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Abstract: Phosphorous is an essential element for the life of organisms, and phosphorus-based
compounds have many uses in industry, such as flame retardancy reagents, ingredients in fertilizers,
pyrotechnics, etc. Ionic liquids are salts with melting points lower than the boiling point of water.
The term “polymerized ionic liquids” (PILs) refers to a class of polyelectrolytes that contain an ionic
liquid (IL) species in each monomer repeating unit and are connected by a polymeric backbone to
form macromolecular structures. PILs provide a new class of polymeric materials by combining some
of the distinctive qualities of ILs in the polymer chain. Ionic liquids have been identified as attractive
prospects for a variety of applications due to the high stability (thermal, chemical, and electrochemical)
and high mobility of their ions, but their practical applicability is constrained because they lack the
benefits of both liquids and solids, suffering from both leakage issues and excessive viscosity. PILs are
garnering for developing non-volatile and non-flammable solid electrolytes. In this paper, we provide
a brief review of phosphonium-based PILs, including their synthesis route, properties, advantages
and drawbacks, and the comparison between nitrogen-based and phosphonium-based PILs. As
phosphonium PILs can be used as polymer electrolytes in lithium-ion battery (LIB) applications, the
conductivity and the thermo-mechanical properties are the most important features for this polymer
electrolyte system. The chemical structure of phosphonium-based PILs that was reported in previous
literature has been reviewed and summarized in this article. Generally, the phosphonium PILs that
have more flexible backbones exhibit better conductivity values compared to the PILs that consist of a
rigid backbone. At the end of this section, future directions for research regarding PILs are discussed,
including the use of recyclable phosphorus from waste.

Keywords: polymeric ionic liquid; phosphonium; polymer electrolyte; energy storage; lithium-ion
batteries

1. Introduction

Numerous energy storage technologies have been developed as a result of the ris-
ing demand for high energy density storage [1,2]. Technology for batteries has recently
advanced quickly, starting with lead-acid batteries and moving on to nickel-cadmium,
nickel-metal hydride, and lithium-ion batteries (LIBs) [3]. The market for LIBs is antici-
pated to increase to USD 139.36 billion by 2026 from USD 29.86 billion in 2017 [4]. Since
Sony commercialized them in 1991, LIBs have dominated the portable electronics industry
and have enormous potential for use in numerous applications like portable gadgets and
electric vehicles (EVs) [5]. The usefulness of LIBs in daily life led to their inclusion in the
2019 Nobel Prize in Chemistry [6].
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The LIB’s energy density is normally enhanced by high-voltage active cathode and
anode materials (electrodes). Another essential component of LIBs is the electrolyte. It
needs to guarantee quick ion transport and enough chemical and electrochemical stability,
as well as overcome any safety concerns brought on by thermal instability, flammability,
and leakage potential [7]. Unfortunately, the decomposition of the electrolyte at more
than 4.2 V vs. Li/Li+ is one of the major issues with high-voltage cathodes in LIBs [8].
Traditional organic liquid electrolytes have significant safety issues since they are flammable
and caustic [9–12]. Additionally, a significant barrier to the commercialization and scaling
up of lithium-metal batteries is the liquid electrolyte’s inability to prevent the production
and growth of lithium dendrites, which can result in battery shortcuts and explosions.
The stability of the substance that replaces today’s electrolyte can therefore be seen as a
crucial electrochemical characteristic in the implementation of next-generation devices that
hold larger cell potentials. Li-ion batteries face new challenges as a result of the rapid
development of electric vehicles and power plants in terms of safety and energy density
(LIBs) [13].

Replacing conventional liquid electrolytes with other types of electrolytes is expected
to solve battery safety issues, lessen side reactions at the electrolyte/electrode contact,
enable the use of lithium metal anodes, and extend the lifetime of the battery. Neoteric
electrolytes such as ionic liquids (ILs) and polymeric ionic liquids (PILs) have great potential
for use in battery design. Due to the urgent safety issue regarding solvents as industry
seeks batteries with smaller volume and higher power density, several academics are
investigating ILs and PILs as electrolytes as opposed to traditionally utilized solvent-based
electrolytes [14].

ILs were described as salts with melting points lower than the boiling point of wa-
ter [15]. High thermal, chemical, and electrochemical stability and high ion concentration
are typical characteristics of ILs [16,17] Wide liquid-phase windows and protection from
fire dangers are two significant advantages that ILs have over solvent-based electrolytes
due to their great stability and non-volatility. When using ILs as electrolytes, large ion
densities also impart high ion conductivities, which is crucial in LIBs application [14]. On
the other hand, the usually high viscosity is a problem.

Nonetheless, as it is still in the liquid state, uncontrolled dendritic lithium production
can still occur, which would raise safety concerns for ILs. To prevent an electrical short-
cut produced by dendrites penetrating the electrolytes, a straightforward approach is to
give them mechanical integrity [17]. Thus, PILs (macromolecular forms of polymerizable
ILs) have received increasing attention because they typically exhibit higher mechanical
integrity than their IL analogues. The distribution of ILs in the matrix can change over
time and can also leach out of the matrix. For this reason, PILs might provide better matrix
compatibility in the long run.

Polymeric ionic liquids (PILs) are a type of polyelectrolyte that feature an ionic liquid
(IL) moiety in each monomer repeating unit, which is linked together by a polymeric
backbone to form a macromolecular structure. PILs combine some of the unique properties
of ILs in the polymer chain, resulting in a new class of polymeric materials. Rapid advances
in the chemistry and physics of polyelectrolytes have resulted in the development of unique
and versatile polyelectrolytes that are important for basic research and provide materials for
new solutions in a variety of systems. Figure 1 shows the properties of phosphonium-based
polymeric ionic liquids and their use in lithium-ion batteries.

PILs research is currently in a protracted expansion period (as shown in Figure 2),
with several unique properties and applications being discovered recently.
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Figure 1. The use of phosphonium ionic liquids in lithium batteries and their advantages.
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Figure 2. A plot of number of publications vs. year of publication was obtained from Scopus by
searching for the topic ‘polymeric ionic liquid electrolyte for lithium ion batteries’ [18].

There are two main characteristics that need to be focused on to develop a good
electrolyte for LIBs: good conductivity and thermomechanical properties. Numbers of PIL
architectures, including, e.g., single-charged polymers, zwitterionic polymers, polyelec-
trolyte blends, and ion-containing block copolymers, are being investigated. Although
PILs provide excellent tunable mechanical integrity, they exhibit lower ion mobility in
the polymeric matrix, thus decreasing the ionic conductivity values. Researchers have
concentrated on two very distinct but equally effective techniques to address the dichotomy
between mechanical integrity and ion conductivities:

(i) Improve the ILs’ thermo-mechanical strength, which would allow for thinner membranes.
(ii) Improve the PILs’ ion conductivities.

Lodge et al. have pioneered the work on enhancing the mechanical integrity of IL
and promised the potential of ion gels as solid electrolytes with excellent ion conductivi-
ties [19–22]. Ion gels are made of block copolymers that have been swelled with ILs, which
act as the block copolymers’ solvents. Since one of the blocks in a block copolymer is
still insoluble in the IL and self-assembles into aggregates, the polymer offers physical
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crosslinks. The synthesized soft ion gels displayed strong ion conductivities and promising
elasticity (up to 350% strain and 103–105 Pa elastic storage modulus). Ion mobility in PILs
is the topic of another effort [21].

