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Abstract: The present research focused on studying the mechanical properties of three commercially
available thermoplastic-based materials used for the additive manufacturing (AM) fused filament
deposition (FFD) method. The scientific motivation for the study was the limited information
available in the literature regarding the materials’ properties, the inconsistencies that were recorded
by other scientists between the materials’ properties and the technical datasheets and the anisotropic
behavior of additively manufactured materials. Thereby, it was considered of great importance to
perform an extensive study on several materials’ mechanical properties, such as tensile properties
and flexural properties. Three materials were tested, Tough PLA, nGen CF10 and UltraFuse PAHT
CF15. The tests consisted of monotonic tensile tests, open-hole tensile tests and three-point bending
tests. The tests were assisted also with the use of microscopical investigations. Framed specimens’
configurations with two different raster orientations (90◦/0◦ and −45◦/+45◦) were manufactured
using an in-house-developed 3D printing equipment. The best mechanical performances were
recorded for UltraFuse PAHT CF15. The 90◦/0◦ raster orientations ensured the highest tensile,
open-hole tensile and flexural strength, regardless of the material type, while the −45◦/+45◦ raster
orientations ensured the highest elongation values. The analysis showed the importance of the
experimental validation of materials for AM.

Keywords: extrusion; additive manufacturing; tensile; open-hole tensile; composites

1. Introduction

In recent times, AM has garnered considerable attention, as it can produce complex
shaped parts for various applications. According to ISO/ASTM 52900 [1], there are seven
AM process categories or methods based on the functioning principle of AM equipment
and materials used as feedstock. Since the development of AM, extensive research has
been conducted in the field on all types of processes and materials (metals [2], ceramic
materials [3], thermoplastics [4–6] and composites [7]).

Currently, metallic and ceramic AM includes very expensive processes and materials,
the most inexpensive AM process being material extrusion (MEX), where the material is
selectively dispensed through a nozzle [1]. MEX is usually used for materials bonded using
chemical reactions or thermal reactions [1], meaning mainly thermoplastic materials, and
it is the most used for research purposes and home applications. A specific MEX process
is fused filament deposition (FFD) or fused filament fabrication (FFF), which deposits
layer-by-layer thermoplastic materials and thermoplastic matrix composites according to a
3D CAD model.
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Many desktop FFF machines are currently available, including at low prices, and
are used to manufacture parts that do not require excessive mechanical strength. Various
studies have been conducted over the years on FFF-manufactured parts, including studies
on design for FFF [8], machine components and functionality [9], mechanical properties of
FFF-manufactured parts [10] and the mechanical properties of materials for FFF [11,12].

For example, Salem et al. [13] studied the tensile properties of PLA (polylactic acid) in
raw conditions and after 3D printing, because the properties given by the material supplier
are not the same as the properties of the final part. The findings revealed a significant
disparity between the performance of printed materials and the specifications outlined
in their datasheets. Their conclusion highlighted the need to perform a testing campaign
for materials designed for AM to select the proper material for the application. Grabowik
et al. [14] studied the tensile properties of different filaments: 3DGO Wood (a PLA rein-
forced with wooden powder), PLA, ASA (acrylonitrile styrene acrylate), PET (poly(ethylene
terephthalate)), ABS (acrylonitrile butadiene styrene) and PMMA (poly(methyl methacry-
late)). The datasheets included information regarding the properties of the materials in one
printing direction, thereby the actual printing direction was selected based on the infor-
mation available in the datasheet to ensure the materials’ best mechanical performances.
They concluded that the lowest performances were recorded for 3DGO Wood and the
best performances were recorded for PMMA, even if PET was easier to print and could be
considered a good material for tough applications.

Farbman et al. [15] investigated the mechanical properties of ABS and PLA using
experimental and computational methods. They varied the material, infill percentage,
geometry, load orientation and strain rate, concluding that the materials’ properties de-
pended on various factors and special attention needed to be paid to obtain high-quality
printed specimens. Morettini et al. [16] also studied the mechanical and physical properties
of PLA parts manufactured through FFF. An average ultimate tensile strength (UTS) of
57.15 MPa and an elastic modulus of 2606 MPa were obtained for horizontally printed
specimens. Catana et al. [17] published a study related to the flexural properties of PLA
and PLA reinforced with short glass fibers bars and tubes with different cross sections
(circular and ellipse) determined with three-point bending tests. The bending strength
of approximately 64 MPa for unreinforced PLA (tube configuration) and 82 MPa for hy-
brid specimens consisted of an outer arrangement of 31% and an inner arrangement of
69% PLA–glass.

