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Abstract: Heavy metal wastewater poses a significant environmental challenge due to its harmful
effect on organisms and difficult biodegradation. To address this issue, hydrogel has been used
as a promising solution for the adsorption of heavy metal ions in water, offering advantages such
as low cost, simple design, and environmental friendliness. In this study, we synthetized a novel
poly-acrylamide/acrylic acid/vinyl imidazole bromide (PAM/AA/[Vim]Br2) hydrogel as an effective
adsorbent for the removal of NiII, CuII, ZnII, and CrIII from water. The structure of the hydrogel
was characterized by using techniques such as Fourier transform infrared spectroscopy (FTIR) and
scanning electron microscopy (SEM). By exploring various parameters such as monomer ratio,
neutralization degree, crosslinking agent addition amount, and initiator addition amount, the highest
swelling ratio of the PAM/AA/[Vim]Br2 hydrogel reached 40,012%. One of the notable aspects of this
study lay in the investigation of the adsorption behavior of the hydrogel towards heavy metal ions at
different concentrations. The adsorption isotherm calculations and X-ray photoelectron spectroscopy
(XPS) analysis revealed distinct adsorption mechanisms. At low concentrations, the hydrogel exhibits
a multilayer physical adsorption mechanism, with heavy metal ion removal rates exceeding 80%;
while at high concentrations, it demonstrates a monolayer chemical adsorption mechanism, with
heavy metal ion removal rates above 90%. This dual mechanism approach distinguishes our study
from previous reports on the removal of heavy metal ions using hydrogels and shows good ion
adsorption efficiency at both high and low concentrations. To the best of our knowledge, this is
the first report to explore the removal of heavy metal ions from water using hydrogels with such
intriguing dual mechanisms. Overall, the utilization of the PAM/PAA/[Vim]Br2 hydrogel as an
adsorbent for heavy metal ion removal presents a promising and innovative approach, contributing
to the development of environmentally friendly solutions for heavy metal wastewater treatment.

Keywords: heavy metal ions; hydrogels; ionic liquid; crosslinking agent

1. Introduction

With the rapid development of industries, the problem of water pollution has become
increasingly severe [1–4]. Among the various types of water pollutants, heavy metal ion
pollution poses significant threats to ecosystems, human health, production, and the daily
life of individuals [5–7]. Currently, several main treatment methods for removing heavy
metal ions from water are employed, including filtration [8], ion exchange [9], oxidation–
reduction [10,11], and chemical precipitation [12]. However, these treatment methods have
inherent limitations, such as complicating the composition of wastewater, low removal
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efficiency, high costs, generation of large amounts of sludge, and potential secondary
pollution. Activated carbon, a widely used porous material for water treatment through
adsorption [13,14], has certain limitations that restrict its broad application, such as high
experimental costs, difficulties in separation, and long adsorption time. Therefore, there
is a need to develop environmentally friendly adsorbents with high removal efficiency,
simple structural design, and low cost to address the treatment of wastewater containing
heavy metal ions.

Hydrogels possess an extremely hydrophilic three-dimensional network structure,
which can rapidly swell in water and retain a large volume of water without dissolv-
ing [15–18]. Due to their structural design, low cost, good water permeability, and
biodegradability, hydrogels find wide applications in adsorbing heavy metal ions from
wastewater [19–23]. Zahra [24] synthesized magnetic hydrogel beads based on poly(vinyl
alcohol)/carboxymethyl starch-g-poly(vinylimidazole) for the removal of CuII and CdII,
achieving removal rates (RR%) of 93.2% and 62.5%, respectively. The hydrogel exhibited a
high RR (%) for heavy metal ions at a low concentration of 20 ppm. However, as the con-
centration of metal ions increased, the RR (%) gradually decreased. Shah [25] synthesized
a PAA/PAM superabsorbent polymer hydrogel for the removal of CdII, NiII, and CuII
from aqueous samples. The RR (%) for CdII, NiII, and CuII exceeded 75% across the entire
concentration range. When the metal ion concentration was high (100 ppm), the hydrogel
showed a high RR (%); however, the RR (%) was extremely low at low concentrations.
Previous studies have also reported that chitosan/polyethyleneimine hydrogels exhibited
removal rates were lower than 75% for Pb2+, Ni2+, and Cu2+ after multiple cycles of use
at high concentration (100 ppm) [26], and the composite hydrogels exhibited a removal
efficiency of 80% for Cu2+ at a concentration of 100 ppm [27]. Although these hydrogels
demonstrated high removal efficiency for heavy metal ion adsorption at low or high con-
centrations, there have been no reports of hydrogels exhibiting high RR for heavy metal
ions in both low and high concentration ranges.

