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Abstract: In this study, a new composite material is developed using a semi bio-based polypropylene
(bioPP) and micronized argan shell (MAS) byproducts. To improve the interaction between the filler
and the polymer matrix, a compatibilizer, PP-g-MA, is used. The samples are prepared using a
co-rotating twin extruder followed by an injection molding process. The addition of the MAS filler
improves the mechanical properties of the bioPP, as evidenced by an increase in tensile strength from
18.2 MPa to 20.8 MPa. The reinforcement is also observed in the thermomechanical properties, with
an increased storage modulus. The thermal characterization and X-ray diffraction indicate that the
addition of the filler leads to the formation of α structure crystals in the polymer matrix. However,
the addition of a lignocellulosic filler also leads to an increased affinity for water. As a result, the
water uptake of the composites increases, although it remains relatively low even after 14 weeks.
The water contact angle is also reduced. The color of the composites changes to a color similar to
wood. Overall, this study demonstrates the potential of using MAS byproducts to improve their
mechanical properties. However, the increased affinity with water should be taken into account in
potential applications.

Keywords: bioPP; argan shell wastes; byproduct; composites

1. Introduction

In the last few years, the extensive use of petrochemically derived polymers has
provoked some environmental problems, such as enormous waste generation and an
increase in the carbon footprint ascribed to the production processes of those polymers [1,2].
This fact has raised the concern of society and the scientific community about searching
for more environmentally friendly alternatives to those polymers [3]. In this context,
the use of bio-derived polymers could help reduce the environmental issues related to
petrochemical polymers. Bio-derived polymers can be obtained from renewable resources,
and they can be biodegradable (such as polylactide of polyhydroxyalkanoates [4–6]) or not
(such as polyolefins like biopolyethylene or biopolypropylene [2,7] or biopolyamides [8]).
However, the main disadvantage of those polymers is their high cost in comparison with
their petrochemical counterparts [9], which limits their industrial applications. Huge efforts
are made in order to reduce the obtention cost so they can be widely employed [10]. It is
for this motive that the incorporation of fillers into those polymers in order to create more
economic materials has attracted quite a bit of attention in the last few decades [11,12].
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The aforementioned strategy allows for the production of wood plastic composites
(WPC), which are obtained from the combination of a bio-based polymeric matrix and a
natural organic filler in the form of lignocellulosic particles [13,14]. This filler is obtained
from waste coming from the agroforestry and food industries. Not only do these fillers
reduce the cost of the material, but they can also enhance its properties and improve
its environmental value [13,15]. At first, only sawdust and wood flour were used as
lignocellulosic fillers [16,17]. Nonetheless, nowadays fillers from agroforestry and food
industry wastes are starting to be used, such as different nut shells [18–20], mango peel
and mango kernel [21,22], or orange peel [23].

Among the polymers that can be used for producing WPCs, biopolypropylene
(bioPP) is quite an interesting option to be considered, as its petrochemical counterpart
is one of the most used polymers worldwide and possesses a good balance between
ductile and resistant mechanical properties [24,25]. This polymer can be obtained by
processing biomethanol in order to obtain the propylene monomer and then polymeriz-
ing it into biopolypropylene [2]. However, the use of this polymer for the production of
WPCs poses certain issues, as bioPP is a practically non-polar polymer due to the null
difference in electronegativity between its bonds. This is a very characteristic behavior
of polyolefins, which makes them hydrophobic [26]. On the other hand, lignocellulosic
fillers are completely polar as a result of their oxygen-based functionalizations (mostly
hydroxyl groups). This makes them hydrophilic and creates an incompatibility with
the hydrophobic polymer matrix, which provokes poor adhesion of the particles in the
matrix. This leads to poor mechanical performance [27].

Several strategies exist with the objective of improving the compatibility between the
matrix and the lignocellulosic filler. One of them is the modification of the surface of the
filler particles in order to block the hydroxyl groups by silanization [28], acetylation [29],
or benzoylation [30]. Another strategy involves the use of copolymers to improve the
compatibility between the filler and the matrix. In the case of polyolefins, some of the
compatibilizers that have attracted great interest are PE-g-MA and PP-g-MA, which are
obtained by grafting polyethylene (PE) [31] and polypropylene (PP) [32], respectively,
with maleic anhydride (MA). MA increases the polarity of PE and PP and increases their
affinity for lignocellulosic fillers [33]. Burgada et al. [34] successfully introduced PP-g-MA
into polypropylene/hemp fiber composites, improving the compatibility between both
components. This compatibilizer possesses double functionality: first, the polypropylene
fraction of PP-g-MA links with polypropylene thanks to their chemical affinity, while
the MA groups interact with the hydroxyl groups present in hemicellulose, cellulose,
pectin, and lignin of the lignocellulosic particles [35]. This fact improves the matrix-filler
interaction and the dispersion of the particles over the matrix, directly enhancing the
mechanical performance of the composite [36,37].