The mechanical properties of additively manufactured PLA and ABS structures
(AMed) were investigated by Ozsoy et al. [18] using tensile, compression and three-point
bending tests. The results showed that the mechanical properties of the materials depended
on the filling density, and could be optimized by increasing the filling density rate, thereby
decreasing the printing speed. For PLA, the following values were obtained: tensile yield
strength of 37.33 MPa, 1.080 GPa elastic modulus, 32.45 MPa compression yield strength,
0.834 GPa elastic modulus, 37.39 MPa flexural yield strength and 1.547 GPa elastic modulus;
lower properties were recorded for ABS. Sodeifian et al. [19] studied the mechanical proper-
ties of pure polypropylene (PP)/glass fiber (GF) and PP/GF composites containing maleic
anhydride polyolefin (POE-g-MA) at different weight percentages (10, 20 and 30 wt.%).
Based on experimental tests, it was observed that the addition of glass fiber enhanced the
strength and modulus while reducing the flexibility of the material.

Sang et al. [20] researched the development of short-basalt-fiber/short-carbon-fiber-
reinforced PLA (PLA/KBF and PLA/CF) composites for 3D printing applications. They
observed that PLA/KBF showed comparable tensile properties and higher flexural prop-
erties than PLA/CF, which could be explained by the high complex viscosity of PLA/CF
affecting the interlayer adhesion. For neat PLA, a 54.2 MPa tensile strength was recorded,
while a 71.9 MPa maximum tensile strength was recorded for 20% reinforced PLA/KBF.
For PLA/CF, the maximum tensile strength was recorded for the specimens with 10% CF
(69 MPa), while increasing the CF weight fraction from 10% to 20% ensured a decrease in
mechanical properties. Ning et al. [21] investigated the properties of customized carbon-
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fiber-reinforced ABS for 3D printing. They manufactured FDM (fused deposition molding)
filaments using virgin ABS pellets and carbon fiber powders. Different reinforcement per-
centages were used (3 wt.%, 5 wt.%, 7.5 wt.%, 10 wt.% and 15 wt.%), and it was concluded
that the addition of carbon fibers could enhance the tensile strength and elastic modulus.
However, it could lead to a reduction in toughness, yield strength and ductility.

Ahmadifar et al. [22] studied the mechanical behavior of polymer-based composites
obtained through the use of FFF. They used raw materials from Markforged, namely, Onyx
(a reinforced polyamide PA6 with 6.5 wt.% chopped carbon fibers) and CF-PA6 additionally
reinforced with continuous glass fibers (selectively added only on some layers). They used
many infill patterns and different printing directions for the reinforcement layers, and
obtained a homogenous distribution of carbon fibers in Onyx; the CF-PA6 specimens with
solid infill patterns exhibited remarkable stiffness and mechanical properties under tension
(tensile strength of 30.31 MPa).

Tutar [23] conducted a comparative evaluation of the process parameters on the
mechanical properties of AMed PA (UltraFuse PA) and CF-PA (UltraFuse PAHT CF15)
materials. He performed tests on framed and unframed specimens with various infill raster
orientations (0◦, 45◦, ±45◦ and 90◦). The tensile strength of the PA specimens was in the
range of 24.6–40.5 MPa, while for the unframed PA-CF, it was between 31.4 and 95.4 MPa,
and for framed PA-CF, it was between 88 and 106.6 MPa, depending on the raster angle. In
his conclusion, it was observed that carbon fiber reinforcement, irrespective of the raster
angle, resulted in a reduced toughness and ductility while at the same time enhancing the
tensile strength and stiffness.

Open-hole tensile testing is a representative testing procedure for fastened structures,
where the hole is a stress concentrator [24]. These tests are an effective approach to predict
how a fixed part can behave under various loads [25,26]. Open-hole tests were reported
in the case of composites subjected to tensile or compressive loads [27,28]. They are
significant for industrial applications where composite materials are used, for example, in
the aerospace and automotive industries [24].