Ionic liquids, also known as low-temperature molten salts, are a class of compounds
composed entirely of ions and exhibit a liquid state at room temperature. Different from
traditional high-temperature molten salt such as NaCl, due to the good symmetry of anion
and cation and small ion radius, they can be firmly combined by electrostatic force [28–30].
In addition, ionic liquids show great potential in catalysis, separation, and electrochemistry
due to their high thermal stability, wide electrochemical window, and structural designabil-
ity [31–35]. However, the use of ionic liquids as crosslinking agents of hydrogels in the
synthesis for adsorption of heavy metal ions in water has not been reported.

In this work, we use ionic liquid [Vim]Br2 as a crosslinking agent to synthesize
PAM/AA/[Vim]Br2 hydrogel, which was mainly used to adsorb heavy metal ions such as
NiII, CuII, ZnII, and CrIII from water. The optimal conditions for hydrogel synthesis were
optimized by response surface methodology. The swelling ratio of PAM/AA/[Vim]Br2
hydrogel could reach 40,012%. The effects of temperature, pH, initial concentration of heavy
metal ions, and the amount of hydrogel added are discussed. The adsorption isotherm
and XPS analysis indicated that the hydrogel exhibits different adsorption mechanisms
when adsorbing heavy metal ions with different concentrations. At low concentrations,
the adsorption of the hydrogel was attributed to multilayer physical adsorption, and the
enhanced removal rates of heavy metal ions could be attributed to the electrostatic interac-
tion of the bromide ions from the crosslinking ionic liquid agent in the hydrogel structure.
On the one hand, this is the first report of achieving removal rates exceeding 80% at low
concentrations using hydrogels. On the other hand, at high concentrations, the adsorption
of the hydrogel follows a monolayer chemical adsorption mechanism, and the removal
rates of heavy metal ions above 90% could be attributed to the chelation interaction between
the active sites and the metal ions.
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2. Experimental Methods
2.1. Materials

Acrylic acid (AA), acrylamide (AM), ammonium persulfate (APS), 1-vinylimidazole
(Vim), 1,2-dibromoethane, nickel(II) chloridehexahydrate (NiCl2·6H2O), copper(II) chloride
hexahydrate (CuCl2·6H2O), zinc(II) acetate dihydrate (Zn[CH3COO]2·2H2O), chromium(III)
chloride hexahydrate (CrCl3·6H2O), sodium hydroxide (NaOH), ether, and methanol were
purchased from Energy-Chemical (Shanghai, China). All chemicals were of analytical grade
and used without any purification. The experimental water was ultrapure water prepared
by an ELGA CLXXDM2 ultrapure water instrument (≥18.2 MΩ·cm).

2.2. Synthesis of [Vim]Br2

Under N2 protection, 1,2-dibromoethane (1.88 g, 10 mmol) was dissolved in 10 mL
methanol, meanwhile, 1-vinylimidazole (1.88 g, 20 mmol) was dripped. The reaction
mixture was stirred and heated to 50 ◦C for 24 h. The methanol solution was removed by
vacuum distillation and yellow powder product was obtained. The crude product was
washed 3 times with ether and dried under vacuum at 50 ◦C for 2 h. Finally, the yellow
powdery product was obtained (Scheme 1).
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Scheme 1. The synthesis of [Vim]Br2.

The yield of Bis1-vinylimidazole ethyl bromide ([Vim]Br2) was 89%. 1HNMR (400 MHz,
D2O), δ:4.8 (m, 4H), 5.43 (m, 2H), 5.78 (m, 2H), 7.1 (m, 2H), 7.56(m, 2H), 7.8 (m, 2H), 9.11 (s,
2H).