In contrast, Drockenmuller and colleagues created 1,2,3-trizolium-based PILs with
siloxane backbones to increase the ion conductivity of polymeric matrix [23]. The glass tran-
sition temperature (Tg) was lowered by the siloxane backbone to as little as 100 ◦C, and this
resulted in a promising ion conductivity even at ambient temperature (0.63 × 10−3 S cm−1).
Long et al. [24] were able to obtain more than an order-of-magnitude increase in ion
conductivities when switching counterions from trifluoromethane sulfonate (TfO−) to
bis(trifluoromethane sulfonyl)imide (Tf2N−).

Imidazolium-, ammonium-, and phosphonium-based PIL materials have received a
lot of attention as ion-conductive components for electrochemical devices like fuel cells,
lithium batteries, actuators, and solar cells [25]. Contrary to imidazolium-based compounds,
phosphonium-based ILs and PILs have not gathered much attention in the literature
despite their substantial advantages compared to nitrogen-based analogues. One notable
exemption in 2022 is Hofmann et al., who have studied the phosphonium-based ionic
liquid electrolyte for battery application [26].

Phosphonium-based ILs and PILs exhibit enhanced thermal stability, base stabil-
ity, and ion conductivities compared to nitrogen-based analogues [27–29]. For instance,
poly(4-vinylbenzyl ammonium) and poly(4-vinylbenzyl phosphonium) homopolymers
with different alkyl replacements were examined by Long et al. and it was observed that
phosphonium-based PILs showed an increase in the onset of thermal deterioration of over
100 ◦C 45 [27]. Hoffman elimination and/or reversible Menschutkin degradation occur
in ammonium salts (for benzylic protons). In contrast, phosphonium salts have higher
thermal stability because they are less susceptible to both breakdown processes [27,30]. On
the other hand, alkaline anion exchange membranes made of polyethylene functionalized
with phosphonium pendant groups were created, according to Coates and colleagues [29].
In comparison to their ammonium counterparts, phosphonium PILs also displayed higher
ion conductivities, observed at 22 × 10 −3 S cm−1 (normalized with Tg). The phosphonium
PILs also showed better alkaline condition stability compared to their ammonium coun-
terparts, as depicted in Figure 3. Thus, tetrakis(dialkylamino)phosphonium materials are
promising candidates for testing in alkaline membrane fuel cell applications.

Figure 3. Stability of [BnNMe3]+ (blue squares) and [P(N(Me)Cy)4]+ (red squares) in 1 M
NaOD/CD3OD at 80 ◦C. Reproduced from [29].
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2. Phosphorus

Phosphorus occurs in rocks, soil, plants, and animal tissues. The several allotropes of
elemental phosphorus, including the white, red, black, and purple varieties, are also well
known. The alteration that best exemplifies the end result of industrial production is white
phosphorus (P4). Phosphorus-rich molecular compounds can be created by functionaliza-
tion because of P4’s strong reactivity and unique molecular structure. Both white and yellow
are commercially available phosphorus formulations. Small amounts of red phosphorus
are present in white phosphorus to form yellow phosphorus. Red phosphorus is created
when white phosphorus is heated in the absence of oxygen in an inert atmosphere [31,32].

Finite resources of phosphate rock, mineralogical phosphate reserves, and irreplace-
able resources cause rising research on the recycling of phosphorus. It is a crucial mineral
as a nutrient for many biological processes. However, materials science also uses phos-
phorus compounds in many different fields. Specifically, recycling the phosphorus from
the lithium-ion battery will be an important concept in the future. Nowadays, phospho-
rus recycling from wastewater treatment residues is a crucial strategy for protecting the
world’s phosphorus supplies, and many technologies have been devised to produce pure
and effective phosphorus from these wastes, which are basically produced from fertiliz-
ers. Additionally, phosphorus-bearing polymer matrices at their end-of-life accumulate in
wastewater, sewage sludge, or soils. Phosphorus can be recovered after anaerobic digestion
resulting in sewage sludge ashes, mainly in the form of magnesium ammonium phosphate
or calcium phosphate. Sludge can be directly used as fertilizer on agricultural soils.

In recent years, the Life Cycle Assessment (LCA) has been performed to determine
if recovering dissipated phosphorus by creating phosphate fertilizer based on sludge can
be an effective way to prevent phosphorus depletion. Consequently, upstream sludge
production was taken into account by allocating some of the environmental costs associated
with wastewater treatment to sludge production. It showed that the upstream burden of
sludge generation and P recovery was less environmentally benign than that of mineral
phosphate fertilizers [33]. However, recovering phosphorus using struvite precipitation [34]
and supercritical water oxidation [35] are alternative methods to recover phosphorus if
fertilizer production is not desired.

Phosphorus plays a vital role in organic and inorganic chemical synthesis routes,
including the Wittig reaction, Staudinger reaction, Arbusov and Michaelis-Arbusov re-
action, Mitsunobu reaction, Horner-Wadsworth-Emmons reaction, or as multifunctional
phosphine ligands in metal complex catalysts [31]. Additionally, phosphorus is widely
used in the study of solid-state chemistry and materials science. It is used in steel [36],
light-emitting diodes [37], and even matches. In recent years, phosphorus compounds
have played an essential role in the chemical industry, e.g., as desiccants (e.g., phosphorus
(V) oxide) [38], in flame retardants [39], additives [40], plasticizers [41], pesticides, or as
phosphate in fertilizers [42]. One of the key properties of phosphorus compounds is their
thermal resistance and flame retardancy behavior [43–45], which could enhance the safety
issue of lithium-ion batteries. Basically, phosphorus compounds in the gas phase act as
radical scavengers and solid phase char yield formation to reduce the flammability of the
polymer and thus increase the material’s thermal stability.

In short, phosphonium-based PILs show great promise as novel electrolyte materials,
although they have not received as much research as their ammonium analogues. Although
ILs and PILs have numerous applications in gene delivery [46], antimicrobial coatings [47],
gas separation [48], and conductive materials [49], there is a lack of studies on phosphonium-
based PILs as electrolytes in LIB applications in the literature. This review concentrates
on PIL materials to demonstrate how chemical structure affects ionic conductivity and the
effect of phosphorus units on the conductivity of the end product.
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3. Phosphonium Ionic Liquid Polymer Electrolytes in Lithium-Ion Batteries
3.1. Polymer Electrolytes

Polymer electrolytes are prepared from the dissolution of lithium salt with low lattice
energy and bulky anions into the high molecular weight polymer host [50]. The first
description of ionic conductivity in polymers with complicated alkali salts was made by
Peter V. Wright and Fenton in 1973 [51]. The covalent interaction between the polymer
backbones and the ionizing groups provides the basis for ionic conduction in polymer
electrolytes. The polymer’s electron donor group first creates solvation with the dopant
salt’s cation component before facilitating ion separation and an ionic doping mechanism.
It produces ionic conductivity as a result [50].