The FFF process is efficient and low-cost, and can be used to manufacture various
parts, including structural components for unmanned aerial vehicles (UAVs). Several
studies have been published on additive-manufactured UAVs or their components [29–35].

As highlighted by other authors, the technical datasheets of materials for additive
manufacturing give the materials’ characteristics as obtained in specific conditions or are
incomplete; therefore, before designing and manufacturing a part, the materials’ properties
should be experimentally determined.

This study aimed to evaluate the mechanical properties of three different low-cost
materials for FFF intended for the structural part manufacturing of an experimental UAV.

2. Materials and Methods

The mechanical properties of three different materials for FFF were assessed based
on tensile, open-hole tensile and three-point-bending tests. The materials selected for
the research were commercially available and consisted of filaments of Tough PLA black
(polylactic acid) produced by FormFutura (Amsterdam, The Netherlands), nGen CF10
black (PETG—polyethylene terephthalate glycol—created with Amphora AM3300 poly-
meric material filled with 10 wt.% short carbon fibers) produced by colorFabb (Belfeld,
The Netherlands) and UltraFuse PAHT CF15 black (a high-temperature polyamide-based
filament filled with 15 wt.% short carbon fibers produced by BASF-Innofil3D, Emmen,
The Netherlands). The materials’ properties according to their datasheets are presented in
Table 1.

Specimens were manufactured using an in-house-developed 3D printer that could
ensure a printable area of 300 × 300 × 350 mm (L × l × h). For all manufacturing processes,
a tungsten nozzle of 0.6 mm in diameter was selected to ensure homogeneity between
specimen geometry tolerances and layer configurations. Moreover, the nozzle diameter
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was selected based on the minimum diameter of the filament used to prevent the clogging
of the nozzle.

Table 1. Materials’ properties according to their datasheets.

Property Tough PLA [36] nGen CF10 [37]
UltraFuse PAHT CF15 [38]

Dried Specimen Conditioned Specimen

Tensile strength (MPa) 46 54.71 103.2 (XY)
18.2 (ZX)

62.9 (XY)
19.1 (ZX)

Tensile stress at break - 52.26 - -
Tensile strain at tensile strength - 3.66 - -
Yield strength (MPa) - 54.3 - -
Yield strain - 3.75 - -

Elongation at break (%) 2750 4.56 1.8 (XY)
0.5 (ZX)

2.9 (XY)
0.8 (ZX)

Young’s modulus (MPa) - 2945.78 8386 (XY)
3532 (ZX)

5052 (XY)
2455 (ZX)

Flexural strength (MPa) - -
160.7 (XY)
171.8 (XZ)
50.8 (ZX)

125.1 (XY)
121.9 (XZ)
56.0 (ZX)

Flexural modulus (MPa) - -
8258 (XY)
7669 (XZ)
2715 (ZX)

6063(XY)
6260 (XZ)
2190 (ZX)

Flexural strain at break (%) - -
2.4 (XY)
2.8 (XZ)
1.8 (ZX)

No break (XY)
3.6 (XZ)
4.0 (ZX)

The specimens’ 3D CAD models were realized using SolidEdge 2021 software (Siemens,
Munich, Germany). The specimens’ dimensions and testing conditions were established
based on active ASTM/ISO standards applied for polymeric composites, as shown in
Table 2.

Table 2. Specimens’ dimensions and testing conditions.

Monotonic Tensile Test Open-Hole Tensile Tests Three-Point Bending Tests

Standard ISO 527-4:1997 [39] and ASTM D
3039/D3039M [40] ASTM D5766/D5766M [41] ISO 178 [42]

Dimensions 250 × 25 × 2 mm
Span length 150 mm

300 × 36 × 2 mm with a 6 mm hole
diameter in the specimens’ centers

Span length of 200 mm

80 × 10 × 4 mm
Span length 68 mm

Raster
orientation

90◦/0◦

−45◦/+45◦

Test
conditions

Room temperature testing (24◦C ± 2◦C)
Test speed of 5 mm/min.

Five specimens/batch

The STL models were processed (slicing) using Cura 5.3.0 software (UltiMaker, a free
processing software, Utrecht, the Netherlands). To prevent the clogging of the nozzle and
to lower the time required to manufacture a specimen, a height of 0.36 mm was used in
slicing the model with a first layer of 0.2 mm in height. The values selected were in the
recommended range of 25–75% of the diameter of the nozzle. The resulting G-code was
inserted into the machine computer. All specimens were designed as framed configurations
(2-frame layers) with full infills and two different raster orientations, 90◦/0◦ and −45◦/+45◦,
as can be observed in the images in Figure 1.

