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Abstract: Soil-bentonite vertical cut-off wall is an emergency technique used for contaminant control
in geo-environmental engineering, high-density polyethylene (HDPE) geomembrane (GM) with
an extremely low-permeability coefficient is expected to enhance the contaminant barrier effect of
the vertical cut-off wall. To evaluate the barrier performance of the composite barrier composed of
GM and soil-bentonite mixture towards organic contaminant, while also quantitively revealing the
impact of GM defects and placement, a one-dimensional transport model for organic contaminants
in composite barrier is solved under semi-infinite boundary conditions. The proposed transport
model is validated by numerical simulations using COMSOL Multiphysics 5.4, and the effects of GM
defect rate, placement within the composite isolation wall, and contact level with soil-bentonite on
contaminant transport behavior are further studied. The results show that as the average frequency of
GM defects increases from 2.5 to 50 holes per hectare, the breakthrough time of organic contaminants
through composite barrier decreases by almost 70%. Poor contact level between GM and soil-
bentonite mixture may reduce the breakthrough time of the composite cut-off wall by 65%. Although
the selection of GM placement has limited impact on the transient flux of contaminants, it does affect
the total flux of contaminants over a certain period of time. The effects of permeability coefficient,
effective diffusion coefficient, distribution coefficient, and hydraulic head of the composite cut-off
wall can be considered by the proposed analytical solution, which would provide guidance and
reference for the design and service performance evaluation of the composite cut-off wall.

Keywords: vertical cut-off wall; defect of geomembrane; organic contaminants; the migration
behavior of contaminants; analytical solution

1. Introduction

The employment of a liner barrier constitutes a crucial engineering intervention
aimed at curtailing the spread of organic contaminants to the surrounding ecosystem,
particularly in regions including but not limited to landfill sites, mining smelter ponds,
and industrial parks [1]. Overall, there are two types of liner barrier systems: horizontal
impermeable liners widely used in landfills, e.g., composite liners consisting of high-density
polyethylene geomembrane (GM), geosynthetic clay liner (GCL), clay, and low-permeability
vertical impermeable barriers, e.g., grouting curtains or composite barriers fabricated of soil,
bentonite, and cement [2]. Vertical impermeable cut-off wall is an emergency measure that
can effectively slow down the horizontal transport of contaminants, and the permeability
coefficient, diffusion coefficient, and adsorption characteristics of contaminants in liner
materials will affect the transport process [3]. High-density polyethylene (HDPE) GM
has an extremely low-permeability coefficient, and its application in vertical impermeable
barriers is expected to further enhance the contaminant barrier effect of the liner [4].

The investigation of contaminant transport and the barrier effects of liners is a topic
of great importance to engineers and researchers. The diffusion coefficient of organic
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contaminants in liner materials plays a critical role in determining breakthrough time, and
the utilization of low-permeability GM + GCL composite liner can be challenging due to its
inherent difficulty in taking full advantage of its low-permeability coefficient [5]. Wu et al.
(2016), Pu et al. (2017), and Xie et al. (2013, 2015) [6–9] derived the concentration variation
law of organic contaminants in three-layer composite liners (i.e., GM + GCL + Soil Liner)
and the corresponding solutions were obtained based on assumptions such as zero flux and
semi-infinite boundaries. According to these theoretical solutions or numerical calculations,
sensitivity analysis of various parameters for controlling contaminant transport can be
carried out successfully [10]. These research studies on vertical transport behavior of
contaminates in horizontal impermeable liners can provide references for calculating
contaminant transport in the vertical impermeable cut-off wall [11]. Neville et al. (2006) [12]
established a steady-state transport model of contaminants in vertical impermeable cut-off
wall and compared it with numerical simulation results. Li et al. (2017) [13] provided a
one-dimensional transient analytical solution for contaminant transport in a single-layer
vertical impermeable cut-off wall and provided a design chart for nondimensionalized
effluent contaminant flux by analyzing the study. Acar et al. (1990), Peng et al. (2020), and
Xie et al. (2020) developed transient diffusion analytical models. Studies have shown that
the selection of boundary conditions has a significant impact on transport calculations, and
reasonable selection of boundary conditions is a prerequisite for transport calculations [14–16].