Argan (Argania spinosa) is a tropical plant that has a great impact on the Moroccan
economy, as its fruit is used to produce oil with great applications in cosmetics [38]. How-
ever, the wastes that originate from the production of oil (seeds and shell) are mainly used
to feed cattle [39]. Therefore, those residues, such as argan shell, have great potential to
be used as lignocellulosic fillers for the production of wood plastic composites since they
represent around 86% of the nut [40]. Regarding the shell composition, as it is proposed
above, lignocellulosic fillers are mainly composed of cellulose, hemicellulose, and lignin.
For the argan nut shells, cellulose represents 48%, while lignin is 30% and hemicellulose is
16%. The remaining part of the composition has been reported as 6% ash, in which there is
a small amount of pectin [41].

The main objective of this work is the development of wood plastic composites using
biopolypropylene as the polymeric micronized argan shell (MAS) as a reinforcing lignocel-
lulosic filler. In order to overcome the incompatibility between both elements, PP-g-MA is
used as a compatibilizer. This work originated due to the good results obtained in our previ-
ous work with biopolyethylene and MAS [42]. Through this study, the authors try to reuse
argan waste under the principles of the circular economy in order to enhance the properties
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of biopolypropylene and improve its environmentally friendly approach. Additionally,
the affinity between both components has also improved. Different formulations varying
the concentration of argan shell flour are developed by extrusion and injection-molding
processes. The properties of the developed materials are assessed by chemical, mechanical,
morphological, thermal, thermomechanical, and FTIR characterization, as well as visual
and wetting analysis.

2. Materials and Methods
2.1. Materials

In this work, NaturePlast SAS supplied partially biobased polypropylene (bioPP) with
a biobased content of 30% and a melt flow index of 70 g/10 min (190 ◦C and 2.16 kg).
Micronized Argan Shell (MAS) was provided by Micronizados vegetales S.L. (Córdoba,
Spain). To improve the interaction between the filler and the polymer matrix, commercial
maleic anhydride-grafted polypropylene wax grade Licocene PP MA 6452 granules sup-
plied by Clariant Plastics & Coatings (Frankfurt, Germany) (PP-g-MA) were introduced as
a compatibilizer. PP-g-MA is a commercially available compatibilizer commonly used to
improve the compatibility between a polymer matrix and a filler.

2.2. Sample Preparation

To prepare the injection-molded samples for evaluation, all materials, including
bioPP, MAS, and PP-g-MA were first dried and mixed to ensure their homogeneity. The
drying process was carried out in an air-circulating oven for 24 h at 60 ◦C to remove
any moisture present in the materials. The drying process is an important parameter
to consider before the manufacture of the samples since it can promote the formation
of defects such as holes. Nevertheless, drying process is not a critical parameter in
polyolefins as hydrolytic degradation does not occur during the manufacture as can
happen y polymer matrix as PLA [43].

The mixing process involved manually premixing the correct amount of each material
(Table 1) in a zipper bag and introducing them into a twin-screw co-rotating extruder from
Dupra S.L. (Castalla, Spain). The extruder had a length-to-diameter ratio (L/D) of 24 and a
diameter (D) of 25 mm, and it was operated at a speed of 25 rpm. The extrusion process
was carried out at a profile temperature of 155 ◦C (hopper)–160 ◦C–165 ◦C–170 ◦C (die).
All materials were extruded under the same conditions even neat polymer was extruded,
so the same thermal treatment was applied to all the samples. Temperatures were selected
as low as possible, so MAS filler was not degraded during manufacturing.

Table 1. Summary of the compositions of the green composites according to the amount of MAS
and PP-g-MA.

Material bioPP (%wt.) MAS (%wt.) PP-g-MA (phr)

bioPP 100 0 0
bioPP/2.5MAS 97.5 2.5 0.25
bioPP/5MAS 95 5 0.5

bioPP/10MAS 90 10 1.0
bioPP/20MAS 80 20 2.0
bioPP/40MAS 60 40 4.0

For the PP-g-MA content in each sample, a proportion of 1 to 10 from the MAS content
in phr has been considered. This proportion was selected according to a previous work in
which MAS was successfully compatible with a HDPE formulation [42].