The building plate consisted of clear glass covered with Magigoo bed prep adhesive
(Thought3D Ltd., Qormi, Malta) to ensure adhesion during the entire printing process.
Moreover, before starting each manufacturing cycle, the filament rolls were dried in an
oven at 75 ◦C for 7 h. The manufacturing conditions were established according to the
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materials’ datasheets and are presented in Table 3. Images from the manufacturing process
can be observed in Figure 2.
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Tough PLA nGen-CF10 UltraFuse PAHT CF15

Nozzle temperature, ◦C 225 240 260
Building plate temperature, ◦C 60 85 95
Manufacturing speed, mm/s 40 40 40

Manufacturing plane XY
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Figure 2. Images during the specimens’ manufacturing process: (a) overall image with the 3D printer;
(b) specimen during the manufacturing process.

All mechanical tests were executed in normal ambient conditions using an Instron
3369 testing machine (Instron, Norwood, MA, USA) equipped with a load cell of 50 kN.
The testing direction of the tensile and open-hole tensile tests was in the same direc-
tion, the 90◦ raster orientation. After testing, the failure modes were determined for the
tensile and open-hole tensile specimens according to ASTM D 3039/D3039M [40] and
ASTM D5766/D5766M [41] codifications. The failure modes were established through a
visual analysis.

A fracture surface analysis was realized using an FEI Inspect F50 scanning electron
microscope—SEM (FEI Company, Brno, Czech Republic). After performing the mechanical
tests, sections from the tensile damaged specimens were cut and sputter-coated with
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gold using SC7620 Mini Sputter Coater/Glow Discharge System (Quorum Technologies,
Laughton, East Sussex, UK) to prepare samples for the SEM analysis.

Optic microstructural investigations were also conducted on samples manufactured
from all three materials using the same raster orientations (90◦/0◦ and −45◦/+45◦) just
to emphasize several microstructural characteristics of the specimens. For this analysis,
we used the Axio Vert.A1 MAT optical microscope with a camera (Carl Zeiss Microscopy
GmbH, Jena, Germany). The samples were metallographically prepared through cutting,
grinding on sandpaper and felt-polishing using a 1 µm diamond polishing suspension.

3. Results and Discussion
3.1. Optic Microstructural Analysis

Figures 3–5 present the optical microstructures of the samples manufactured with
Tough PLA, nGen CF10 (colorFabb, Belfeld, The Netherlands) and UltraFuse PAHT CF15
(BASF, Emmen, The Netherlands) at 50× and 100× magnifications for the two raster
orientations of 90◦/0◦ and +45◦/−45◦, respectively. In these images, pores were visible
as black areas with various geometries, while carbon fibers were visible as luminous
white spots and lines. The thermoplastic polymeric matrix was grey regardless of the
material used.
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The micrographs presented in Figures 3–5 indicated significant porosities between the
overlaid layers in all specimens, irrespective of the raster orientation. At a microscopic level,
for the Tough PLA and nGen CF 10 materials, the layer limits were not visible, as observed
in the case of UltraFuse PAHT CF15. These pores were a consequence of the stacking effect
commonly observed in the FDM process, exhibiting a triangular shape, as highlighted
in Figure 3a,b. This effect occurred due to the filament deposition direction alternating,
resulting in incomplete filling between the deposition layers. Cracks typically initiate
from these pores and propagate, leading to premature material failure. Under mechanical
stress, the triangular-shaped pores deformed along with the material, resulting in the
formation of discontinuities within the material. These discontinuities could be observed
in the optical images and were more pronounced in the case of the UltraFuse PAHT CF15
specimens, as shown in Figure 5a,b. Moreover, smaller irregular pores could be seen within
the layers of both the UltraFuse PAHT CF15 and nGen CF 10 specimens, as illustrated
in Figures 4 and 5. These materials are hydrophobic and can absorb humidity from the
environment. This was evident from the high porosity content observed in the material,
even after undergoing a heat treatment in the oven before each manufacturing cycle. The
carbon fibers were prominently visible in both configurations of the UltraFuse PAHT CF15
and nGen CF 10 specimens, regardless of the raster orientation. In the specimens with the
90◦/0◦ raster orientation, the transversal fibers appeared as white luminous lines on the
layers deposited at 0◦. In addition, bright spots could be seen on the layers deposited at
90◦ due to their cross-sectioning. Conversely, in samples manufactured using a −45◦/+45◦
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raster orientation, the fibers were primarily visible as luminous points and nonoriented
short fibers.
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3.2. Tensile Tests

Histograms with the average results of the tensile tests for all material batches and
raster orientations are presented in Figure 6.