The defect of GM cannot be ignored, and the impact of leakage on contaminant
transport should be clarified. Lee et al. (2000) [17] found through experiments that the
permeability coefficient of GM in composite liner can reach 1× 10−5 m/s when the contact
between the GM and the surrounding medium is imperfect. Barroso et al. (2006) [18]
studied the contact problem of vertical impermeable cut-off wall and surrounding media
in three-scale tests and found that convection in impermeable barriers with GM cannot be
ignored in contaminant transport. Philip et al. (2001) [19] found that under low hydraulic
heads as well as convection is one of the main factors causing contaminant transport
through vertical impermeable cut-off wall. Zhang et al. (2010) [20] considered convection,
diffusion, and adsorption effects and studied the influence of the thickness, permeability
coefficient, and design depth of vertical impermeable curtains on contaminant transport.
They found that convection is the dominant factor for contaminant transport and dispersion
under high hydraulic heads. From existing research, it can be inferred that the combined
use of thin GM and soil-bentonite vertical impermeable cut-off wall can enhance the
contaminant barrier effect of the liner.

In this study, considering convection, diffusion, and adsorption effects, a one-dimensional
transport model of organic contaminants in a composite vertical impermeable cut-off wall
with defective GM and soil-bentonite barrier was established. The mathematical physical
equation method was used to obtain the analytical solution of the model, and then the
calculation results of the analytical solution were compared with the calculation results
of the numerical simulation method to verify the accuracy of the model. Then, further
analysis was conducted on the influence of parameters such as GM defects, location, and
adsorption capacity on contaminant transport in the vertical impermeable cut-off wall.

2. Calculation Model
2.1. Geometric Model

The schematical diagram of the organic contaminant transport in composite vertical
cut-off wall with defective GM is shown in Figure 1. As shown in Figure 1, the vertical
composite impermeable cut-off wall comprises a soil-bentonite barrier and a geomembrane.
In consideration of the convective, diffusive, and adsorptive effects of contaminants by the
impermeable barrier, both convection and diffusion phenomena transpire in the two layers,
and adsorption of the contaminant occurs in the soil-bentonite barrier.
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2.2. Basic Assumptions

To obtain an analytical solution for the one-dimensional migration of organic contam-
inants in the vertical contaminant barrier, the model adopts the following assumptions
based on previous theoretical foundations and related experimental studies: (1) the contam-
inant in the filtration liquid is a single organic contaminant and undergoes one-dimensional
migration in the horizontal direction; (2) the vertical impermeable cut-off wall remains
undeformed with a constant pore volume, and the geomembrane contains holes; (3) the
contaminant migration considers convection, diffusion, and adsorption effects, and contam-
inant concentration in the leachate is assumed to be constant at C0; (4) molecular diffusion
follows Fick’s second law, and the contaminant adsorption is an isothermal linear process
that has reached equilibrium; (5) the barrier and aquifer are homogeneous and isotropic,
and under the head of the filtration liquid, the seepage reaches a steady state.

2.3. Governing Equations and Auxiliary Conditions

Considering the convection and diffusion effects of contaminants, the flux of contami-
nants along the x direction can be expressed as:

f = nvC− nD
∂C
∂x

(1)

where f is the contaminant flux, n is the total porosity of soil, v is the seepage velocity, C is
the contaminant concentration, and D is the molecular diffusion coefficient.

In the geomembrane, contaminants mainly undergo convection and diffusion. Consid-
ering its relatively thin thickness, here it is assumed to be in a steady-state transport. The
steady-state transport governing equation for the GM is:

D1
∂2C1(x)

∂x2 − v1
∂C1(x)

∂x
= 0 (2)

where C1 is the contaminant concentration at any position x within the geomembrane, D1
is the effective diffusion coefficient of the GM, and v1 is the average linear velocity of the
contaminant in the geomembrane.