After the extrusion process, the material was pelletized to prepare it for the injection
molding process. The injection molding was performed using an injection molding
machine from Mateu & Solé (Barcelona, Spain), with a temperature profile of 160 ◦C
(hopper)–165 ◦C–170 ◦C–175 ◦C (die) and a filling time of 1 s. A pressure of 30 bar was
maintained for 10 s to avoid any defects in the final samples. An aluminum mold was
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kept at 30 ◦C during all processes, and the geometry of the cavity produced tensile test
samples according to ISO 527-1:2012 with samples 1B and rectangular samples with
dimensions of 80 × 10 × 4 mm3.

2.3. Characterization of bioPP/MAS Composites
2.3.1. Mechanical Characterization

Tensile properties of bioPP/MAS composites were measured in an ELIB 50 universal
testing machine from S.A.E. Ibertest (Madrid, Spain) following ISO 527-1:2012 with sample
1B specifications. To this effect, a 5-kN load cell was equipped, and the cross-head speed
was set at 5 mm/min. For tensile modulus measurement, a 3542-050M-050-ST extensometer
from Epsilon Technology Corporation (Jackson, WY, USA) was employed. Shore hardness
was measured according to ISO 868:2003 on a 676-D durometer from J. Bot Instruments
(Barcelona, Spain). D-scale was used on rectangular samples (80 × 10 × 4 mm3). Impact
strength was measured on notched samples (0.25 mm radius V-notch) with a rectangular
shape and dimensions of 80 × 10 × 4 mm3. For data acquisition, a Charpy pendulum (1-J)
from Metrotec S.A. (San Sebastián, Spain), following the specifications of ISO 179-1:2010,
was employed. All mechanical tests were performed at room temperature, and six samples
of each material were tested to obtain each property, and the corresponding values were
averaged to obtain a significant result.

2.3.2. Morphology Characterization

In order to know more about the structure of the composites, the morphology of
fractured samples from impact tests was studied. To obtain the correct information, field
emission scanning electron microscopy (FESEM) in a ZEISS ULTRA 55 microscope sup-
plied by Oxford Instruments (Abingdon, UK) was used. Samples were sputtered before
the observation. To this effect, a vacuum chamber EMITECH SC7620 from Quorum
Technologies, Ltd. (East Sussex, UK) was employed to apply a thin coating with a gold-
palladium alloy. The FESEM was operated at an acceleration voltage of 2 kV. For MAS
particle observation, the same conditions were employed. For the size characterization of
the particles, ImageJ software was employed for the measurements (https://imagej.net,
accessed on 18 May 2023).

2.3.3. Thermal Characterization

Differential scanning calorimetry (DSC) was employed to measure the main thermal
transition on the bioPP/MAS composites. For the measurement, a Mettler-Toledo 821
calorimeter (Schwerzenbach, Switzerland) was employed. Our own method was employed;
an average of 6–7 mg from each material was subjected to a thermal program divided into
three stages: a first heating from 30 ◦C to 200 ◦C. After that, a cooling to −50 ◦C and then a
second heating to 220 ◦C. Heating and cooling rates were set in all cases at 10 ◦C/min. For
the characterization, a nitrogen atmosphere was employed with a flow rate of 66 mL/min
using sealed aluminum crucibles with a capacity of 40 µL. The degree of crystallinity, χc of
the different compounds was obtained with Expression (1).

χc =
∆Hm

∆H0
m·(1− w)

·100% (1)

where ∆Hm is the measured melting enthalpy, ∆H0
m is the theoretical melting enthalpy of

a fully crystalline polypropylene taken as 209 J g−1 [44], and w is the filler mass fraction.
The thermal degradation behavior of the bioPP/MAS composites was assessed by thermo-
gravimetric analysis (TGA). TGA tests were performed on a thermobalance TG-DSC2 from
Mettler-Toledo (Columbus, OH, USA). To this effect, a dynamic heating cycle from 30 ◦C to
700 ◦C at 10 ◦C/min under air atmosphere was employed. Samples had an average weight
between 15 and 17 mg, and for the test, 70 µL alumina crucibles were employed. The first

https://imagej.net
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derivative thermogravimetric (DTG) curves were also calculated. All tests were performed
at least three times, so reliable data was obtained.