2.3. Preparation of PAM/AA/[Vim]Br2 Hydrogel

Appropriate amounts of acrylic acid (AA), acrylamide (AM), NaOH, and distilled
water were mixed. The mixture was stirred and cooled to room temperature. Then, a
certain amount of crosslinking agent [Vim]Br2 was added and stirred magnetically at room
temperature for 30 min. N2 was introduced to drain the oxygen in the flask and APS was
added to seal the mixture. The polymerization was carried out in a water bath at 60 ◦C for
6 h. The hydrogels were washed with distilled water several times to remove unreactive
monomers, dried at 60 ◦C until constant weight, crushed, screened, and reserved. Figure 1
shows the synthetic process of hydrogel and its adsorption mechanisms for heavy metal
ions.

2.4. Hydrogel Swelling

The swelling behavior of PAM/AA/[Vim]Br2 hydrogels was investigated by immer-
sion of 0.1 g of the SPH in 100 mL Milli-Q distilled water at room temperature and the
hydrogels reached equilibrium swelling for 12 h. The influence of pH on the swelling behav-
ior was tested using HCl and NaOH. Equation (1) calculates the percentage of hydration.

Swelling =
mw−md

md
×100% (1)

where mw is the mass of the swollen sample at time t and md is the weight of the dry
sample.
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2.5. Adsorption Experiments

First, 0.1 g of dry hydrogel powder was added to a 200 mL Erlenmeyer flask, 100 mL
of heavy metal solutions (NiII, CuII, ZnII, CrIII) was added at different concentrations, and
it was shaken at 25 ◦C for 12 h. After reaching the adsorption equilibrium, an atomic
absorption spectrometer was used to detect the metal ion content in the remaining solution.
Qe and RR (%) were calculated using the following Equations (2) and (3):

Qe =
(C 0−Ce)× V

M
(2)

RR% =
C0−Ce

C0
×100% (3)

Qe (mg/g) represents the equilibrium removal efficiency of hydrogel. C0(mg/L) and
Ce (mg/L) are the initial and the equilibrium concentrations of metal ions in liquid phase,
respectively. V(L) is the volume of metal solution and M(g) is the weight of dried hydrogel.

2.6. Design of Response Surface Experiment

The response surface method was used to design the experiment, and the factors
affecting the swelling performance of the hydrogel were evaluated. There are four main
variables: monomer ratio (A, 0.7–0.9%), neutralizing (B, 60–80), initiator (C, 0.2–0.6), and
the crosslinking agent (D, 0.2–0.8). The analysis of variance of the results was carried out
using the following quadratic model [36]:

Y = β0+β1A + β2B + β3C + β4D + β12AB + β13AC + β14AD + β23BC
+β24BD + β34CD + β11A2+β22B2+β33C2+β44D2

where Y is the percentage of hydrogel swelling rate responses, βn is the linear regression
coefficients, A, B, C, and D are the studied factors (shown in Table 1). Values of “prob>F”
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which are less than 0.05 indicate that model terms are significant [37]. As shown in Figure 2,
the response surface diagram shows that the swelling rate of the gelatin is affected by the
interaction of four factors, rather than a single linear relationship. Optimization by four
factors indicates: monomer ratio: 70:30, neutralizing: 60%, initiator: 0.4 wt%, crosslinking
agent: 0.8 wt%, the maximum swelling rate of hydrogels reached 40,012%.

Table 1. Independent variables and coded level of the experiment.

Variable Code Level

Monomer ratio A 0.7 0.8 0.9
% Neutralizing B 60 70 80

% Initiator C 0.2 0.4 0.6
% Crosslinking D 0.2 0.5 0.8
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Figure 2. The influence of various factors on the response value in the response surface three-
dimensional graph. The z-axis coordinate of six graphs is swelling (%). The horizontal and vertical
coordinates are variables: (a) monomer ratio and crosslinking; (b) neutralizing and crosslinking;
(c) initiator and crosslinking; (d) monomer ratio and neutralizing; (e) monomer ratio and initiator;
(f) crosslinking and initiator.

2.7. Characterization
1H NMR spectra were recorded at 400 MHz on a Bruker Ascend 400 spectrometer

(Bruker Daltonics Inc., Billerica, MA, USA) with tetramethylsilane as the internal standard.
The Fourier transform infrared (FTIR) spectroscopy was performed on a Nicolet iS5FTIR
spectrometer equipped with an attenuated total reflectance (ATR) accessory. The samples
were first mixed with dried KBr before analysis and the spectrum of each sample was
obtained in the range of 4000–500 cm−1. The surface morphology of hydrogels was ob-
served with a scanning electron microscope JSM-6490LV (JEOL, Tokyo, Japan). The XPS
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measurements were conducted on an ESCALAB 250Xi spectrometer. An atomic absorption
spectrometer (AAS) was applied for the determination of the metal ions in the aqueous
medium.