The soil-bentonite barrier has a low permeability, which can prevent the penetration
of contaminants and adsorb contaminants within a limited thickness. According to pre-
vious assumptions and the law of conservation of mass, the transient one-dimensional
transport governing equation of contaminants in the soil-bentonite barrier can be expressed
as follows.
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Rd
∂C2(x, t)

∂t
= D2

∂2C2(x, t)
∂x2 − v2

∂C2(x, t)
∂x

(3)

where Rd is the retardation factor of the soil-bentonite barrier [21], C2 is the contaminant
concentration at any position x in the soil-bentonite barrier at any time t, D2 is the effective
diffusion coefficient of the soil-bentonite barrier, and v2 is the average linear velocity of the
contaminant in the soil-bentonite barrier.

Rd = 1 +
ρdKd

n2
(4)

where ρd is the dry density of the soil-bentonite barrier; n2 is the porosity of the soil-
bentonite barrier; and Kd is the distribution coefficient of soil-bentonite barrier.

Assuming that the background concentration of contaminants in the vertical cut-off
wall is zero and the redistribution process of contaminants at the interface between the
infiltration liquid and the GM is instantaneous, the boundary at the interface between
leachate and GM can be expressed as follows:

C1(0) = KgC0 (5)

C2(x, 0) = 0 (x > 0) (6)

The continuity conditions between the GM and the soil-bentonite barrier are:

C1(x)
∣∣∣x=L1 = K′gC2(x, t)

∣∣∣
x=L1

(7)

D1
∂C1(x)

∂x

∣∣∣∣x=L1 = n2D2
∂C2(x, t)

∂x

∣∣∣∣
x=L1

(8)

where Kg is the concentration distribution coefficient between the GM and the adjacent
medium, and K’g is equal to Kd [22].

When considering convection in contaminant transport, boundary conditions have
little effect on the transport results [23]. Here, we assume that the outer boundary of the
soil-bentonite barrier is a semi-infinite boundary:

∂C2(∞, t)
∂x

= 0 (9)

3. Model Solving and Verification
3.1. Analytical Solution

The general solution of the governing Equation (2) is:

C1(x) = k1er1x + k2 (10)

where k1 and k2 are undetermined parameters, here we set r1= v1/D1 and r2= v2/D2. By
substituting the Equation (5) and the Equation (7) into Equation (10):

k1 =
K′gC2(L1, t)− KgC0

er1x − 1
(11)

k2 =
KgC0er1x − K′gC2(L1, t)

er1x − 1
(12)

Substituting Equations (10)–(12) into the Equation (8):

C2(L1, t) = C0 + m
∂C2(L1, t)

∂x
(13)
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m =
er1L1 − 1
Kgr2er1L1

(14)

For the governing Equation (3), we use Laplace transform method to solve it:

U(x, p) =
∫ ∞

0
C2(x, t)e−ptdt (15)

where U(x, p) is the Laplace transform of C2(x, t) with respect to t and p is the transform
parameter.

Taking Laplace transform on both sides of the governing Equation (3):

Rd pU(x, p) = D2
∂2U(x, p)

∂2x
− v2

∂U(x, p)
∂x

(16)

whose general solution is:
U(x, p) = k3eλ1x + k4eλ2x (17)

where k3 and k4 are constants, and expressions of λ1 and λ2 are as follows:

λ1 =
r2

2
+

√
r2

2
4
+

pRd
D2

(18)

λ2 =
r2

2
−

√
r2

2
4
+

pRd
D2

(19)

Laplace transform of the Equations (9) and (13):

∂U(∞, p)
∂x

= 0 (20)

U(L1, p) =
C0

p
+ m

∂U(L1, p)
∂x

(21)

By substituting Equations (20) and (21) into Equation (17):

k3 = 0 (22)

k4 =
C0

peλ2L1(1−mλ2)
(23)

