the test sample. Considering comprehensively, in the subsequent
experimental research, the thickness of the coating is determined as 1.5 mm. When the
coating thickness is 1.5 mm and the content of phase change microcapsules is 27%, the
addition of materials with different thermal conductivity will also have a great influence
on the heat storage and temperature adjustment ability of the sample. It can be seen from
Figure 4c that adding different materials to the coating will have a certain influence on the
initial temperature of the phase transition of the sample. When adding hollow glass beads
and silicon dioxide thermal insulation materials with low thermal conductivity, the phase
transition temperature of the sample will be reduced. When copper powder and aluminum
powder with high thermal conductivity are added, the phase change latent heat of the
sample is similar. The latent heat of melting phase transformation of samples containing
silicon dioxide is the largest. This is because the silicon dioxide used in the experiment is
nano-scale, and has the advantages of large specific surface area and high porosity. It can
absorb a certain calorific value when heating up.
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image of untreated cotton fabric, (d) SEM image of samples prepared by dip rolling method, (e) SEM
image of samples prepared by coating method.

Figure 4d–f show the temperature rise curves of samples prepared by coating method
with different content of phase change microcapsules, different coating thicknesses, and
different thermal conductivity materials. It can be seen from the figure that the higher the
content of phase change microcapsules, the longer the time required for the sample to rise
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from 20 to 60 ◦C, and the heating rate of the sample before 30 ◦C is slow. When one side
of the fabric is heated, most of the heat is absorbed by the phase change microcapsules
in the process of transferring the heat radiation to the other side of the fabric. Therefore,
the higher the content of the phase change microcapsule, the more heat the sample and
the slower the heating rate. When the coating thickness is 2.0 mm, the heating rate of the
sample is the slowest, and the time for the sample to rise from 20 to 60 ◦C is 180 s. Materials
with different thermal conductivity are added to the coating. When the materials are hollow
glass beads and silicon dioxide, the heating speed of the sample is slow because of its low
thermal conductivity. The sample with hollow glass beads has the slowest heating rate,
mainly because the hollow structure of hollow glass beads is closed and contains more still
air, which further enhances its thermal insulation performance. Figure 4g is the schematic
diagram of sample heating rate test. To compare the thermal insulation capacity of the
sample in a short time, the distance between the light source and the sample is close, so the
heating speed will be much faster than in the actual situation.
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Select the best samples prepared by the dip rolling method and coating method to
compare and analyze. The experimental results show that, compared with the dip rolling
method, the temperature-regulating fabric with phase change microcapsules prepared
by the coating method has a greater latent heat of phase change (Figure 5a) and better
temperature control ability (Figure 5b). Because the amount of phase change microcapsules
on the sample in the coating method is more and the adhesion is firmer. Through the
observation of the sample by the infrared thermal imager, it is also confirmed that the
sample prepared by the coating method has better infrared camouflage effect (Figure 5c–f).
Considering the performance, cost, thickness and other factors, we think that the content of
phase change microcapsules is 27% and the coating thickness is 1.5 mm, which is the best
choice for this experiment.
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3.3. Preparation and Performance Analysis of Phase Change Microcapsule Infrared Camouflage Fabric

According to the principle and preparation process described in Section 2.2.4, the
infrared camouflage fabric is prepared by combining temperature-regulating phase change
microcapsules with low emissivity metal materials. The SEM of low emissivity metallic cop-
per powder and aluminum powder is shown in Figure 6a,b. According to the experimental
results in Section 3.2, the content of phase change microcapsule is 27% and the coating
thickness is 1.5 mm. Figure 6c shows the temperature rise curve of single-layer infrared
camouflage coating sample after adding different kinds and contents of low emissivity
materials. Figure 6d shows the infrared emissivity of the sample.
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By analyzing the heating curve of the sample, it can be seen that it takes a long time
for the sample to rise from 20 to 60 ◦C when the copper powder is added to the phase
change microcapsule solution, especially when the copper powder content is 20% and
30%. At the beginning of heating, when the content of copper powder is 20%, the heating
rate of the sample is the lowest. When the aluminum powder is added to the phase
change microcapsule solution, the temperature rise of the sample is relatively fast. The
reason is that when the content of metal particles is the same, the spherical aluminum
powder is isotropic, the particle size is small, the distribution is relatively uniform, and
the surface morphology is regular, which makes it easier to form mutually contacted heat
conduction network chains, so as to improve the heat conduction efficiency of the material.
Therefore, the heat transfer of the aluminum powder sample is faster when heating up,
which reduces the temperature control performance of the sample. The test results of the
two groups of samples show that the temperature control performance of the samples
is better when the addition amount of low emissivity material is 20%. As can be seen
from Figure 6d, the infrared emissivity of the sample with copper powder is less than that
of the sample with aluminum powder. The reason can be explained by the microscopic
morphology of the two kinds of materials. It can be seen that the copper powder has a
flaky structure (Figure 6a), and the aluminum powder has a spherical structure (Figure 6b).
The particle thickness of the flaky structure is small, and at the same particle concentration
(mass-specific gravity), the content of flaky particles in the coating is more [53]. The flake
particles can be arranged horizontally in the coating to form a compact reflective layer. This
arrangement can effectively reduce the emissivity of the coated fabric [54]. The higher the
content of copper powder, the smaller the infrared emissivity of the sample, but when the
content of copper powder is 20% and 30%, the emissivity of the sample is close. Considering
the material cost and the flexibility of the coating, the content of copper powder can be
determined as 20%.