2.3.4. Thermomechanical Characterization

Thermomechanical characterization of the bioPP composites under dynamic condi-
tions was measured in a dynamical mechanical thermal analysis (DMTA). To this purpose,
a dynamic analyzer DMA1 from Mettler-Toledo (Schwerzenbach, Switzerland) was used.
Samples were fixed in single cantilever mode, and flexural conditions were employed on
rectangular samples with dimensions of 20× 6× 2.7 mm3 that were subjected to a dynamic
temperature program from −150 ◦C to 120 ◦C at a heating rate of 2 ◦C/min. As the flexural
deformation frequency, 1 Hz was employed, and the maximum deflection was set to 10 µm.

2.3.5. XRD Characterization

X-ray diffraction (XRD) patterns were collected at room temperature. As a scattering
angle (2θ), a range from 2.5◦ to 80◦ (step size = 0.05◦ min−1) was considered using filtered
Cu Kα radiation (λ = 1.54 Å). X-ray tube conditions were set at 40 kV and 40 mA.

2.3.6. Color Characterization

The Konica CM-3600d Colorflex-DIFF2 color analyzer from Hunter Associates Lab-
oratory, Inc. (Reston, VA, USA) was employed for the colorimetric measurements of the
samples. Color parameters (L*a*b*) mean: L* = 0, darkness; L* = 100, lightness; a* represents
the green (a* < 0) to red (a* > 0); b* stands for the blue (b* < 0) to yellow (b* > 0) coordinate.
The total color difference parameter, ∆E∗ab was obtained from the Expression (2).

∆E*
ab =

√(
∆L*

)2
+
(

∆a*
)2

+
(

∆b*
)2

(2)

Before the measurement, the equipment was calibrated following the procedure pro-
posed by the provider. For each value provided, the measurements were performed five
times on different tensile test samples.

2.3.7. Water Uptake Characterization

The water absorption capacity of the bio/MAS blends was evaluated by the water
uptake test. Rectangular samples (80 × 10 × 4 mm3) from each composition were weighted
before immersion in a balance and then immersed in distilled water. All of them were
properly wrapped with tiny pieces of a metal grid so they could sink. The weight of all
samples was measured each week for 14 weeks in order to evaluate the weight increase. In
every measurement, the surface moisture of the samples was removed with tissue paper.
During the immersion time, the temperature during the immersion was set to 23 ◦C.

2.3.8. Water Contact Angle Measurements

The water contact angle in bioPP/MAS samples with distilled water allowed for
evaluation of hydrophilicity/hydrophobicity. An Easy Drop FM140 goniometer supplied by
Krüss Equipment (Hamburg, Germany) was used. Distilled water drops were deposited at
random positions on the surface of the samples. At least 10 measurements were performed
for each material.

2.3.9. Statistical Analysis

To evaluate the significant differences among the results in each sample, a Tukey
test was performed at a 95% confidence level (p ≤ 0.05). The software employed was the
open-source R software (http://www.r-project.org, accessed on 18 May 2023).

http://www.r-project.org
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3. Results
3.1. Mechanical Properties

Table 2 shows the mechanical properties of the composites prepared by blending a
bio-based PP with different amounts of MAS as filler. The main mechanical properties
were tested by means of tensile tests and also with hardness measurements and impact
strength. The first effect to be noticed is an increase in the stiffness of the samples with
the addition of the byproduct. While the tensile modulus of the neat BioPP is 1925 MPa,
the composite with 40 wt.% increases this value up to 2435 MPa. This effect is also
observed by Laaziz et al. [45] in composites of PLA with the addition of argan nut shell.
In their work, different compatibilization strategies are tested, and they report that with
alkaline treatment, the composites achieve the highest tensile modulus since the best
particle adhesion is obtained, resulting in a higher reinforcement effect. In this work, to
improve the filler interaction with the polymer, PP-g-MA is introduced, which allows for
an improvement in stiffness of 94.4%. This compatibilizer allows for linkages between
the hydroxyl groups present on the surface of the lignocellulosic filler and the anhydride
groups of PP-g-MA [46]. In addition, by incorporating MAS, a stiff filler is introduced
and an increase in the sample’s tensile modulus is obtained [47]. Another effect produced
by the addition of argan is a small improvement in the maximum tensile strength
developed during the test. Other authors, such as Naghmouchi et al. [48], found different
trends in terms of tensile strength depending on the type of filler, compatibilizer, and
amount considered. In some cases, the strength is not highly affected or even reduced,
but in the best cases, it is possible to improve the resistance. In general terms, to achieve
reinforcement of the composite, it is necessary to obtain good adhesion of the filler to
the polymer matrix; for this purpose, a good compatibilization strategy is necessary. In
this work, despite a small improvement in the tensile strength obtained, the differences
that emerged do not provide a significant variation between the materials. Even with
the reinforcement effect expected by the MAS addition, the disruption provided by the
particles does not allow for an increase in the tensile strength of the composites. In the
composites produced in this work, an improvement over neat bioPP of 14.3% is obtained.
The highest tensile strength is obtained from the composite bioPP/40MAS composite,
with a value of 20.8 MPa. In spite of the improvement in resistant properties achieved
by the addition of MAS and the coupling agent, the elongation at break is reduced. In
this case, the bioPP used obtains an elongation at break value of 48.3%, which is strongly
influenced even by the introduction of small amounts of filler, with a reduction of 48.4%
of this property for the bioPP/2.5MAS. As Rahman et al. [49] propose, neat PP has the
ability to align the chains and slide during plastic deformation, but the addition of any
type of filler hinders this ability, leading to a reduction in the elongation properties.