Substituting the obtained parameters into Equation (17):

U(x, p) =
C0e

[(L1−x)(

√
r2
2
4 +

pRd
D2
− r2

2 )]

p[1 + m(

√
r2

2
4 + pRd

D2
− r2

2 )]

(24)

Applying the inverse Laplace transform principle and related properties to Equation (24),
we can obtain:
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2C2(x,t)
C0

= er f c

 x− v2t
Rd

2
√

D2t
Rd

+ er1L1+r2xer f c

 x+ v2t
Rd

2
√

D2t
Rd

−

e
r2x

4 (er1 L1+
v2t
Rd x−1)csch2(

r1 L1
2 )

(er1L1 + 1)er f c

 x+ v2t
Rd

coth
(

r1 L1
2

)
2
√

D2t
Rd


(25)

Substituting Equation (25) into Equation (1) yields the expression of contaminant flux:

2 f
n2v2C0

= er f c

 x− v2t
Rd

2
√

D2t
Rd

− e
r2 x

4 (er1 L1+
v2 t
Rd x−1)csch2(

r1 L1
2 )coth

(
r1L1

2

)
er f c

 x + v2t
Rd

coth
(

r1 L1
2

)
2
√

D2t
Rd

 (26)

where all the undetermined coefficients and parameters have been determined. This is the
process of solving the one-dimensional transport governing equation of organic contaminants.

3.2. Comparison with Numerical Method

The application of numerical methods in engineering is quite common. In order to
further verify the accuracy of the analytical model, this paper uses the numerical simulation
software COMSOL for simulation research, and the related calculation parameters are listed
in Table 1. The obtained calculation results are compared and verified with the analytical
solution in this paper.

Table 1. Calculation parameters.

Parameter GM Soil-Bentonite Barrier

Thickness, L (m) 0.0015 0.6
Porosity, n / 0.5

Effective diffusion coefficient, D (m2/s) 3.5 × 10−13 9.23 × 10−10

Partition coefficient, Kg 30 /
Distribution coefficient, Kd (mL/g) / 1

Hydraulic conductivity, k (m/s) 1 × 10−12 1 × 10−10

retardation factor Rd / 2.4

Figure 2 shows the comparison between the analytical model in this paper and the
numerical results. It can be seen from the Figure 2 that when t = 5 a, 10 a and 20 a, the
calculation results of the analytical model in this paper are in good agreement with the
concentration distribution curve obtained by the numerical simulation software. This
further validates the correctness of the analytical model proposed in this paper.
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4. Analysis of Parameter

Based on the one-dimensional transport model established in this article, the impacts
of convection, diffusion, and adsorption on the transport of organic contaminants in the
composite cut-off wall were systematically studied. The effects of model parameters on
the transport of organic contaminants in this vertical cut-off wall were comprehensively
analyzed. Benzene, which has a strong migration ability, was selected as the single organic
contaminant in landfill leachate [24]. Assuming that the hydraulic head difference hd on
both sides of the vertical barrier is 0.3m and the initial concentration of benzene C0 is
1.63 mg/L, the breakthrough criterion was set to be 0.1, which means that the barrier was
considered to be breached when the ratio of the outside concentration of the vertical cut-off
wall to the initial concentration reached 0.1.

Considering the situation where GM has holes, the simplified formula for calculating
the volume leakage rate of the vertical barrier is provided by the following equation [25].