As depicted in the histograms shown in Figure 6, it was observed that the highest
tensile and yield strengths were registered for the UltraFuse PAHT CF15 material, as
expected due to the higher carbon fiber content, and the lowest tensile strength was
registered for the unreinforced PLA. The results obtained for Tough PLA were significantly
different from those presented in the material datasheet [36]; in terms of the tensile strength,
the average recorded value was 25% lower compared with the value of 46 MPa presented
in the material’s datasheet, and in terms of the elastic modulus, the average recorded value
was 56% lower compared with the presented value of 2750 MPa. The results obtained for
Tough PLA were similar to those obtained for usual PLA studied by other authors [13,14].

Likewise, different values were recorded for nGen CF10 and UltraFuse PAHT CF15
compared with the properties presented in the materials’ datasheets [37,38]. For both
materials, the average recorded values were lower compared with the values presented
in the materials’ datasheets; for nGen CF10, a 22% lower tensile strength was recorded
(compared with 54.71 MPa) and a 54% lower elastic modulus (compared with 2945.78 MPa),
while for the UltraFuse PAHT CF15, a 25% lower tensile strength was recorded (compared
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with 103.2 MPa for dried specimens) and a 70% lower elastic modulus (compared with
8386 MPa).
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The values recorded for UltraFuse PAHT CF15, regardless of the raster orientation
used, were slightly lower than those reported by Tutar [23] for the framed specimens,
and higher than those obtained for the unframed specimens. Despite this, he obtained
the highest tensile strength for the framed ±45◦ manufactured specimens, while in the
present case, the 90◦/0◦ raster orientation ensured the highest mechanical performances.
These differences could be explained by the different manufacturing conditions used (layer
thickness, nozzle and building plate temperature).

An increase in the tensile strength and elastic modulus simultaneously with a decrease
in toughness and ductility with the addition of carbon fibers to polymers was recorded.
Moreover, Tough PLA had a more ductile behavior, with higher elongation values regard-
less of the raster orientation, as can be observed in Figure 7a,b, where a comparison between
the stress–strain curves of the materials and raster orientations tested is presented. This
behavior was consistent with the findings of other authors [20,21,23].

Regarding the influence of the raster orientation, regardless of the material type, a
slight influence was observed, especially in the case of the tensile strength and elongation.
The 90◦/0◦ raster orientation mainly ensured a higher tensile strength yet the lowest
elastic modulus and elongation, while in the case of the −45◦/+45◦ raster orientation, the
behavior was opposite, as it mainly ensured the lowest tensile strength yet the highest
elastic modulus and elongation. The differences were caused by the direction of the force
applied during testing, as can be seen in the representative images in Figure 8. Different
colors were used in Figure 8 to highlight the differences between the deposited layers; in
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Figure 8a, the 90◦ filaments were marked in cross-section with blue, while the 0◦ filaments
were marked with orange. In Figure 8b, the −45◦ filaments were marked in cross-section
with blue, while the +45◦ filaments were marked with orange.
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A visual inspection determined the specimens’ failure modes, which are presented in
Table 4, and images with the fractured specimens are presented in Figure 9.

Table 4. Failure modes of tensile specimens.