The main requirement when choosing the polymer host is that the polymer must be
able to pair with lithium ions as well as dissolve lithium salt to create a polymer electrolyte
with high lithium-ion conductivity. The polymer’s polar groups (−O, −S, −N, −P, etc.)
work well as building blocks to dissolve lithium salts. Polyethylene oxide (PEO) and its
derivatives are the main subjects of most polymer electrolyte research activities. The anion
and cation of the lithium salt dissociate because of the Coulombic interaction between the
single electron pair of oxygens on the PEO segment and the lithium ion [52]. Lithium salt
dissolves into the PEO matrix, while PEO serves as a solvent in the process. Other atoms,
such as the nitrogen in the imide (−C=O)NR−(C=O)) and the sulfur in the thiol (−SH),
as well as the oxygen atom (−CH2CH2O−) on the PEO chain, also play a similar role. Li+

cations migrate along the polymer segment, or jump from one segment to another, from
one coordination point to another, when exposed to an electric field. Figure 4 illustrates the
ion transport mechanism of polymer electrolytes like PEO [53].
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Additionally, the flexibility of the polymer chain, the quantity of lithium ions, and the
primary electric charge all affect ionic conductivity [54]. Lithium salt’s low lattice energy
aids in the dissociation of a polymer with a high dielectric constant [54]. It appears necessary
to use a fully amorphous polymer considerably above its glass transition temperature to
ensure a large conductivity of the polymer electrolyte. Along the polymer length, the
Li+ cations move from one coordination site to another under the influence of an electric
field [55].

It is generally known that anions can reduce conductivity by generating nonconductive
ion pairs [56]. The lithium-ion transference number (tLi

+) is likewise lowered by the
dispersion of anions [57,58]. Therefore, one of the main objectives of innovative electrolyte
materials is to control anions in order to regulate these characteristics. Some specific
methods for controlling anions have been studied, including electrolyte viscosity [59], high
dielectric solvents [60,61] Lewis acidic electrolytes [62,63], single conducting polymers [64],
and ionic liquids [65].

3.2. IL-Based Polymer Electrolyte

An ionic liquid is a molten salt at low temperatures, and it often consists of organic
cations and inorganic anions [66]. Ionic liquids have excellent thermal stability, great elec-
trochemical stability, and no vapor pressure due to their unique condition [65]. Although
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ionic liquids have excellent ionic conductivity, their low viscosity prevents them from being
used directly as electrolytes. As a solid electrolyte for lithium-ion batteries, the combination
of ionic liquid and polymer provides alternatives.

Higher ionic conductivity is produced when IL is added to a polymer, although this is
typically accompanied by a loss of mechanical strength, especially at high temperatures.
Higher mechanical strength and a smoother continuous electrolyte surface are produced
by lower IL concentrations, which are better for ion transport. Therefore, the ionic con-
ductivity and mechanical characteristics are significantly influenced by the amount of IL.
Additionally, battery cycling at high temperatures typically results in the breakdown of
the IL components, thus lowering performance. It increases the demand that the polymer
components maintain high IL contents by one more criterion. The primary categories of IL-
based polymer electrolytes include two classes: (1) ILs/polymer doped; and (2) polymeric
ionic liquids (PILs) [52].

3.2.1. Ionic Liquid (ILs)/Polymer Doped (Blending Technique)

Due to their comparatively strong ionic conductivity and low interfacial resistance,
IL-doped polymers have received much research as semi-solid electrolytes [67,68]. For
example, a gel polymer electrolyte containing phosphonium ionic liquid has been pre-
pared [69]. A mixture of lithium salt and trihexyl (tetradecyl)phosphonium bis(trifluoro
methane) sulfonamide IL was doped into a polymer host network formed of an epoxy
prepolymer and an amine hardener. The authors showed that the inclusion of electrolyte
has a significant impact not only on the final properties of epoxy networks but also on the
kinetics of polymerization, particularly the thermal, thermo-mechanical, transport, and
electrochemical properties. Thus, polymer electrolytes with exceptional thermo-mechanical
and thermal stability (>300 ◦C) have been created. At 100 ◦C, an ionic conductivity of
0.13 × 10−3 S cm−1 was attained.

Singh et al. have prepared polymer electrolytes using poly(ethylene oxide) (PEO),
lithium bis (trifluoromethyl sulfonyl) imide (LiTFSI), and ionic liquid (IL) trihexyl tetradecyl
phosphonium bis(trifluoromethyl sulfonyl)imide (depicted in Figure 5) with different
concentrations of IL (0 wt%, 10 wt%, 20 wt%, 30 wt%, and 40 wt%). They discovered the
differences in crystallinity, melting temperature (Tm), glass transition temperature (Tg),
thermal stability, and ionic transport behavior of the prepared polymer electrolyte when
the LiTFSI salt and different concentrations of IL were incorporated in the pristine polymer
PEO. It has been discovered that the ionic conductivity of the solid polymer electrolyte
increases when the trihexyl tetradecyl phosphonium bis(trifluoromethyl sulfonyl) imide
IL content increases in polymer electrolytes up to 20 wt% IL; the optimum conductivity
observed was 4.2 × 10−5 S cm−1 and the Xc (degree of crystallinity) also decreases up to
20 wt% IL [70].
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In Figure 6, a phenomenological model is shown to explain how the amount of IL
causes a change in the flexibility of the polymer chain, which in turn affects ion mobility.
The plasticizing activity of the IL causes the polymer chain to become more flexible and
unfold at lower IL levels (10 wt% of IL) in polymer electrolyte films, as seen in Figure 6 a.
The polymer chain gets more flexible after 20 wt% incorporation of IL (Figure 6b).
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To improve the conductivity, mechanical, and electrochemical properties of polymer
electrolytes, hybrid-based polymer electrolytes have been developed [71–75]. Hybrid
electrolytes are electrolytes with more than two components. Developing a solid-state
electrolyte PEO8-LiTFSI-TBPHP (tetrabutyl phosphonium 2-hydroxypyridine)-12.5% and
15% LLZTO (Li6.4La3Zr1.4Ta0.6O12) was recently reported by Xie et al. using a solvent-free
method (Figure 7) [76].

Ionic liquids and ion-conducting ceramics include TBPHP and LLZTO. The IL’s cation
and anion may efficiently raise the lithium-ion transference number (tLi

+ = 0.63) and
decrease the PEO crystallinity. The addition of LLZTO can simultaneously increase the ther-
mal and electrochemical stability (up to 5 V vs. Li+/Li), conductivity (2.51 × 10−4 S cm−1

at 30 ◦C and 9.39 × 10−4 S cm−1 at 50 ◦C), and mechanical strength, respectively [76].
Several findings point to a promising gelled electrolyte-based phosphonium-based IL

for lithium-ion batteries in the future. New gelled electrolytes were prepared by Melody and
coworkers [69] that consist of a mixture containing phosphonium ionic liquid (IL) composed
of trihexyl(tetradecyl)phosphonium cation combined with bis(trifluoromethane)sulfonimide
counter anions (PPO[TFSI]) and lithium salt, confined in a host network made from an
epoxy prepolymer and amine hardener. It was shown that the addition of electrolyte affects
not only the final properties of epoxy networks, particularly their thermal, thermome-
chanical, transport, and electrochemical properties, but also the kinetics of polymerization.
As a result, polymer electrolytes with excellent thermomechanical and thermal stability
(>300 ◦C) have been created. At 100 ◦C, an ionic conductivity of 0.13 × 10−3 S cm −1 was
also attained. Its electrochemical stability was 3.95 V vs. Li0/Li+, and even after 30 cy-
cles, the assembled cell made of Li|LiFePO4 exhibited stable cycle properties as shown
in Figure 8.
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Copyright 2019 Elsevier.
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Kenta and coworkers [77] have synthesized an ion gel electrolyte using a TetraPEG net-
work in an ionic liquid (IL) solution based on phosphonium by using the “salting-in” effect
of a Li salt. PEG chains are insoluble in phosphonium-based ILs (such as triethylpentylphos-
phonium bis(trifluoromethanesulfonyl)amide, [P2225][TFSA]), but TetraPEG was completely
soluble in [P2225][TFSA] after the addition of LiTFSA. The optimal concentrations for mak-
ing polymer gel electrolytes were determined by examining the Li salt and polymer con-
centration dependences for PEG solubility in a [P2225][TFSA] system. The final TetraPEG
gel electrolyte polymer network demonstrated high ionic conductivity (2.78 × 10−1 S cm−1