Table 2. Main mechanical properties of the bioPP composites: tensile modulus (E), maximum tensile
strength (σmax), elongation at break (εb), shore D hardness, and impact strength.

Code E (MPa) σmax (MPa) εb (%) Shore D Hardness Impact Strength (kJ/m2)

bioPP 1925 ± 91 a 18.2 ± 0.3 a 48.3 ± 1.4 a 65.4 ± 2.1 a 8.1 ± 0.4 a

bioPP/2.5MAS 2029 ± 110 a 18.9 ± 0.2 a 24.9 ± 1.5 b 66.7 ± 1.2 a 5.0 ± 0.5 b

bioPP/5MAS 2177 ± 105 b 19.0 ± 0.5 a 23.1 ± 0.7 b 66.5 ± 1.3 a 4.9 ± 0.4 b

bioPP/10MAS 2237 ± 94 b 19.7 ± 0.2 a 18.9 ± 1.3 c 67.0 ± 1.5 a 4.7 ± 0.4 b

bioPP/20MAS 2341 ± 127 b 20.0 ± 0.2 a 15.5 ± 1.6 c 67.2 ± 1.4 a 3.7 ± 0.3 c

bioPP/40MAS 2435 ± 155 b 20.8 ± 0.6 a 9.9 ± 0.7 d 70.0 ± 0.7 b 1.8 ± 0.2 d

a–d Different letters in each column indicate a significant difference between the results (p < 0.05).

As can also be seen in Table 2, the hardness of the samples is modified by the introduc-
tion of the filler. As it is a resistant property, the reinforcing effect provided by MAS allows
for an increase in this property from 65.4 on the Shore D scale up to 70.0 for the bioPP/MAS,
which is a difference of 7%. This effect has also been reported by other authors, such as
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Laaziz et al. [45], who reported an increase in the hardness of composites made with argan
nut shell. As they propose, this increase is expected since the filler has a higher hardness
and also shows good adhesion. Another way to increase the hardness of polymer compos-
ites is to introduce a nanoclay to enhance the filler’s interaction with the polymer [50]. Both
examples demonstrate the importance of good filler adhesion to improve the composite’s
hardness. Finally, as expected from the reduction in the ductile properties of the composites,
a reduction in the impact strength is obtained. In this case, bioPP is characterized by a
good toughness of 8.1 kJ/m2. The introduction of the filler hinders the chain’s mobility, so
that the specimen has a reduced ability to absorb energy due to plastic deformation during
impact. As a result, the composite with the highest amount of MAS develops an impact
strength of 1.8 kJ/m2. Other authors, like Hosseinihashemi et al. [51], also observed this
effect in composites prepared by blending PP with almond byproducts. In addition, the
presence of a filler induces a stress concentration effect that promotes crack formation, and
as a result, the energy absorption of the composites is reduced [52].