3. Results and Discussion
3.1. FTIR Analysis

In the infrared spectrum of AM (Figure 3a), the strong absorption bands of amide
groups are observed at 3372 and 3195 cm−1. In the case of PAM/AA/[Vim]Br2 hydrogel
(Figure 3b), the strong absorption peaks of amide groups have shifted to 3419 and 3232 cm−1.
Additionally, the C=O stretching vibration absorption peak at 1674 cm−1 in the AM infrared
spectrum corresponds to the C=O stretching vibration absorption peak at 1652 cm−1 in the
PAM/AA/[Vim]Br2 hydrogel. The peaks observed at 1562 and 1448 cm−1 in the hydrogel
correspond to the C=O stretching vibration peaks of the carboxyl anion (-COO−) in AA.
These data indicate the successful copolymerization of AA and AM [38], resulting in the
synthesis of PAM/AA/[Vim]Br2 hydrogel.
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3.2. SEM Analysis of PAM/AA/[Vim]Br2 Hydrogel

As shown in Figure 4a, after freezing intervention, the prepared PAM/AA/[Vim]Br2
hydrogel has a clearer layered structure, indicating that the internal molecular structure
of the prepared hydrogel is more evenly distributed. As shown in Figure 4b, the internal
pore size of the hydrogel is uniformly distributed, and it is a polymer material with a
three-dimensional network structure. As shown in Figure 4c,d, the hydrogel has a large
pore structure. This large loose pore structure further increases the contact area between
the hydrogel and heavy metal ions, which is conducive to hydrogel adsorption of heavy
metal ions.

3.3. Effect of Initial Concentration of NiII, CuII, ZnII, CrIII on RR (%)

The effects of the initial concentrations of NiII, CuII, ZnII, and CrIII on the removal
rate (RR%) are depicted in Figure 5. Heavy metal solutions with initial concentrations of
20, 40, 60, 80, 100, 120, and 150 mg/L were selected for the experimental study. The four
adsorption curves exhibited a consistent pattern and could be divided into two stages. In
the first stage, within the low concentration range (<40 ppm), the adsorption capacities
of the hydrogels for heavy metal ions increased as the initial concentration of metal ions
rose. This could be attributed to the electrostatic attraction between anions, such as Br-
and NiII, towards heavy metal ions. However, as the metal ion concentration continued to
increase (<60 ppm), the electrostatic force weakened, resulting in a decline in the removal
rate. In the second stage, within the high concentration range (<100 ppm), the RR% of
heavy metal ions increased as the concentration of metal ions rose. This could be attributed
to the increased contact probability between the active sites in the hydrogel and the heavy
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metal ions, enhancing the coordination between the functional groups of the hydrogel and
the metal ions. However, once the concentration surpassed a threshold value (>100 ppm),
the adsorption capacity of the hydrogel approached saturation, and the RR% started to
decrease. This decrease was due to the saturation of active sites on the hydrogel, which
limited the coordination between the functional groups in the hydrogel and the metal
ions. Given the generally consistent trends of the four metal ions in both the low and high
concentration ranges, our subsequent study primarily focused on NiII.
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Figure 4. SEM images of PAM/AA/[Vim]Br2 hydrogel. (a,b) are 1 mm structural illustrations,
(c,d) are 100 µm structural illustrations. The red arrows points to the internal pores of the hydrogel.
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3.4. Effect of Hydrogel Dosage on RR (%)

The effect of the added amount of hydrogel on RR (%) is shown in Figure 6. The
results showed that at low concentration (40 ppm) or high concentration (100 ppm), RR
(%) increased sharply with the increase in hydrogel dosage, which mainly increased the
surface area and active sites of hydrogel. When the hydrogel dosage was 2 g/L, the
RR (%) value reached 86.4% at a low concentration. When the concentration was high,
the RR (%) value reached 91.8%. However, when the hydrogel dosage was 1 g/L, the
saturation phenomenon appeared, and the RR (%) increased slowly with the increase in
hydrogel addition. Therefore, 1 g/L was selected as the best dosage for further adsorption
experiments.
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3.5. Effect of Temperature on RR (%)