at ambient), comparable to the corresponding solution electrolyte. It was almost defect-free.
A wide electrochemical window around 4.2 V vs. Li0/Li+ (depicted in Figure 9) and the
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presence of LiTFSA/[P2225][TFSA] in the TetraPEG gel electrolyte allowed for the use of
conventional metal negative electrodes in the reversible Li deposition/dissolution reaction.
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Poly(dialyldimethylammonium) (PDADMA) is the common polymer host used in
ion gel or composite polymer electrolytes for lithium batteries. Forsyth et al. [78] have
synthesized the novel ternary systems by combining trimethylisobutylphosphonium
bis(flurosulfonyl)imide ([P111i4FSI]), PDADMA FSI, and lithium salt at high concentra-
tions. A free-standing flexible and transparent membrane (Figure 10) with a conductivity
of 0.49 × 10−3 S cm−1 at 40 ◦C and a Li+ transference number of 0.21 at 50 ◦C is produced
using an electrolyte (3.8 m LiFSI in P111i4FSI (LiFSI/IL)): PDADMA FSI mixture at a
60:40 wt%.
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Cyclic voltammetry (CV) was used to evaluate the electrochemical stability of the flex-
ible films. The linear sweep voltammograms for the FSI-based ternary systems, 50:50 wt%
and 60:40 wt%, are shown in Figure 11. The information supports the reasonable main-
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tenance of Li+ reduction and oxidation over ten cycles. When comparing the 60:40 wt%
(FSI system) to the 50:50 wt% (FSI system) in the first cycle, the current density at the
reduction peak is higher, while the current density at the oxidation peak is similar for
both compositions. It’s interesting to note that after 10 cycles, the current density at the
oxidation peak for the 60:40 wt% (FSI system) significantly increases, rising from roughly
0.8 to 1.4 mA.cm2, indicating an increase in coulombic efficiency [78]. The various types of
IL/polymer doping have been tabulated in Table 1.
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Figure 11. (a) Linear sweep voltammograms (1st and 10th cycles) for two ternary systems, 50:50
wt% (FSI system) and (b) 60:40 wt% (FSI system), at a stainless steel (SS) working electrode with a
potential sweep rate of 20 mV·s−1 at 50 ◦C. Reproduced with permission from Ref. [78].

Table 1. Various works of phosphonium-ionic liquid-doped polymer electrolyte.

Doped Phosphonium Ionic Liquid Polymer Host Conductivity
Value (S cm−1)

Electrochemical
Performance

(V vs. Li0/Li+)
Ref.

trihexyltetradecylphosphonium
bis(trifluoromethylsulfonyl)imide,

(P14,6,6,6)(Tf2N)
Polypropylene glycol (PPO) 0.13 × 10−3

at 100 ◦C
3.95 [69]

trihexyltetradecylphosphonium
bis(trifluoromethylsulfonyl)imide,

(P14,6,6,6)(Tf2N)
Polyethylene oxide (PEO) 4.2 ×10−5

at ambient
3.34 [70]

trihexyltetradecylphosphonium
bis(trifluoromethylsulfonyl)imide,

(P14,6,6,6)(Tf2N)
Poly(vinyl chloride) (PVC) 2.4 × 10−6

at ambient
N.A [79]

trihexyltetradecylphosphonium
bis(trifluoromethylsulfonyl) amide

(P14,6,6,6)(Tf2N)

Poly(vinylidenefluoride-co-
hexafluoropropylene)

P(VdF-co-HFP)

3.2× 10−6

at ambient
3.4 [80]

trimethylisobutylphosphonium
bis(fluorosulfonyl)imide

(P111i4FSI)

Poly(diallyldimethylammonium)
(PDADMA)

0.49 × 10 −3 at
40 ◦C

5.0 [78]

trihexyltetradecylphosphonium
bis(trifluoromethylsulfonyl) amide

(P14,6,6,6) (Tf2N)
Polypyrrole 0.6 at ambient - [81]

triphenylphosphonium-butyl sulfonate
(PPh3.ZIL)/dodecylbenzenesulfonic acid Polyaniline (PANI) 4.9 at ambient - [82]
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Table 1. Cont.

Doped Phosphonium Ionic Liquid Polymer Host Conductivity
Value (S cm−1)

Electrochemical
Performance

(V vs. Li0/Li+)
Ref.

triethylpentylphosphonium
bis(trifluoromethanesulfonyl)amide,

(P2225) (Tf2N))

Tetra-arm poly (ethylene
glycol) (TetraPEG)

2.78 × 10−1 at
ambient

4.2 [77]

trihexyltetradecylphosphonium
dicyanamide (P14,6,6,6)(DCA)

Diglycidyl ether of bisphenol
A (DGEBA)-based epoxy

~10−6 at room
temperature

- [83]

[P4441][Tf2N] Polymethylmethacrylate
(PMMA) 7.94 × 10−5 at 30 ◦C - [84]

[P2225][Tf2N] Polymethylmethacrylate
(PMMA) 1.46 × 10−4 at 30 ◦C - [84]

3.2.2. Polymeric Ionic Liquids (PILs)

It is possible to create polymeric ionic liquids (PILs) by either directly polymerizing
an IL-based monomer or by polymerizing a modified polymer with an IL monomer. PIL
membranes have attracted a lot of interest recently by fully utilizing the unique properties
of ionic liquids and polymers.

Generally, there are two types of PILs: the anion-backboned polymer and the cation-
backboned polymer. If the polymer backbone is formed of anions, the ionic conductivity is
provided by the mobility of cations, and vice versa. Since both the anion and the cations
of ILs may be easily selected, this presents a special possibility for developing selective
ionic conductivity by a particular ion [85]. While the flexibility of π-conjugated electrons,
which promotes electrical conductivity, is the primary characteristic of electronically con-
ductive polymers, the extensive presence of ions throughout the PIL structure ensures
ionic conductivity.

PILs, like conductive polymers, can serve as an effective electroactive material matrix
in a variety of electrochemical systems [86]. In contrast, if PILs are widely used as a
matrix for the fabrication of nanocomposites, the second component can also contribute
to the ionic conductivity of PILs. PIL nanocomposites have an ionic conductivity of up to
0.1 × 10−3 S cm−1 [87]. We will focus on phosphonium-based polymeric ionic liquids in
the following section.

4. Phosphonium-Based Polymeric Ionic Liquid Electrolyte

Some of the important factors have to be to taken into account when selecting a polymer
host for PEs include better coordination with anions, thermal stability, and high oxidation
states [88]. These factors are all present in phosphorus-based polar functional groups con-
nected with ILs and form functional polymers. Thus, a new family of phosphonium-based
materials with unique properties and intriguing applications has recently emerged because of
the introduction of the functional groups associated with ILs into functional polymers.