3.2. Morphology of Green Composites

The analysis of the filler morphology allows us to understand the mechanical behavior
of the composites obtained. With the proposed milling process, the particles have a low
surface roughness that limits their interaction with the polymer [53]. Another parameter
that changes the mechanical behavior of the composite is the particle size (Figure 1). In this
case, MAS filler particles have a small size of around 80 µm. Essabir et al. analyzed the
effect of the size of MAS particles in a PP matrix, and as a result, the best strengths were
obtained for the composites prepared with the smaller particles that allowed for higher
filler interaction with the polymer matrix [54].
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The study of the dispersion of the filler in the polymer matrix is an important parameter
to understand the mechanical behavior of the composites since the dispersion of the filler
plays an important role in the mechanical properties [55]. To this end, representative images
taken for each composite are presented in Figure 2. In Figure 2a, a rough fracture surface
is observed due to the plastic deformation phenomena produced during the fracture of
a ductile material [56]. With the addition of MAS, a reduction in ductile properties is
observed in the mechanical characterization. As a result, in the morphological analysis,
there is a reduction in the roughness of the specimens as the plastic deformation ability of
the specimens is reduced by the presence of the filler, as proposed above. As proposed by
Palaniyappan et al. [57], the adhesion of the filler particles is the most important parameter
to improve the mechanical behavior of the sample. Particles that are properly adhered to
the polymer provide better mechanical properties. In this work, the particles are properly
embedded in the polymer matrix through the implementation of a compatibilizer, which
is PP-g-MA. As proposed in Balaji et al.’s [58] work, the presence of gaps between the



Polymers 2023, 15, 2743 8 of 20

polymer and the filler due to poor adhesion promotes a reduction in terms of mechanical
properties since they can act as stress concentrators and promote crack propagation during
the test. The presence of gaps in a polymer composite made with wood-based fillers is
related to the hydrophobic behavior of the polymer, which has low interaction with the
filler, which has a characteristic hydrophilic behavior [59]. In this sense, the employment of
a treatment that allows for the avoidance of this effect is crucial to improving the behavior
of the composites not only in terms of mechanical properties but also the affinity with
water, which is reduced with a good compatibilization strategy as proposed in the water
uptake study.
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3.3. Thermal Properties

The effect of the addition of MAS on the thermal properties has been measured
by means of DSC and TGA. The main results of DSC are presented in Table 3, and the
thermograms are shown in Figure 3, regarding the thermal degradation measured by TGA.
The main results are presented in Table 4, and the curves are shown in Figure 4. For the DSC
analysis, the thermal history of the samples was erased by means of a first cycle followed by
a controlled cooling. In this case, an exothermic peak is observed during cooling (Figure 3a).
After the controlled cooling, a second heating process was scheduled. The curves obtained
are presented in Figure 3b. As with most polyolefins, it has good crystallization behavior
that allows its crystallization during the cooling stage [60]. This exothermic phenomenon
was hardly changed by the introduction of MAS in terms of temperature, which is close
to 120 ◦C, but it changed in terms of enthalpy. This change is promoted by two effects.
One of them is the dilution effect, since the number of polymer chains (which are being
crystallized) is reduced by the introduction of the filler. Another parameter to consider is
that the introduction of MAS also leads to a reduction in chain mobility, as also proposed
in the mechanical characterization. Consequently, the reduced mobility in the molten state
reduces the ability of the composites to crystallize. Regarding the melting peak, it is located
at temperatures slightly above 160 ◦C and shows no modifications. This temperature
indicates that α crystals are formed during the cooling stage (as also observed in the XRD
test). In Luo et al.’s work, the crystallization of PP has been studied by using different
nucleating agents that allow the formation β crystals that melt at a lower temperature,
around 150 ◦C. As also proposed by Luo et al., with the employment of some nucleating
agents, it is possible to change the crystalline structure. However, in this case, MAS
does not act as a nucleating agent. The melting enthalpy is reduced; the analysis of this
parameter must be considered in terms of the degree of crystallinity since there is a dilution
effect due to the reduced amount of polymer due to the introduction of the filler. Typical
nucleating agents are included in small quantities and induce a higher change in terms of
degree of crystallinity in the sample [61]. Another phenomenon to highlight related to the
enthalpies is that the values measured during cooling are higher than during heating. This
phenomenon has been observed by other authors, like Achaby et al., due to the fact that
crystal formation is more energy-consuming than the melting process [62].

Table 3. Main thermal properties in terms of melt crystallization temperature (Tcm), melt crys-
tallization enthalpy (∆Hcm), melting temperature (Tm), melting enthalpy (∆Hm), and degree of
crystallinity (Xc).