Specimen/
Material

Tough PLA nGen-CF10 UltraFuse PAHT CF15

90◦/0◦ −45◦/+45◦ 90◦/0◦ −45◦/+45◦ 90◦/0◦ −45◦/+45◦

#1 LGB AGB LGB AGT LGM LGM
#2 LGB AWB GAB AAT GAT GAB
#3 LWB AGB MGB MGM LGM LWT
#4 LGB AWB MGT MGM LWB GAB
#5 LGB LGV MGM MGM LWB LGM

Main failure type LGB AWB/AGB - MGM LWB GAB

For the first letter: A—angled; L—lateral; G—grip/tab; M—multimode; for the second letter: A—at grip/tab;
G—gage; W—<1W from the grip/tab; for the third letter: B—bottom; T—top; M—middle; V—various.
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Based on the visual specimen analysis, it could be stated that the PLA specimens were
the most plastic materials as they elongated more, especially for the −45◦/+45◦ batch. The
PLA batch manufactured with a 90◦/0◦ raster orientation showed an LGB main failure
mode, while two predominant failure modes were registered for the −45◦/+45◦ batch,
namely, AWB and AGB. As the 10% carbon fiber ensured a higher mechanical strength of the
nGen CF10 material, it was less ductile than Tough PLA, and many specimens were dam-
aged in the multimode, with the damage starting on the lateral section when the fractured
material pieces were detached from the specimen. In the case of UltraFuse PAHT CF 15,
clean lateral fractures were identified, and no angled damage was recorded. These fractures
were similar to those observed in the case of long-carbon-fiber-reinforced composites.

3.3. Fracture Analysis

The goal of the analysis was to locally evaluate the morphology of the fractured areas.
Figure 10 shows SEM images with the fractured surfaces of the three materials.

The SEM images of the Tough PLA specimens with a raster orientation of −45◦/+45◦

shown in Figure 10a indicated a predominantly ductile fracture mode and an irregular
fracture surface. Despite using the same material and printing conditions, the Tough PLA
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specimens with a raster orientation of 90◦/0◦ exhibited less ductile behavior compared
to the −45◦/+45◦ batch and a uniform fracture surface. This difference in behavior could
be attributed to the direction of the applied force during testing, as illustrated in the
schematic representation in Figure 8; its impact was also reflected in the variations in
tensile properties.
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(c,d) nGen CF 10 and (e,f) UltraFuse PAHT CF15.

In the case of the 90◦/0◦ batch, triangular-shaped porosities could be noticed between
the raster layers, as is shown in Figure 10b. These porosities were caused by the stacking
effects inherent to FDM printing that ensure an incomplete material filling among the
deposited layers. These porosities have a critical role in determining the interlayer adhesion
and, consequently, the mechanical properties of the specimens. The fewer pores, the better
the interlayer adhesion, material density and mechanical properties. However, it was
noticed that the Tough PLA specimens had higher elongation values compared to the nGen
CF 10 and UltraFuse PAHT CF15 specimens. On the other hand, the Tough PLA specimens
exhibited a lower tensile strength compared to the nGen CF 10 specimens and especially
UltraFuse PAHT CF15 specimens, which demonstrated the highest tensile strength among
the three materials. The superior mechanical behavior observed in the UltraFuse PAHT
CF15 specimens was primarily related to the higher amount of carbon fibers embedded in
the matrix of the specimens. Figure 10c–f illustrate that the carbon fibers integrated in the
matrix had a nominal diameter of 8 µm. Even a slight increase of 5 wt.% in the amount of
short carbon fibers used in the UltraFuse PAHT CF15 specimens compared to the nGen
CF10 specimens resulted in remarkable improvements in the elastic modulus and breaking
strength for both raster orientations. The main fracture mechanisms for both materials were
fiber breakage and fiber pull-out. Ultimately, the failure of the specimens was attributed to
a combination of material tearing and delamination. However, the fracture behavior and
tensile properties of both the nGen CF10 and UltraFuse PAHT CF15 specimens exhibited
distinct characteristics depending on the chosen raster orientation. The specimens were
printed using an alternating distribution of a 0◦/90◦ or −45◦/+45 raster angle, leading to
different fracture behaviors. In the case of the 90◦/0◦ raster orientation, the tensile load was
exerted parallel in the direction of the layers deposited at 90◦, and perpendicular on the layers
deposited at 0◦. This loading configuration influenced the interlayer adhesion, fiber orientation
and overall mechanical response of the specimens. Consequently, the failure mechanism
depended on the adhesion between adjacent raster layers. It was observed that less tensile load
was required to fracture the specimens with a −45◦/+45◦ raster orientation due to the force
that was applied at a 45◦ angle, ensuring a lower tensile strength but a higher elongation.
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In the case of the UltraFuse PAHT CF15 specimens, the voids formed during printing
acted as sites for crack nucleation, which, ultimately, led to severe delamination between
the layers, as shown in Figure 10f. Despite the delamination, these specimens exhibited
the highest mechanical strength, particularly when the 90◦/0◦ raster orientation was used.
The results indicated that specimens built with the 90◦/0◦ raster orientation demonstrated
higher values of tensile strength and elastic modulus while maintaining similar elongation
values compared to the −45◦/+45◦ batch.