4.1. Synthesis Route and Conductivities

Typically, there are two alternative approaches to making polymeric ionic liquids with
phosphonium cations: Using functional monomers [89] or through post-modification function-
alization (grafting) [90]. The standard method for creating cationic phosphonium monomers
involves a straightforward nucleophilic substitution between a haloalkane and a tertiary
phosphine [89]. Gabriel and co-workers successfully synthesized trimethyl-(4-vinyl-benzyl)-
phosphonium bromide (1a), tripropyl-(4-vinyl-benzyl)-phosphonium chloride (1b), triphenyl-
(4-vinyl-benzyl)-phosphonium chloride (1c), tributyl-(4-vinyl-benzyl)-phosphonium chloride
(1d), triphenyl-(4-vinyl-benzyl)-phosphonium chloride (1e), triphenyl-(4-vinyl-benzyl)-
phosphonium bis(trifluoromethyl sulfonyl)amide (1f) (as shown in Figure 12) via a func-
tional monomer route. Initial solutions were prepared with 10 wt% monomer in methanol,
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5 wt% cross-linker 1,4- divinylbenzene, and 1 wt% 2-hydroxy-2-methylpropiophenone
(HMP) photoinitiator. A germanium crystal was pipetted with the necessary amount of
monomer solution. A thin coating of monomer, a cross-linker, and a photo initiator was
left when the solvent evaporated at ambient temperature and atmospheric pressure. The
pre-polymerized film’s FT-IR spectrum was then recorded. After three argon purges and
photopolymerization with 365 nm light lasting 30 min, the coated Ge crystal was subse-
quently enclosed inside the polymerization chamber. The degree of polymerization was
then determined by taking an IR spectrum of the polymerized film and comparing it to the
pre-polymerized film.
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Monomer stability tends to be a limiting factor in the suitability of a functional
monomer route. Post-polymerization functionalization avoids potential monomer sta-
bility issues or polymerization hurdles, but it remains disadvantageous to achieve 100%
functionalization due to steric and neighboring group effects [73].

Through a post-modification functionalization route, Parent et al. [90] have synthesized
a class of polymeric ionic liquids by displacing bromide from brominated poly(isobutylene-
co-isoprene) (BIIR) with triaryl phosphine nucleophiles. Figure 13 shows the chemical
reaction of phosphonium-based polymeric ionic liquid.

Exo-methylene allylic bromide (a), a kinetically preferred bromination product in BIIR,
can change into the more stable (E,Z)-endo (b) isomer at high temperatures (Figure 9) [90].
Thus, the authors proved by means of 1H NMR (Figure 14) spectroscopy that only a (E,Z)-
endo allylic phosphonium bromide is formed; neither the model nor the BIIR substitution
products show any signs of an exo-methylene isomer similar to exo-methylene allylic
bromide (a).
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The resultant phosphonium bromide (IIR-PPh3Br) PILs have dynamic mechanical
properties like thermoset vulcanizates, but the elastomeric network is the consequence
of ion-pair aggregation. When PPh3 is quaternized by interaction with BIIR, elastomeric
ionomers are created that have mechanical qualities similar to those of ZnO-cured vul-
canizates. Figure 15 displays the dynamic mechanical characteristics of IIR-PPh3Br as a
function of temperature. For comparing the performance of the ionomers and a non-ionic,
cross-linked polymer network, a ZnO-cured sample of BIIR is used as a control material.
The data only slightly differ between the Tgs of BIIR-ZnO-cured and PPh3Br-IIR.

Basically, the synthesis route that gives more hermos-mechanical strength and con-
ductivity, whether it is functionalized monomer or post-modification, depends on several
factors, including the type of functional group(s) being introduced, the polymer structure,
and the processing conditions. In general, functionalized monomers can lead to higher
thermo-mechanical strength because they allow for a more homogeneous distribution of
the functional group(s) throughout the polymer chain. This can result in a more ordered
and interconnected network of cross-links and conductive pathways, which can lead to
higher mechanical strength and conductivity, respectively. However, post-modification
can also lead to high thermomechanical strength and conductivity if the functional groups
are introduced in a way that allows for a high degree of cross-linking or interconnectivity
between the polymer chains. This can result in a network that is similar to that obtained
with functionalized monomers. Ultimately, the choice between functionalized monomers
and post-modification will depend on the specific requirements of the application, the
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availability of the starting materials, and the ease of the synthetic route. Both approaches
have the potential to lead to high thermomechanical strength, and the choice should be
made based on careful consideration of these factors.
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In contrast, polymers analogous to ionic liquids show greater mechanical strength,
and thus increasing the mechanical properties of the electrolytes can prevent electrical
shorts and uncontrolled dendritic lithium penetration [17]. A well-controlled synthesis
process of PILs can produce materials with a dense and ordered well-defined architecture
at the nanoscale, resulting in improved conductivity [91]. A well-defined microstructure
can enhance conductivity by controlling charge carrier units and salt types. Precise control
of impurity levels and defects such as voids and dislocations can result in materials with
improved strength and conductivity. Polymer segmental motions possessing mobility of
ions in the well-defined matrix improve the ionic conductivity [92].

It has to be mentioned that in PILs, “free” counterions dominantly drive ion con-
ductivity, with confined ions typically contributing very little to this property. Similar
to viscosity in ILs, glass transition temperatures (Tg) in PILs typically have an inverse
connection with ion conductivities [30,69,92]. Higher ion conductivities are a result of
lower Tg, which corresponds to more flexible matrices for counterions. There are two main
methods that help lower Tg. Bulkier ions introduce more free volume to decrease Tg from
the perspective of free volume. Ions serve as pendant groups in this situation, and studies
have shown that larger pendant groups typically cause a decrease in Tg by introducing
more free volume [93–95].

On the other hand, electrostatic interactions are another factor to consider because
they operate as physical cross-linking sites in polymer matrices to prevent mass transfer.
Therefore, weak physical crosslinks and low Tg result from weak electrostatic interac-
tions [93]. Nevertheless, higher conductivities are not exclusively dependent on low Tg.
Small structural changes with little change in Tg can reduce electrostatic interactions and
increase ion conductivity. Regarding this, phosphonium-based PILs offered tremendous
promise for increasing ion conductivity in comparison to their nitrogen-based analogs
without sacrificing mechanical qualities (decreased Tg) [27].

Additionally, the crystallinity of the polymer may affect its conductivity value. The
crystalline region refers to the extent to which a polymer has ordered. Polymers possessing
crystalline domains with tightly packed chains can act as physical barriers, and these
regions typically have lower mobility for both ions and polymer segments. As a result,
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the overall ionic conductivity of the polymer electrolyte may be reduced. The amorphous
regions of the polymer, on the other hand, tend to have higher mobility for ions and enable
faster ionic conduction. Processing techniques such as annealing, plasticizers, additives,
or copolymers with high amorphous content can alter the crystalline structure of the
overall matrix. This can affect the crystallinity and alignment of polymer chains, leading to
increased ion mobility and higher conductivity. Previously, it was also shown that Tg has
a strong relation with ionic conductivity [96]. Segmental motion of the chains results in
increasing ion conduction through the flexible backbone-backbone distance.

Various studies regarding the conductivity values of phosphonium PILs were summa-
rized in Table 2. From the polymer backbone, we can observe that the PILs consisting of
flexible backbones exhibit higher ionic conductivity values.

Table 2. Conductivity values of various phosphonium PILs.

Used Phosphonium Polymeric Ionic
Liquid Polymer Matrix Conductivity (S cm−1) Ref.

PAMPS HP+
444
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Table 2. Cont.

Used Phosphonium Polymeric Ionic
Liquid Polymer Matrix Conductivity (S cm−1) Ref.