Code Tcm (◦C) ∆Hcm (J·g−1) Tm (◦C) ∆Hm (J·g−1) Xc (%)

bioPP 120.9 ± 0.4 a 74.6 ± 2.3 a 163.5 ± 0.5 a 67.0 ± 2.0 a 32.1 ± 1.0 a

bioPP/2.5MAS 122.4 ± 0.5 a 72.0 ± 2.4 a 164.5 ± 0.4 a 63.5 ± 1.8 b 31.2 ± 0.9 a

bioPP/5MAS 123.9 ± 0.3 a 70.5 ± 2.6 a 164.2 ± 0.6 a 61.5 ± 1.6 b 31.0 ± 0.8 a

bioPP/10MAS 122.5 ± 0.5 a 64.5 ± 2.5 b 163.9 ± 0.5 a 56.3 ± 1.7 c 29.9 ± 0.9 a

bioPP/20MAS 122.6 ± 0.4 a 62.5 ± 1.9 b 163.4 ± 0.7 a 50.1 ± 1.6 d 30.0 ± 1.0 a

bioPP/40MAS 121.4 ± 0.2 a 45.5 ± 1.7 c 163.0 ± 0.8 a 37.2 ± 1.7 e 29.7 ± 1.4 a

a–e Different letters in each column indicate a significant difference between the results (p < 0.05).

As can also be observed, the degree of crystallinity is not significantly modified by the
addition of the byproduct, showing a decreasing trend with the increase in filler content,
with values close to 30% for all the formulations prepared. The addition of other fillers
is known to increase the degree of crystallinity by allowing a higher number of nuclei to
form, which helps during crystallization [63]. Other fillers are not able to form new nuclei,
and the reduction in terms of chain mobility decreases the Xc [64]. Some studies related
to the nucleation effects in a PP matrix have reported that the modification of the typical
α structure to a β structure promotes changes in mechanical properties. For example, it
is known that β structure enhances energy dissipation, allowing for improved toughness
of the samples [65]. The degree of crystallinity also has an effect on PP manufactured
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by injection molding with different material molds in terms of mechanical properties
induced by the modification of the cooling conditions. In this regard, an aluminum mold
promotes a higher cooling rate and, as a result, a lower degree of crystallinity compared to
a polyacrylonitrile-butadiene-styrene (ABS) mold. With a lower degree of crystallinity, an
improvement in the ductile properties could be observed [66].
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Table 4. Summary of the thermal degradation parameters of the bioPP/MAS composites in terms
of the starting degradation temperature (T5%), maximum degradation rate temperature (Tdeg), and
residual mass at 700 ◦C.

Code T5% (◦C) Tdeg (◦C) Residual Weight (%)

bioPP 305.3 ± 1.3 a 435.0 ± 2.8 a 0.2 ± 0.1 a

bioPP/2.5MAS 299.5 ± 1.2 b 438.7 ± 2.2 a 0.3 ± 0.1 a

bioPP/5MAS 297.5 ± 1.7 b 411.1 ± 1.9 b 0.3 ± 0.1 a

bioPP/10MAS 293.8 ± 1.5 b 403.2 ± 1.5 b 0.6 ± 0.2 b

bioPP/20MAS 294.2 ± 1.0 b 416.1 ± 3.6 b 0.7 ± 0.2 b

bioPP/40MAS 287.9 ± 1.1 c 374.6 ± 2.1 c 0.8 ± 0.1 b

MAS 110.5 ± 1.2 d 321.8 ± 3.1 d 0.6 ± 0.1 b

a–d Different letters in each column indicate a significant difference between the results (p < 0.05).
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Regarding the thermal stability measured by means of TGA, Figure 4a shows the
mass loss versus temperature, and Figure 4b shows the first derivative of the mass
loss versus temperature. In this case, bioPP shows a single-step curve; the polymer
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chains are completely degraded in a wide range between 300 ◦C and 460 ◦C, with the
maximum degradation rate at 435 ◦C. During the polymer degradation, chains break,
and as a result, volatile products are realized, leading to a mass loss [67]. The employed
PP used by Azizi et al. [68] shows a similar range of degradation in a single step; this
single-step degradation process changes to a two-step degradation after the introduction
of a lignocellulosic filler. This effect is also seen in this work due to the introduction
of MAS; as can be observed in Figure 4, degradation occurs in a wider range. This
behavior has also been reported by Essabir et al. [54], who report a degradation starting
at 280 ◦C and ending above 500 ◦C. There is a first range between 280 ◦C and 340 ◦C
where hemicellulose and pectin are decomposed, and then a second stage up to 448 ◦C
where cellulose is degraded. In the final stage of degradation, lignin is decomposed.
In addition, a first degradation step is observed around 100 ◦C due to some residual
moisture in the filler. As the filler degrades over a wide range, the degradation of
the composites also degrades over a wide range. In this case, MAS starts at a lower
temperature; consequently, a slight decrease in the initial degradation temperature is
registered from 305.3 ◦C of neat bioPP up to 287.9 ◦C. Also, the maximum degradation
rate in the composites is reduced from 435.0 ◦C to 374.6 ◦C due to the introduction of
argan shell. The end of degradation occurs at a higher temperature. During the end of
the degradation process, a small disturbance appears in the curve due to the fact that the
degradation processes of both materials overlap.