3.4. Open-Hole Tensile Tests

The results of the open-hole mechanical tests are presented in Figure 11.
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Figure 11. Open-hole tensile test results: (a) open-hole tensile strength; (b) open-hole yield strength;
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All specimens were damaged according to a standard fracture initiated from the hole
area; thereby, no specimen was excluded from analysis. Similar to the tensile tests, the
open-hole tensile tests revealed that the highest strength was ensured by the UltraFuse
PAHT CF15 material. In this case, we observed that in terms of the strength and elastic
modulus, the values recorded were similar regardless of the raster orientation; it seemed
that integrating a hole in the middle of the specimen diminished the influence of the
raster orientation.

The −45◦/+45◦ raster orientation provided the highest elongation, according to
Figure 11c), as no 0◦ layers were present. The layers deposited at 0◦ had the lowest
mechanical performance in the testing direction, as they were deposited perpendicular to
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the applied force direction. Figure 12 presents the representative stress–strain curves for
each specimen batch.
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The results obtained for the Tough PLA material were similar with the results obtained
by Khosravani et al. [43] in the case of usual PLA specimens manufactured with two
different hole sizes. They obtained an open-hole tensile strength of 36.9 MPa for specimens
with holes of 6 mm and 29.7 MPa for specimens with 12 mm holes.

Comparing the average tensile strength with the average open-hole tensile strength
showed that a reduction in the materials’ strength was registered for all materials, although
to different extents, as can be observed in Table 5.

Table 5. Reduction in materials’ strength induced by the hole insert.

Raster Orientation/Material Tough PLA nGen-CF10 UltraFuse PAHT CF15

90◦/0◦ 9.65% 17.84% 17.35%
−45◦/+45◦ 15.14% 13.01% 11.93%

It was observed that inserting holes in the material reduced the mechanical perfor-
mance. In the case of a 90◦/0◦ raster orientation, the reduction was more significant in
the case of materials with higher mechanical performances, but lower elastic properties
(nGen CF10, UltraFuse PAHT CF15). Nevertheless, in the case of the −45◦/+45◦ raster
orientation, where the materials’ elastic properties were similar (the elongation values were
in a narrower range compared with the case of the other raster orientation), the influence
of the hole was more significant for Tough PLA compared with the other two materials.
Regarding the damaged specimens, Figure 13 shows the fractured specimens and Table 6
shows their presented failure modes.

Table 6. Failure modes of open-hole tensile specimens.

Specimen/
Material

Tough PLA nGen-CF10 UltraFuse PAHT CF15

90◦/0◦ −45◦/+45◦ 90◦/0◦ −45◦/+45◦ 90◦/0◦ −45◦/+45◦

#1 LGM LGM MGM MGM MGM MGM
#2 LGM LGM MGM MGM LGM MGM
#3 LGM LGM MGM MGM LGM LGM
#4 LGM LGM MGM MGM LGM LGM
#5 LGM LGM MGM MGM LGM MGM

Main failure type LGM LGM MGM MGM LGM MGM
For the first letter: L—lateral; M—multimode; for the second letter: G—gage; for the third letter: M—middle.
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Figure 13. Representative images with all open-hole tensile testing specimen batches (left—top of
the specimen; right—bottom of the specimen).

Based on the visual specimen analysis, it could be stated that regardless of the raster
orientation and material type, the damage originated from the hole area. In the case
of materials with higher mechanical strength and toughness, the specimens exhibited
multiple modes of failure in various layers, and several pieces of material detached from
the specimens from the area adjacent to the hole. The main failure modes were LGM
and MGM. The microstructural features and fracture surfaces of the open-hole tensile test
specimens did not show any significant differences compared to the monotonic tensile test
specimens. Hence, the SEM analysis was not repeated for the open-hole specimens.