PEO-grafted Siloxane Phosphonium
Ionomers
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4.2. Analytical Tools

Once the phosphonium polymer electrolyte is synthesized, it is important to character-
ize its properties to assess its suitability for the intended application. Here are some key
characterizations of phosphonium-based polymer electrolytes after the synthesis:

Ionic conductivity measurement: This is a crucial characterization technique to eval-
uate the efficiency of the electrolyte in transporting ions. Conductivity measurements
can be performed using techniques such as impedance spectroscopy or electrochemical
impedance spectroscopy (EIS) [100]. Depolarized dynamic light scattering broadband
dielectric spectroscopy can also be used to study the mechanisms of ionic transport and
segmental dynamics in these materials [101]. Walden plot analysis can be conducted to
analyze the classification of ionic conductors by analyzing the molar conductivity of a given
electrolyte with viscosity [102].

Thermal stability analysis: Differential scanning calorimetry (DSC) [103] and thermo-
gravimetric analysis (TGA) [104] can be used to study the thermal stability of the polymer
electrolyte. These techniques help determine the onset of thermal degradation and the
temperature range over which the electrolyte remains stable.

Structural analysis: IR and Raman spectroscopies can provide information about
the molecular structure and dynamics of PILs [105]. Nuclear magnetic resonance spec-
troscopy (NMR) can also provide information about the connectivity of polymer chains,
the arrangement of ionic groups, and the mobility of polymer segments [106,107].

X-ray Diffraction (XRD) is employed to analyze the crystalline structure and phase
behavior of PILs [108]. It can determine the degree of crystallinity, crystal structure, and
phase transitions, providing insights into the solid-state properties of the material. Small-
Angle X-ray Scattering (SAXS) and Small-Angle Neutron Scattering (SANS): These tech-
niques are used to investigate the structural arrangement and morphology of PILs on
the nanoscale [109]. They provide information about the size, shape, and ordering of
microdomains or aggregates within the material.

Mechanical properties: Mechanical tests, including tensile strength, elongation at
break, and Young’s modulus, can assess the mechanical stability and flexibility of the
polymer electrolyte [108,110]. PILs with higher elastic moduli are generally desired as
they provide better mechanical strength and help prevent electrode-electrolyte separation
or fracture during battery operation. High tensile strength is desirable to ensure the
mechanical integrity of the electrolyte under the mechanical stresses experienced during
battery assembly, cycling, and thermal variations. Flexibility and ductility are important
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for maintaining good contact between the electrolyte and electrode materials, especially
in flexible or stretchable battery designs. In lithium-ion batteries, good adhesion between
the polymer electrolyte and electrode materials is crucial to ensure efficient ion transport
and prevent delamination or detachment of the electrolyte from the electrode interfaces.
PILs with strong adhesion properties can enhance the mechanical stability and overall
performance of the battery [97].

4.3. Comparison between Phosphonium-Based PILs and Nitrogen-Based PILs

There have been very few studies on phosphonium-based polyelectrolytes compared
to ammonium-based polyelectrolytes up to this point [98]. In contrast, PILs based on
phosphonium were discovered to have greater thermal stability and ionic conductivity
than their ammonium-based counterparts. Long et al. have synthesized high-molecular-
weight polymerized ionic liquids using conventional free radical polymerization and anion
metathesis of ammonium and phosphonium styrene (PILs) [111]. The thermal stabilities of
phosphonium-based polyelectrolytes containing Tf2N− counterions are significantly higher
(437 ◦C) than those of ammonium analogs (330 ◦C). Additionally, ionic conductivities of
PILs containing phosphonium PILs show larger values than ammonium analogs when
measured using impedance spectroscopy (summarized in Table 3).

Table 3. Comparison between phosphonium-based PILs and ammonium-based PILs [111].

PIL Td (◦C) Tg (◦C) Conductivity (S cm−1)
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Scheme 1. Thermal degradation of ammonium polyelectrolytes through either a Hoffman elimination
or a reverse nucleophilic substitution mechanism. Reproduced from reference [27].

The comparison of phosphonium-based PILs and nitrogen-based PILs has been done
by Long et al. [27]. Ammonium and phosphonium-based PILs were produced via tra-
ditional free radical polymerization of styrenes with varying alkyl substituent lengths
(Scheme 2). The PILs included: poly[trimethyl-(4-vinylbenzyl) phosphonium chloride]
(PTMP-Cl), poly[triethyl-(4-vinylbenzyl)phosphonium chloride] (PTEP-Cl), poly[tripropyl-
(4-vinylbenzyl)phosphonium chloride] (PTPP-Cl), poly[tributyl-(4-vinylbenzyl)phosphonium
chloride] (PTBP-Cl), poly[trimethyl-(4-vinylbenzyl)ammonium chloride] (PTMA-Cl),
poly[triethyl-(4-vinylbenzyl)ammonium chloride] (PTEA-Cl), poly[tripropyl-(4-vinylbenzyl)
ammonium chloride] (PTPA-Cl), and poly[tributyl-(4-vinylbenzyl)ammonium chloride]
(PTBA-Cl).

As shown in Figure 16a, significantly higher thermal breakdown temperatures have
been found for phosphonium-based PILs after synthesizing two series of styrene PILs
with either quaternary ammonium or phosphonium cations (94% yield). Phosphonium
polyelectrolytes containing Cl− counterions display significantly higher thermal stabilities
(>370 ◦C) compared with ammonium analogues (<220 ◦C). Anion exchange to BF4

−, TfO−,
and Tf2N− shows the improvement in terms of the thermal stability of all the PILs. When
compared to their nitrogen-based analogues, phosphonium-based PILs showed similar
Tg (Figure 16b) but significantly greater ion conductivities (Figure 16c), suggesting the
potential for P-based PILs to serve as perfect electrolytes or ion exchange membranes with
strong mechanical integrity. Although there is not a sufficiently significant variation in size
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between nitrogen and phosphorus to noticeably alter the Tg, P-based PILs have weaker
electrostatic interactions than N-based PILs, which leads to higher ion conductivities [14].
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Figure 16. Comparison of (a) thermal stability, (b) Tg, (c) temperature-dependent ion conductivities,
and (d) ion conductivities normalized with Tg of P-based PILs and N-based PILs. Reproduced from
reference [14].
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Basically, nitrogen has a partial negative charge in ammonium cations because its
electronegativity is higher than that of the α-carbons. The electrostatic interaction mostly
takes place between counter anions and positively charged α–carbons. In contrast, in
phosphonium cations, phosphorus has a partially positive charge as its electronegativity
is lower than carbons, and eventually it produces slightly negatively charged α-carbons.
These negatively charged α-carbons effectively shield the positive charge on phosphorus
and reduce the electrostatic interactions; thus, phosphonium-based PILs make the single
ions diffuse more freely, resulting in higher ionic conductivity for phosphonium-based
PILs. Colby et al. have calculated the charge distribution of three types of cations: Bu4P+,
Bu4N+, and BuMeIm+. The data have been summarized in Table 4 [93].

Table 4. Charge distribution of Bu4P+, Bu4N+, and BuMeIm+ from ab initio calculation [93].

Center (P or N) α—CH2 β—CH2

Bu4P+
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On the other hand, the following could be another reason why phosphonium-based
PILs have better ionic conductivities than their ammonium analogues: The ammonium-
based PILs described here may exhibit associative diffusion, in which the ion pair likely
diffuses together as a noncharged species and does not participate in direct current ionic con-
duction. This is because the hydrogen bond interactions in these materials are stronger [112].
While the equivalent phosphonium-based PILs’ weaker hydrogen bond interactions al-
low the individual ions to circulate more freely, leading to better ionic conductivity for
phosphonium-based PILs [113].