Q =
2hdLw

l
[kbw +

√
klθ] (27)

where hd is the hydraulic head difference, Lw is the connected fold lengths, l is the thick-
ness of adjacent media, k is the permeability coefficient of adjacent media, bw is the half-
width of the folds, θ is the transmissivity between GM and adjacent media. The expres-
sions for excellent contact, good contact, and poor contact conditions are provided by
Equations (28) to (30), respectively [26].

log10 θ = −0.321 + 1.036(log10 k) + 0.0180(log10 k)2 (28)

log10 θ = 0.07 + 1.036(log10 k) + 0.0180(log10 k)2 (29)

log10 θ = 1.15 + 1.092(log10 k) + 0.0207(log10 k)2 (30)

Assuming that the hole frequency ma on the GM is expressed per hectare, the Darcy
flux through the barrier is provided by the following equation [27].

va =
maQ

A
(31)

where A is the cross-sectional area of the area under investigation.
According to the law of mass conservation, the relationship between the seepage

velocity in the GM and the soil-bentonite barrier is provided by the following equation:

va = v1 = n2v2 (32)

In this study, the fold length Lw = 500 m. The thickness l and permeability coefficient
k of the soil-bentonite barrier were used. The half-width of the folds is bw = 0.1 m, and
the transmissivity is θ = 3.2 × 10−9 m2 [28]. Other parameters were referenced from the
literature [29,30], and the corresponding calculation parameters are shown in Table 1.

4.1. Influence of Holes

The phenomenon of geosynthetic liner with holes is quite common and can be caused
by various factors. The shape and size of the holes are also diverse. The hole frequencies
on GM were 4 and 22 holes/ha respectively under good and poor construction quality
with an average hole area of approximately 1 cm2 [31]. Figures 3 and 4 demonstrate the
breakthrough curve and contaminant flux curve of vertical cut-off wall under different hole
frequencies. The breakthrough time of the vertical cut-off wall was obtained by considering
hole numbers of 2.5, 5, 10, 25, and 50 holes per hectare of GM, which were 26.9 a, 22.5 a,
17.2 a, 10.1 a, and 7.9 a, respectively. Increasing the hole frequency from 2.5 to 5, 10, 25, and
50 resulted in a reduction in breakthrough time by 16%, 36%, 62%, and 70%, respectively.
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Figure 4 shows that as the hole frequency increases, the contaminant flux also significantly
increases. Figure 5 shows the breakthrough time curves under different hole frequencies
and three hydraulic head conditions. It can be observed that the breakthrough time of
the composite barrier decreases as the hole frequency and hydraulic head increase. These
results indicate the critical significance of controlling the number of holes on GM for the
contaminant prevention performance of vertical cut-off wall.
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4.2. Influence of Interface Transmissivity

The interface hydraulic conductivity between the GM and adjacent media can affect
the amount of leakage, and its magnitude is determined by the contact conditions. Figure 6
shows the breakthrough curves of a GM with a soil-bentonite barrier under three different
contact conditions. The breakthrough times of the vertical barrier were 5.8 a, 10.1 a, and
16.6 a for the three different contact conditions. Compared with the excellent contact
condition, the breakthrough times decreased by 39% and 65% for the good and poor
contact conditions, respectively. Therefore, controlling the contact conditions reasonably
during construction is essential to improve the anti-leakage performance of contaminant
prevention barriers.
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4.3. Influence of GM Location

In order to investigate the influence of GM location on the anti-seepage performance
of vertical cut-off wall, the organic contaminant benzene was selected as the target contami-
nant, and the GM was studied and analyzed under three different placement conditions.
Figure 7 shows the temporal variations in contaminant flux under the inside placement
condition (GM near the inlet boundary of the contaminant), middle placement condition,
and outside placement condition (GM near the outlet boundary of the contaminant). The
contaminant flux curves under the three conditions are quite similar and eventually tend
to be equal, but the total contaminant flux for each condition varies within a certain time
period. Under the internal placement condition, the total contaminant flux is minimized,
while it is maximized under the external placement condition. Therefore, selecting internal
placement is more reasonable under these conditions. Since choosing the GM location
during construction does not increase the construction difficulty or engineering cost, mak-
ing a reasonable choice of the GM location during construction is of great significance for
improving the anti-seepage performance of vertical cut-off wall.
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4.4. Influence of Soil-Bentonite Barrier Thickness