The changes in the adsorption capacity of the hydrogel for heavy ions at different
temperatures are shown in Figure 7. As the temperature increased from 15 ◦C to 55 ◦C, the
hydrogel’s removal rates (RRs) significantly increased. When the temperature exceeded
55 ◦C, there was little alteration observed in the removal efficacy for heavy metal ions.
This phenomenon indicates that with increasing temperature, the activity of heavy metal
ions is enhanced, leading to the disruption of hydrogen bonds between the hydrogel and
water. This exposes more active functional groups for complexation with heavy metal
ions [38]. However, when the adsorption capacity approaches saturation, further increasing
the temperature does not significantly increase the removal efficiency of the hydrogel.
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3.6. Effect of pH on RR (%)

Figure 8 illustrated the RR (%) of PAM/PAA/[Vim]Br2 hydrogel (40 ppm, 100 ppm)
for heavy metal ions (NiII, CuII, ZnII, CrIII) in solutions with different pH values. The RR
(%) peaked at pH 7, while it significantly decreased in strong acid (pH = 3) or strong alkaline
(pH = 11) environments compared to the neutral environment. This was because, in acidic
conditions, H+ protonated the -COO− and -NH2 groups on the hydrogel structure, forming
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-COOH and -NH3
+. The H+ ions also competed with heavy metal ions for adsorption sites.

As the solution pH gradually increased to 7, the competitive effect of H+ ions weakened,
allowing a large number of -NH2 and -COO− groups to re-coordinate with heavy metal
ions, resulting in an increase in the RR (%) [39]. However, when the solution pH was
above 7 and gradually increased to a strong alkaline environment, the increased OH− ion
concentration in the external solution led to an anion shielding effect on the -COO− and
-NH2 groups of the hydrogel structure. This caused a decrease in osmotic pressure inside
and outside the hydrogel network, hindering the effective diffusion of heavy metal cations
into the hydrogel. As a result, the RR (%) decreased [40].
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3.7. Adsorption Kinetics of Heavy Metal Ions by PAM/AA/[Vim]Br2 Hydrogel

The adsorption effect of PAM/PAA/[Vim]Br2 hydrogel on NiII with initial concen-
trations of 40 ppm and 100 ppm at different time points (1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 h) is
shown in Figure 9. During the initial adsorption period (0–2 h), the adsorption of heavy
metal ions by the hydrogel increased rapidly. After 3 h of adsorption, the efficiency of heavy
metal ion adsorption gradually decreased. At 4 h, the adsorption capacity of the hydrogel
for heavy metal ions approached saturation. These adsorption behaviors indicated that
PAM/PAA/[Vim]Br2 hydrogel could achieve relatively fast and near-saturation adsorption
of heavy metal ions. [41,42].
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Figure 9. (a) Adsorption kinetics curves of PAM/AA/[Vim]Br2 hydrogels for heavy metal ions
(40 ppm); (b) 100 ppm.

The adsorption kinetics of PAM/PAA/[Vim]Br2 hydrogel on NiII was fitted by a
pseudo-first-order kinetics and two-stage kinetic Equations (4) and (5), and the kinetics
of the adsorption reaction of PAM/AA/[Vim]Br2 hydrogel on NiII was obtained. The
equation expression is as follows.

ln(Qe− Qt)= lnQe−k1t (4)
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t
Qt

=
t

Qe
+

1
k2Q2

e
(5)

where t is the adsorption time (min); Qe and Qt are, respectively, the adsorption capacity
of PAM/AA/[Vim]Br2 hydrogel for heavy metal ions when adsorbed at equilibrium time
and t (mg/g); K1 and K2 are quasi-one- and quasi-two-stage adsorption rate constants,
respectively.