Substituents might affect the ion conductivity as well. Tg changes significantly as alkyl
substituent length varies. As depicted in Figure 16b, when methyl R groups (PTMP) were
replaced with ethyl R groups (PTEP), Tg dropped from 91 ◦C to 68 ◦C. The temperature
at which the alkyl substituents continue to elongate in P-based PILs changes very little
(68 ◦C, 71 ◦C, and 66 ◦C for ethyl, propyl, and butyl, respectively). The shorter alkyl
substituents displayed higher ion conductivities at the same temperature except for methyl
substituted polymers, probably because their Tg was higher than that of the other PILs by
20 ◦C (Figure 16c). After adjusting for Tg, the ion conductivities consistently followed the
predicted pattern: methyl > ethyl > propyl > butyl (Figure 16d). This tendency explains
higher mobility and ion content from smaller size and reduced non-ionic content, respec-
tively, and is consistent with ILs. Gin, Noble, and colleagues investigated the identical
phosphonium-based PILs with longer alkyl substituents (hexyl and octyl) (Scheme 3), and
they noticed a steady decrease in Tg [25].
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A temperature range of 25 to 105 ◦C was used to assess the ionic conductivities of the
poly([P444VB][Tf2N], poly([P666VB][Tf2N], and poly([P888VB][Tf2N]) membranes. Regardless
of the length of the phosphonium group alkyl chain, the ionic conductivity was quite similar
for all the membranes and generally rose from 10−8 to 10−4 S cm−1 as the temperature
increased from 25 to 105 ◦C (Figure 17). They found that, at 25 ◦C, the butyl substituent
group in poly([P444VB][Tf2N]), the shorter alkyl chain length allows for a higher cation-
anion attractive contact, which restricts ion mobility at lower temperatures, shows lower
ionic liquid compared to the longer substituent due to the shorter alkyl chain length
allows for a higher cation-anion attractive contact, which restricts ion mobility at lower
temperatures. As the temperature rises, the strength of the cation-anion interaction becomes
less significant, and the size of the cationic species bound to the polymer becomes more of
a limiting factor for ion mobility (i.e., as a function of increasing cation alkyl chain length),
which is consistent with the correlation seen at temperatures below 90 ◦C [25].

Figure 17. Behaviour of neat poly([P444VB][Tf2N]), poly([P666VB][Tf2N]), and poly([P888VB][Tf2N])
films between 25 and 105 ◦C. Reproduced from reference [25].

In short, there is a significant difference in the cation structure depending on whether
the cationic atom is nitrogen or phosphorus due to differences in atomic radius and elec-
tronegativity. Over other IL types, phosphonium ILs unquestionably offer, in some circum-
stances, several benefits, including greater thermal stability, lower viscosity, and greater
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stability in strongly basic or strongly reducing conditions. Phosphonium polyelectrolytes
showed improved thermal stability because of their resistance to Hofmann elimination.

4.4. Counter-Ion Effect in Conductivity

Enhancing PILs’ ion conductivity effectively involves counterion exchange. This is
accomplished through controlling the electrostatic interactions as well as plasticization.
Bulky counterions produce lower Tgs and more free volume, which allow mass transfer
(ion conductivity). As a result of weaker electrostatic interactions, counterions with a
higher delocalized charge density exhibit high ion conductivities [93]. Colby et al. syn-
thesized the polyurethane-carboxylate ionomers with various counter cations (structures
illustrated in Figure 18). The effect of counter cations on Tg and ion conductivity has been
investigated [93].
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Ion conductivities significantly improved as a result of the substitution of Na+ (which
has a high electrostatic interaction) for quaternary cations at 30 ◦C, as illustrated in
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Figures 19 and 20. Comparing the similarity in size and chemical structure between quater-
nary ammonium cations (Bu4N+) and phosphonium cations (Bu4P+), phosphonium-based
PIL showed a significant decrease in Tg from 13 ◦C to 0 ◦C.
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Figure 20. The influence of different counter cations on the ion conductivity (purple x is Na+, orange
circle solid is Me4N+; cyan solid star is BuMeIm+; pink open star is (MOE)MeIm+, dark red solid
diamond is Bu4N+, blue solid triangle is Bu4P+, olive green triangle is Me3(MOE)P+, red open circle
is (MOEOE)3MeN+. Reproduced from reference [93].

Due to weaker physical crosslinking, better mobility (lower Tg) was made possible
by phosphonium-based PILs’ weaker electrostatic interactions. In contrast to the findings
of Colby and colleagues, Long et al. showed no Tg change between nitrogen-based and
phosphonium-based PILs, as was previously addressed [27]. This ambiguous observation
is clarified by the molar volume of pendant groups [114,115]. Colby et al. stated that the
increased side group volume, including counterions, reduces Tg until the bigger molar
volume limit [116]. After this point, the molar volume of side groups has little effect on Tg.
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For the phosphonium siloxane ionomers (Figure 21) studied in this research, it is noted that
at ion contents of 11 mol% or lower, the siloxane ionomers with TFSI counterion exhibit
similar Tgs but superior conductivity to the ionomers containing Br− or F− anions (as
shown in Table 5). The phosphonium ionomers have lower Tgs than normal ionomers with
C-C backbones because their backbone is polysiloxane, a very flexible polymer chain.
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Table 5. Glass transition temperature and conductivity value of phosphonium siloxane ionomers
with different anions [114].

Samples Anion n Tg (◦C) Conductivity at 30 ◦C (S cm−1)

PSPE-5Br(3) Br− 5 −83 5.60 × 10−7

PSPE-8Br(3) 8 −82 7.50 × 10−7

PSPE-11Br(3) 11 −80 6.88 × 10−7

PSPE-22Br(3) 22 −86 1.44 × 10−6

PSPE-5TFSI(3) TFSI− 5 −81 1.09 × 10−5

PSPE-8TFSI(3) 8 −81 3.12 × 10−5

PSPE-11TFSI(3) 11 −80 2.12 × 10−5

PSPE-5F(3) F− 5 −80 1.9 × 10−7

PSPE-8F(3) 8 −83 2.00 × 10−7

PSPE-11F(3) 11 −82 1.7 × 10−7

PSPE-22F(3) 22 −73 7.4 × 10−7

Additionally, the Tf2N counter-anions in the studies by Long et al. [111] were bulky
enough to surpass the higher molar volume limit, rendering polymers resistant to addi-
tional size changes. Quaternary cations and carboxylate anions are not as bulky as Tf2N
counter anions in Colby et al.’s work [93]. Thus, the larger Tg fluctuations were probably
induced by ion size variation. After an ion exchange from Cl to Tf2N counter anions
demonstrated by Long et al., the Tg of phosphonium-containing copolymers was reduced
over 100 ◦C [117]. Another factor to consider is a thorough analysis of experimentally
determined data, such as Tg and ionic conductivity. To evaluate the AC conductivity in this
situation, Long et al. used impedance spectroscopy, while Colby et al. used a broadband
dielectric spectrometer. Consequently, the instrumental difference could be the cause of
any potential contradictions.
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In the other studies, Long et al. studied the crosslinked PEG matrices in polymer back-
bones (Scheme 4), where the segmental mobility of the polymer backbone was constrained
and exhibited ion conductivity due to the high ion concentrations [118]. Tri(octyl)phenyl
phosphonium cations and the bulky Tf2N counterions mostly determined Tg, and increas-
ing ion concentration actually caused a decrease in Tg. As a result, larger ion concentrations
resulted in improved ion conductivity. The optimum conductivity value was observed at
9 × 10−2 S cm−1 at ambient temperature.
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Briefly, counterion exchange is a reliable method to enhance PIL ion conductivity. The
electrostatic interactions are tuned in addition to plasticization to achieve higher conductiv-
ity. Larger cations typically act as plasticizers, lowering Tg because ion interactions have
weaker Coulombic forces, which act as physical crosslinks. Additionally, bulky counterions
introduce more free volume and achieve lower Tgs, which facilitate mass transfer (ion
conductivity).