3.5. Three-Point Bending Tests

The flexural test results are presented in Figure 14, while representative stress–strain
curves are presented in Figure 15. As was observed in the case of the tensile tests, the
UltraFuse PAHT CF15 material had the highest flexural strength and elastic modulus, but
the lowest elongation at break. Only a slight difference was recorded between the flexural
properties of Tough PLA and nGen CF 10, compared with the significant difference between
them and UltraFuse PAHT CF 15. This was caused by the low reinforcement proportion
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in the case of nGen CF 10, where the short fibers could not ensure a high resistance, but
increasing the fiber proportion could also increase the flexural properties.
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Studying the materials’ datasheets [36–38], we observed that Tough PLA and nGen
CF 10 had no information regarding the flexural properties of the materials, but it was
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provided for UltraFuse PAHT CF15. The results obtained for the flexural properties of
UltraFuse PAHT CF15 were similar to those provided in the datasheet for the flexural
strength and elastic modulus, regardless of the raster orientation; but, here, we obtained
higher elongations at the break.

The results obtained for the flexural strength of Tough PLA were a little lower com-
pared with the values recorded by Atakok et al. [44] in the case of PLA and recycled PLA
(Re-PLA). They obtained values in the range of 91–125 MPa for PLA and 89.96–113 MPa
for Re-PLA, compared with the average value of 74 MPa obtained during this study. The
results obtained for Tough PLA in our case were consistent with the findings of Aveen [45]
and Wu [46] in the case of an ultrasonic-consolidated fused-filament-fabricated PLA.

Regarding the applied force direction during flexural testing, the force was applied
perpendicularly to the specimens, as shown in the images in Figure 16. The higher flexural
strength obtained in the case of the 90◦/0◦ raster orientation was also ensured by the 90◦

deposited layers (marked with blue in Figure 16a, while orange marks the 0◦ filament
deposition). Figure 16b shows a representation of the −45◦/+45◦ raster orientation cross-
section, highlighting the different directions of the filaments in blue for the −45◦ orientation
and in orange for the +45◦ orientation.
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Figure 17 presents images of the tested specimen batches. The elastic behavior was
observed in the case of the Tough PLA specimens, especially for specimens manufactured
using a −45◦/+45◦ raster orientation, where they bent during the tests and then returned to
their approximate original form afterwards, as can be observed in the images in Figure 17.
A complete rupture occurred on the UltraFuse PAHT CF 15 specimens. Similar damage
was observed for UltraFuse PAHT CF15 by Tutar [23].
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Figure 17. Representative images with all three-point bending specimen batches (left—top of the
specimen; right—bottom of the specimen).

4. Conclusions

This study focused on assessing the mechanical properties of three commercially
available thermoplastic materials and composites for the FFF process, Tough PLA, nGen
CF10 and UltraFuse PAHT CF15, in terms of tensile, open-hole tensile and three point-
bending tests. Specimens were manufactured using in-house-developed 3D printing
equipment and framed configurations with two different raster orientations, 90◦/0◦ and
−45◦/+45◦.

The results obtained were compared with the existing materials’ datasheets, and it
was concluded that some properties were not available in the datasheets and that since
manufacturing conditions differed, in some cases, the properties were different as well.
Moreover, the open-hole tensile strength of the materials was not a property that was
usually found in the materials’ datasheets, even for conventional polymeric composites,
but it is important in the case of using the material for perforated parts, as the open-hole
represents a tensioned area.

The investigation of the fracture surfaces and tensile properties of the specimens
revealed distinct fracture characteristics and varied mechanical properties depending on
the chosen raster orientation. The presence of porosities, the amount of carbon fibers and
the direction of the applied force all played significant roles in determining the specimens’
behavior under load.

The best mechanical performances were recorded in this case of UltraFuse PAHT CF15.
An increase in the tensile, open-hole tensile and flexural strength and elastic modulus
simultaneously with a decrease in toughness and ductility was observed in the case of
materials reinforced with chopped carbon fibers, regardless of the fiber percentage. The
results obtained were mainly similar to the results reported by other authors.

The 90◦/0◦ raster orientations ensured the highest mechanical strengths, regard-
less of the material type, while the −45◦/+45◦ raster orientations ensured the highest
elongation values.
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The main conclusion of the study is that before manufacturing parts through the use of AM
methods, a material survey should be performed and the materials’ mechanical performances
should be studied on many configurations and in different manufacturing conditions.
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