The results of pseudo-first-order and pseudo-second-order reaction kinetics fitting
curves of NiII at 40 ppm and 100 ppm are shown in Figure 10 and Table 2. The results
show that: compared with the pseudo-first-order adsorption kinetics fitting results (40 ppm,
R2 = 0.8156, Figure 10a; 100 ppm, R2 = 0.953, Figure 10c), the pseudo-second-order adsorp-
tion kinetic model fitting is more consistent (40 ppm, R2 = 0.9983, Figure 10b; 100 ppm,
R2 = 0.9986, Figure 10d). Therefore, the adsorption of heavy metal ions by hydrogel (40 ppm,
100 ppm) is a multistep process. First, the heavy metal ions adhere to the metal surface and
then enter the hydrogel through the channel of the hydrogel to further spread.
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Figure 10. Fitting results of adsorption kinetics of NiII by PAM/AA/[Vim]Br2 hydrogel. (a,b) The
first-order kinetics and second-order kinetics fitting results of 40 ppm, respectively; (c,d) 100 ppm.

Table 2. Fitting parameters of adsorption kinetics model of different concentrations of NiII for
PAM/PAA/[Vim]Br2 hydrogel.

Ion Concentration
Pseudo-First-Order Pseudo-Second-Order

Qe,1 (mg/g) K1 R2 Qe,2 (mg/g) K2 R2

Ni2+ 40 ppm 32.23 0.833 0.8156 38.28 0.01152 0.9983

100 ppm 89.12 0.572 0.953 98.98 0.00418 0.9986

3.8. Adsorption Isotherms of PAM/AA/[Vim]Br2 Hydrogels for Heavy Metal Ions

The adsorption isotherms of Freundlich and Langmuir were studied. The Freundlich
isotherm is a heterogeneous, multilayer adsorption system, and the absorption process
takes place on an active heterogeneous surface. The Langmuir isotherm is a homogeneous,
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single molecular layer adsorption system, each binding site on the absorption surface
absorbs the same energy, and each binding site is occupied by only one metal ion. The two
models are presented in Equations (6) and (7):

lnQe= lnKF +
lnCe

n
(6)

Ce

Qe
=

1
KLQm

+
Ce

Qm
(7)

where Ce, Qe, Qm were the initial equilibrium concentration (mg/L) of heavy metal ion so-
lution, the adsorption capacity of PAM/AA/[Vim]Br2 hydrogel to heavy metal ions (mg/g),
and the saturated adsorption capacity of PAM/AA/[Vim]Br2 hydrogen to heavy metal
ions (mg/g), KF and KL are Freundlich and Langmuir equilibrium constants, respectively,
and n is the concentration index.

The Freundlich and Langmuir adsorption isotherm models were fitted to the initial
concentration and equilibrium adsorption capacity of the PAM/AA/[Vim]Br2 hydrogel to
adsorb NiII. The results are shown in Figure 11 and Table 3. When the initial concentration
of NiII was 40 ppm, regarding the adsorption isotherm of Ni2+ by the hydrogel, the
Freundlich adsorption isotherm (R2 = 0.9935) (Figure 11a) is better than the Langmuir
adsorption isotherm (R2 = 0.9859) (Figure 11b), which shows that the adsorption isotherm
of hydrogel for NiII is more in line with multilayer physical adsorption. When the initial
concentration of NiII is 100 ppm, regarding the adsorption isotherm of hydrogel for NiII, the
Langmuir adsorption isotherm (R2 = 0.9954) (Figure 11d) has better fitting results, which
shows that the adsorption of NiII to hydrogel is more in line with multilayer chemical
adsorption.
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Table 3. Fitting parameters of adsorption isotherm model of different concentrations of NiII for
PAM/PAA/[Vim]Br2 hydrogel.

Ion Concentration
Langmuir Freundlich

KL Qm R2 KF n R2

Ni2+ 40 ppm 0.29 49.19 0.9859 816.58 3.33 0.9935
100 ppm −0.153 69.06 0.9954 86,377 −6.97 /