Polymers 2023, 15, 3055 12 of 17

According to the theoretical analysis, two factors should be considered in infrared
camouflage: temperature and infrared emissivity. It is considered that in this article, the
infrared camouflage performance of the sample is the best when copper powder with low
emissivity is added to the phase change microcapsule solution and the content of copper
powder is 20%. At present, the prepared samples are all single-layer coatings. In order
to ensure the ability of temperature regulation and reduce the infrared emissivity of the
sample as much as possible, the double-layer coating can be prepared with copper powder
and phase change microcapsule. The bottom layer is a phase change microcapsule (content:
27%) coating to ensure the temperature regulation performance of the sample, and the
surface layer is a copper powder (content: 20%) coating to reduce the infrared emissivity of
the sample (Figure 7a), while other factors remain unchanged.
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(d) Infrared thermogram of double-layer infrared camouflage fabric.

According to the temperature rise data in Figure 7b, the time required for the double-
layer and single-layer samples to rise from 20 to 60 ◦C is very close, that is, the two samples
have the same temperature adjustment ability. The infrared emissivity of the double-layer
sample is significantly lower than that of the single-layer sample (Figure 7c). Therefore,
the infrared camouflage performance of the double-layer coating sample is better. This
conclusion is also confirmed in the infrared thermogram (Figure 7d). The double-layer
infrared camouflage fabric is close to the environment in the infrared thermal image, which
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can reduce the detected surface temperature of human skin by 6.8 ◦C, and can still reduce
3.9 ◦C after covering for 10 min.

3.4. Analysis of Mechanical Properties of Phase Change Microcapsule Infrared Camouflage Fabric

The tensile and tear properties of infrared camouflage fabrics are tested by universal
strength machine (Figure 8c), with reference to standard ISO34-1 [55]. The sample size
is 200 × 50 mm, the clamping distance is 100 mm, and the tensile speed is 100 mm/min.
Each sample shall be tested for 5 times, and the average value shall be taken as the final
test result. The test results are shown in Figure 8a,b and Table 2. According to standard
ISO 4604: 2011 [56], the coated fabric’s extension length was measured using a fixed angle
bending machine (Figure 8d), and the bending stiffness G of the coated fabric was about
3.36 mN · m according to Formula (2). YG (B) 401E Martindale wear tester is used to test the
wear resistance of infrared camouflage fabric, with reference to standard ISO12947-3 [57].
The diameter of the sample is 38 mm. Record the mass loss of the fabric when rubbing
100 times, 250 times, 500 times, 750 times, and 1000 times respectively. Calculate the wear
resistance index according to Formula (3). The results are shown in Table 3.

G = 9.81ρA (L/2) 3 (2)

where: G is the ordinary bending stiffness (mN · m), ρA is the mass per unit area (g/m2),
referring to standard ISO3374, and L is the average extension length (m).

Ai = n/∆m (3)

where Ai is the wear resistance index, the unit is times per milligram (times/mg); n is the
total friction times, unit: times; ∆m is the mass loss of the sample under the total friction
times, the unit is mg.

Polymers 2023, 15, 3055 14 of 18 
 

 

which can reduce the detected surface temperature of human skin by 6.8 °C, and can still 
reduce 3.9 °C after covering for 10 min. 

3.4. Analysis of Mechanical Properties of Phase Change Microcapsule Infrared Camouflage 
Fabric 

The tensile and tear properties of infrared camouflage fabrics are tested by universal 
strength machine (Figure 8c), with reference to standard ISO34-1 [55]. The sample size is 
200 × 50 mm, the clamping distance is 100 mm, and the tensile speed is 100 mm/min. Each 
sample shall be tested for 5 times, and the average value shall be taken as the final test 
result. The test results are shown in Figure 8a,b and Table 2. According to standard ISO 
4604: 2011 [56], the coated fabric’s extension length was measured using a fixed angle 
bending machine (Figure 8d), and the bending stiffness G of the coated fabric was about 
3.36 mN · m according to Formula (2). YG (B) 401E Martindale wear tester is used to test 
the wear resistance of infrared camouflage fabric, with reference to standard ISO12947-3 
[57]. The diameter of the sample is 38 mm. Record the mass loss of the fabric when rubbing 
100 times, 250 times, 500 times, 750 times, and 1000 times respectively. Calculate the wear 
resistance index according to Formula (3). The results are shown in Table 3. 