4.5. Sability of Phosphonium PILs

The stability of a polymer ionic liquid (PIL) after synthesis can be influenced by various
factors, including its chemical structure, processing conditions, and environmental factors.
PIL should be stable at the desired operating temperatures. Basically, phosphonium-based
ionic liquids (ILs) are stable in high-temperature applications due to their non-flammable
properties. The influence of counterion on the thermal properties of phosphonium poly-
electrolytes was also reported that anion exchange from Cl− to BF4

−, TfO−, and Tf2N−

improves the thermal stability (>400 ◦C).
The stability of the PIL in different solvents, moisture, or the presence of specific

chemicals should be considered [119]. PILs may be susceptible to degradation or swelling
when exposed to certain solvents or chemicals. For example, polar protic and polar aprotic
solvents can influence the conductivity of imidazole-based PIL membranes [120]. The ion
conductivity of PIL films in propylene carbonate was three times smaller than that in a
polar protic solvent. Generally, the chemical stability of the PIL is important to ensure that it
does not undergo unwanted reactions or degradation over time. Factors such as oxidation,
hydrolysis, or exposure to specific chemicals can impact stability. There are two common
reactions, the first is deprotonation and the second electron transfer, cause the stability of
phosphonium ionic liquids under basic conditions [121,122]. Bases, such as hydroxide, can
react with the phosphonium ions and may cause the decomposition of the phosphonium
ionic liquids. PILs have a tendency to absorb moisture from the surrounding environment,
which can affect their stability and performance [123]. The presence of moisture can cause
swelling of the PIL and result in changes in its physical properties, such as increased
volume or altered mechanical properties. This can influence the mobility of ions within
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the PIL matrix and ion conductivity. Phosphonium-based ionic liquids are relatively stable
under radiolytic degradation [124], but radiolytic dissociation of the P–C bond in the cation
units results in the formation of small organic species over time. The formation of these
byproducts results in changes in ion conductivities. Similarly, its polymers are expected to
show the same behavior.

5. Conclusions

ILs, base polymer electrolytes, and PILs are possible good candidates for electrolytes
for next-generation batteries because of their ionic conductivity and thermodynamic stabil-
ity. In lithium battery electrolytes, lithium salt mixtures with ILs offer good electrochemical
stability and lessen electrolyte decomposition, increasing cycle lifetimes. Improved safety
and stability at high temperatures are also provided by the non-flammability and low
volatility characteristics of ILs. Engineering compositions with lower viscosities is an
important development objective because the relatively high viscosities of ILs appear to
be impeding their commercial use. Additionally, it is still unclear how lithium ions are
transported and solvated in ILs, which can be confusing when designing ILs for electrolyte
applications. Therefore, more investigation into the solvation and transport of lithium
salts at the molecular and ionic scales in ILs PIL-based materials chemistry has entered a
highly interesting period because of the continual discovery of new PIL chemical structures.
Chemists have made progress in the synthesis and structural characterization of new PILs,
and further work will be done to integrate PILs into usable materials that address problems
and difficulties in areas such as life science, energy, and the environment.

In this review, we described the differences between two types of PILs, namely
nitrogen-based and phosphonium-based ones. The cation structure differs dramatically
depending on whether the cationic atom is nitrogen or phosphorus due to differences in
atomic radius and electronegativity. Clearly, phosphonium ILs have some advantages
over other IL types, such as greater thermal stability, lower viscosity, and greater stability
in strongly basic or strongly reducing environments. The increased thermal stability of
phosphonium polyelectrolytes is a result of their resistance to Hofmann elimination. It
is shown that phosphonium-based PILs have an advantage regarding electrical and ther-
mal properties compared to nitrogen-based ones. Phosphonium-based PILs, on the other
hand, have intriguing potential as solid/gel state electrolytes, such as ion gels. Hence,
phosphonium-based PILs with microphase-separated morphologies, programmable and
responsive mechanical properties, and continuous ion conductivity improvement have a
promising future in innovative electrolyte applications.

Future Recommendation

Naturally, it is preferable to create PILs with a large, specific surface area. The best
nanostructures for chemical accessibility or absorption purposes are porous (especially
mesoporous) ones. Due to the defined cross-linking sites between the polymer chains,
polymerization can produce an ordered and well-defined interior structure in addition
to the external morphology of PILs. On the other hand, decreasing the PIL’s individual
particle size to the nanoscale and eventually attaining the size of a single polymer chain
would be of particular interest.

As mentioned before, the potential advantages of phosphonium-based polymer elec-
trolytes against ionic liquids are their thermal and chemical stability, as well as their
mechanical improvement to the matrix. Thus, the development of shape memory recovery
after scratching and impact can be one of the important fields of future study.

Computational modeling and simulation can help investigate the structure-property
relationship [125–128]. Basically, a fundamental understanding of factors affecting conduc-
tivity such as polymer matrix and lithium salt interaction, humidity, electrode/electrolyte
interfaces, and morphology of the matrix might be correlated with the experimental and
computational studies.
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Previously, a study was conducted within the scope of the effect of molecular weights
of polymers containing ammonium-based salts on conductivity [101]. It may be useful to
examine the conductivity of polymers with well-designed molecular weight and distribu-
tion by controlled polymerization techniques and to examine the factors such as salt type,
backbone flexibility, rigidity, and hydrophobicity affecting conductivity.

Additionally, physical, electrical, thermal, manufacturing defects, and even battery
age can all contribute to or exacerbate the thermal risks of lithium-ion batteries (LIBs). Due
to their activity and combustibility, traditional battery components often pose a signifi-
cant thermal hazard. Additionally, under abusive conditions, a number of side reactions
involving electrodes and electrolytes may take place, which would further contribute to
the thermal failure of LIBs. The use of safety devices, including fire-retardant additives,
was discussed in order to lessen these risks. Thus, phosphorus-based polymer compounds
are important candidates as they are inherently flame-retardant, do not release into the
environment, and provide flame retardant properties for a long time. Phosphorus com-
pounds increase the thermal stability of the end products via gas phase and/or solid phase
actions. During combustion, phosphorus not only affects the combustion mechanism by
increasing the amount of charcoal residue in the matrix, forming a pyrophosphonate layer
to prevent the flame from reaching the inside, but also exhibits flame retardant properties
by inhibiting the flame in the gas phase via radical scavenger.

Besides the phosphonium-based polymeric ionic liquids, black phosphorus and red
phosphorus can construct a new single elemental heterostructure that would be beneficial to
electron transfer and exhibit superior electrochemical performance. It seems that recovering
phosphorus from waste batteries such as lithium will be an important task in the future.
Since phosphate rock was listed as a critical raw material by the EU in May 2014 [127],
researchers have taken an important step towards sustainability, which is the recovery
and recycling of phosphorus from wastewater. It is crucial to investigate all potential
sources of phosphorus, including those derived from sewage and human excreta. Although
large amounts of energy and reactants are needed to recover phosphorus from sludge
or wastewater, the depletion of mineral phosphorus has become a great concern, and
the environmental impacts of non-leaching flame retardants are also more important
overall. It was also presented that using biobased formulations in polymer matrixes has
more significant impacts than their fossil counterparts [128]. Thus, the use of recycled
phosphorus in PILs can be explored in the near future.
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