3.9. XPS Analysis of PAM/AA/[Vim]Br2 Hydrogel

To further investigate the adsorption mechanism of hydrogels for heavy metal ions,
XPS was used to analyze the binding energy of the hydrogel before and after adsorption,
and the results are shown in Figures 12 and 13.
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In Figure 12, the main elements of the hydrogel such as the binding energy peaks of
C1s, O1s, N1s can be seen. The Figure 12 (2) and (3) curves exhibit that the binding energy
peak of Ni2p appears after adsorption, which proves that the NiII was adsorbed by the
hydrogel. As shown in Figure 13a, in the PAM/AA sample before the adsorption of the
NiII ions (40 ppm, 100 ppm), the N1s spectrum showed distinct peaks at ~399.6 eV and
~401.65 eV, corresponding to the -NH2 or -NH or C-NH3+ groups [43]. In the O1s range,
the spectrum showed a distinct peak at ~531.75 (Figure 13d) [44,45], corresponding to the
oxygen of C=O or C-O. After the adsorption of the NiII ions, the N1s spectrum shows
no significant changes (40 ppm) (Figure 13b), however, the binding energy peaks of the
N1s move from 399.65 eV to 399.95 eV and 401.65 eV to 402.45 eV (100 ppm) (Figure 13c).
The O1s peak shifted slightly from 531.75 eV to 531.85 eV (40 ppm) (Figure 13e) and the
O1s peak shifted strongly from 531.75 eV to 532.2 eV (100 ppm) (Figure 13f). In addition,
Figure 13g (40 ppm) and Figure 13h (100 ppm) show the XPS spectrum of Ni2p with a
binding energy ranging from 849.1 eV to 886.2 eV. Two major peaks with binding energies
of 855.9 eV and 870.6 eV have a significant corresponding relationship to NiCl2, and the
peaks of Ni2O3 are found at 865.7 eV and 873.1 eV (40 ppm) (864.9 and 874.4 (100 ppm)),
which indicates that the PAM/PAA hydrogel can effectively offer O element as a chelating
group for removal of NiII [46]. The other two peaks at 860.5 eV and 879.6 eV (40 ppm)
(860.5 and 879.6 (100 ppm)) can be assigned to the corresponding satellite peaks of Ni 2p3/2
and Ni 2p1/2 [47]. The XPS spectra indicate that the concentration of heavy metal ions was
low (40 ppm), and the adsorption of heavy metal ions by the hydrogel was mainly physical
adsorption, which was the electrostatic attraction between ionic liquids and heavy metal
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ions. When the concentration of heavy metal ions was high (100 ppm), the adsorption
of heavy metal ions by the hydrogel was mainly chemical adsorption, which was due to
the chelation and coordination reaction of heavy metal ions with the amino, hydroxyl,
and carboxyl groups of the hydrogel. The conclusion was consistent with the adsorption
isotherm of hydrogel.
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Figure 13. (a–c): XPS spectrum of N1s with PAM/AA hydrogel adsorbing NiII ions (0, 40, 100 ppm).
(d–f): XPS spectrum of O1s with PAM/AA hydrogel adsorbing NiII ions (0, 40, 100 ppm). (g,h): XPS
spectrum of Ni2p (40, 100 ppm) with a binding energy ranging from 849.1 eV to 886.2 eV (The black
line represents the test line, the red line represents the fitting line, and other colors represent reference
lines).
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4. Conclusions

To our best knowledge, there have been no reports on the use of ionic liquids as
crosslinking agents to prepare hydrogels for the adsorption of heavy metal ions in water.
The experiment successfully synthesized a PAM/AA/[Vim]Br2 hydrogel using the ionic
liquid [Vim]Br2 as the crosslinking agent, which was confirmed by FTIR characterization.
In our experiment, under near-neutral solution conditions and at a heavy metal ion concen-
tration of 100 ppm, the PAM/AA/[Vim]Br2 hydrogel demonstrated superior adsorption
performance for NiII, CuII, ZnII, and CrIII, achieving the removal rates of 91.8%, 97.2%,
95.6%, and 98.1%, respectively, with RR% values all exceeding 90%. This indicates a certain
advantage in heavy metal removal rates compared to the reported values. However, further
testing in actual wastewater and assessment of the removal efficiency after multiple cycles
of use are still required.

The adsorption isotherms and XPS analysis revealed that, at low concentrations
(40 ppm), the hydrogel follows the Freundlich isotherm for adsorbing heavy metal ions,
primarily through multilayer physical adsorption. One major highlight of this article is
the removal rate of heavy metal ions in the low concentration range, which exceeds 80%.
This is mainly attributed to the electrostatic interaction between anions in the ionic liquid
and the heavy metal ions. At higher concentrations (100 ppm), the hydrogel follows the
Langmuir isotherm, indicating monolayer chemical adsorption. This is mainly attributed
to the coordination between carboxyl and amino groups within the hydrogel and the metal
ions.
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