G = 9.81ρA (L/2) 3  (2)

where: G is the ordinary bending stiffness (mN · m), ρA is the mass per unit area (g/m2), 
referring to standard ISO3374, and L is the average extension length (m). 

Ai = n/∆m  (3)

where Ai is the wear resistance index, the unit is times per milligram (times/mg); n is the 
total friction times, unit: times; ∆m is the mass loss of the sample under the total friction 
times, the unit is mg. 

 
Figure 8. (a) Tensile strength displacement curve of infrared camouflage fabric, (b) Maximum tensile 
strength of infrared camouflage fabric, (c) Tensile strength test of infrared camouflage fabric, (d) 
Measurement of bending length of infrared camouflage fabric, (e) Soft performance display of in-
frared camouflage fabric. 

Figure 8. (a) Tensile strength displacement curve of infrared camouflage fabric, (b) Maximum
tensile strength of infrared camouflage fabric, (c) Tensile strength test of infrared camouflage fabric,
(d) Measurement of bending length of infrared camouflage fabric, (e) Soft performance display of
infrared camouflage fabric.
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Table 2. Tear strength of infrared camouflage fabric.

Load (N) Displacement (mm) Tear Strength (N)

Cotton fabric 5.4 50.05 6.63

Single layer infrared
camouflage fabric 7.5 50.05 21.31

Double layer infrared
camouflage fabric 14.5 50.05 14.67

Table 3. Wear resistance index of infrared camouflage fabric with different friction times.

Friction Times 100 250 500 750 1000

Single layer infrared
camouflage fabric 4.35 6.02 7.58 8.82 9.66

Double layer infrared
camouflage fabric 3.85 4.90 6.71 7.77 8.77

The test shows that the tensile and tear strength of infrared camouflage fabric is much
higher than that of cotton fabric. The tensile strength of double-layer infrared camouflage
fabric is the largest (810 N), but the tensile displacement is less than that of single-layer
infrared camouflage fabric. The calculation results of the fabric wear index show that the
wear indexes of the two infrared camouflage fabrics are similar, and the more times of wear,
the better the wear resistance. According to the actual picture of the fabric (Figure 8e) and
the bending length test of the material, the infrared camouflage fabric has good softness
and crimp ability. Table 4 shows the performance comparison between this material and
other infrared camouflage materials. The results show that the infrared camouflage fabric
has good mechanical properties and softness.

Table 4. Performance comparison between this material and other infrared camouflage materials.

Infrared Camouflage Materials Infrared Emissivity
(8–14 µm) Temperature Regulation Range (◦C) Tensile Strength (N)

This material 0.507
0.656 (2–22 µm) 6.8 810

Material 1 [45] 0.575 5–10
Material 2 [23] 0.795 398.4

4. Conclusions

Based on the principle of infrared camouflage and the characteristics of textile materi-
als, from the point of view of controlling the temperature of materials to achieve the purpose
of camouflage, phase change microcapsule temperature-regulating composite material with
different parameters were prepared by padding method and coating method, and their
infrared radiation performance was analyzed. The infrared camouflage textile composite
was prepared by combining phase change microcapsule material with low emissivity metal
material and using high molecular polyurethane as the matrix. The results of differential
scanning calorimetry show that the phase change microcapsules melt and absorb heat at
about 28 ◦C when heating up, and solidify and release heat at about 35 ◦C when cooling
down. The temperature rises test shows that the content of adhesive, the content of phase
change microcapsule, the thickness of the coating, and thermal conductivity have a great
influence on the temperature adjustment ability of the sample. The temperature-regulating
textile materials with phase change microcapsules were prepared by the coating method.
When the content of phase change microcapsules is 27% and the coating thickness is
1.5 mm, the performance of the sample is the best. The results of the infrared thermogram
and infrared emissivity test show that when the content of phase change microcapsule
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in the bottom layer is 27% and the content of flake copper powder in the surface layer is
20%, the double-layer coating sample has a good infrared camouflage effect. Its infrared
emissivity in the band of 2–22 µm is 0.656, covering it on the surface of the human body
can reduce the temperature to 6.8 ◦C, and effectively reduce the infrared radiation. Based
on these results, we believe that this study can provide a reference for the preparation
of infrared camouflage composite material in the laboratory and industry. The infrared
camouflage textile composite is expected to be used in military textiles such as individual
protective clothing, military tents, and equipment tarpaulins.
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