Figure 8 illustrates the effect of the thickness of the soil-bentonite barrier on the
breakthrough time of the entire vertical cut-off wall. For vertical cut-off wall thicknesses of
0.4 m, 0.5 m, 0.6 m, 0.7 m, and 0.8 m, the corresponding breakthrough times are 3.8 a, 6.1 a,
10.1 a, 12.9 a, and 15.5 a, respectively. As the barrier thickness increases from 0.4 m to 0.5 m,
0.6 m, 0.7 m, and 0.8 m, the breakthrough time increases by 60%, 165%, 239%, and 307%,
respectively. Moreover, Figure 9 shows that as the barrier thickness increases, the effluent
contaminant flux at the outlet boundary decreases. This indicates that a thicker barrier
has a stronger blocking effect, leading to better contaminant prevention performance.
However, the engineering cost also increases accordingly. Therefore, during construction,
considerations must be made regarding both economic costs and anti-seepage performance
to achieve the optimal solution.
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4.5. Influence of Leachate Heads

To investigate the effect of percolation fluid head on the one-dimensional transport of
contaminants, Figures 10 and 11 depict the breakthrough curve and effluent flux curves of
contaminants under different leachate heads. As shown in Figure 10, when the percolation
leachate head is 0 m, 0.1 m, 0.3 m, and 1 m, the corresponding breakthrough times are
35.1 a, 22.0 a, 10.1 a, and 5.7 a, respectively. When the percolation leachate head increases
from 0 m to 0.1 m, 0.3 m, and 1 m, the breakthrough time decreases by 37%, 71%, and 83%,
respectively. Figure 11 shows that as the percolation leachate head increases, the effluent
contaminant flux at the outlet boundary significantly increases. These findings indicate
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that an increase in percolation leachate head accelerates the one-dimensional transport
of organic contaminants, resulting in a significant increase in the outlet boundary flux.
Therefore, controlling percolation fluid effectively can extend the service life of barriers in
practical engineering applications.
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5. Conclusions

Based on the semi-infinite boundary condition assumption, one-dimensional transport
model of organic contaminants in composite vertical cut-off wall with defective high-density
polyethylene geomembrane is established and solved numerically. The influences of GM
pore ratio, GM placement position, and the contact level between GM and soil-bentonite
cut-off wall on the migration law of pollutants are analyzed by the relative pollutant
concentration, breakthrough time and contaminant flux. The following conclusions were
mainly drawn:

(1) Compared with the defect-free geomembrane, the service life of composite barri-
ers with the defective geomembrane is significantly reduced. When the hole frequency
increases from 5 to 25 and 50, the service life decreases by 55% and 65%, respectively.

(2) The results show that the quality of the liner–soil contact significantly affects the
flux of contaminants in the vertical cut-off wall. Specifically, compared with excellent
contact conditions, the breakthrough time is respectively shortened by 39% and 65% under
good and poor contact conditions, respectively. This influence on the transport behavior
of contaminants cannot be ignored, and it is recommended that the construction process
carefully control the contact conditions to ensure good performance.
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(3) The choice of the geomembrane position has limited impact on the transient flux of
contaminants, but it does affect the total flux of pollutants over a certain period of time.
For example, when benzene is the target contaminant, the total contaminant flux is the
smallest when the GM is inserted inside the soil, and it is the largest when the liner is
outside the soil.

(4) Increasing the thickness of the cut-off wall can effectively extend its service life and
improve its anti-contaminant effect. When the barrier thickness is increased from 0.4 m to
0.6 m and 0.8 m, the breakthrough time increases by 165% and 307%, respectively.

(5) An increase in the hydraulic head of the leachate can accelerate the one-dimensional
transport process of organic contaminants and significantly increase the outflow boundary
flux. When the hydraulic head of the leachate is increased from 0 m to 0.1 m, 0.3 m, and
1 m, the breakthrough time is shortened by 37%, 71%, and 83%, respectively. Therefore, it
is necessary to control the hydraulic head difference of the leachate in actual engineering to
ensure the service life of the composite barrier.
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