3.4. Thermomechanical Characterization

Figure 5 shows a comparison plot of the thermomechanical properties measured
for the composites made from bioPP and MAS, and Table 5 shows the main measured
properties. Figure 5b shows the evolution of the damping factor (tan δ) in the tested
temperature range. In this case, three peaks (−50 ◦C, 10 ◦C, and 90 ◦C) can be observed
due to different relaxation phenomena in the polymer structure. The first peak at
−50 ◦C is not a typical peak for PP in a DMTA test; as reported by other authors such as
Biwei et al. [69], the first transition appears close to 0 ◦C. For this reason, it is possible
that some additives are included by the supplier to improve the properties of this semi-
biobased material. Burgada et al. [34] reported that the peak around 10 ◦C is due to a
β relaxation by a glass-rubber transition of the amorphous region, which promotes the
Tg of PP. In addition, Burgada et al. [34] reported a relaxation at 80 ◦C due to lamellar
sliding and rotation of the crystalline part. In this case, as proposed in the tensile test, a
reinforcing effect is promoted. As a result, in the DMTA test, the height of the tan δ peaks
is reduced since the dissipation ability of the composites is reduced. Another effect that
can be observed is a small increase in the Tg; this effect is typical after the incorporation
of a reinforcement, as proposed by Sharif et al. [70], who proposed that fillers hinder
the chain movement. So in order to achieve a ductile, rubbery state (above Tg), it is
necessary to reach a higher temperature. The storage modulus shown in Figure 5a shows
a decreasing trend with increasing temperature because the chain mobility increases
with temperature, so the sample reduces the stiffness and increases the damping ability.
As suggested by Shokoohi et al. [71], the DMTA curve of PP usually has different parts;
up to 0 ◦C there is a glassy zone, and above this range a glass-rubber transition occurs
due to the presence of the glass transition temperature. In addition, it is proposed
that above 80 ◦C, a pure rubbery region occurs. For PP, the recrystallization does not
occur during the heating of the samples because the injection-molded samples could
completely crystallize during the cooling. As observed in the DSC test, the samples
only show an exothermic peak in the cooling stage. Other polymers, such as PLA, have
a low crystallization rate and consequently show a cold crystallization peak during
heating, which promotes some recovery of the storage modulus at high temperatures by
reorganizing the polymer chains [72,73]. A clear trend can be observed by introducing
the filler with an increase due to reinforcing in the storage modulus; as proposed in the
tensile test, the stiffness of the samples increases due to the reinforcing effect provided
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by the MAS particles. Alshammari et al. [74] also observed this effect by introducing
different amounts of graphite into a PET matrix.

Polymers 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

occurs. For PP, the recrystallization does not occur during the heating of the samples be-
cause the injection-molded samples could completely crystallize during the cooling. As 
observed in the DSC test, the samples only show an exothermic peak in the cooling stage. 
Other polymers, such as PLA, have a low crystallization rate and consequently show a 
cold crystallization peak during heating, which promotes some recovery of the storage 
modulus at high temperatures by reorganizing the polymer chains [72,73]. A clear trend 
can be observed by introducing the filler with an increase due to reinforcing in the storage 
modulus; as proposed in the tensile test, the stiffness of the samples increases due to the 
reinforcing effect provided by the MAS particles. Alshammari et al. [74] also observed this 
effect by introducing different amounts of graphite into a PET matrix. 

 
Figure 5. Evolution of: (a) storage modulus (E’) vs. temperature and (b) damping factor vs. tem-
perature of bioPP composites. 

Table 5. Summary of the dynamic-mechanical properties of bioPP/MAS composites at different tem-
peratures. 

Code 
E’ (MPa) at 
−125 °C E’ (MPa) at 25 °C 

E’ (MPa) at 
100 °C Tg (°C) * 

bioPP 2032 ± 45 a 660 ± 19 a 165 ± 5 a 10.7 ± 0.4 a 
bioPP/2.5MAS 2150 ± 35 a 740 ± 15 b 175 ± 4 a 10.2 ± 0.3 a 
bioPP/5MAS 2280 ± 45 a 790 ± 18 b 200 ± 8 b 12.3 ± 0.1 b 

bioPP/10MAS 2240 ± 61 a 850 ± 20 b 210 ± 3 b 14.9 ± 0.2 c 
bioPP/20MAS 2260 ± 50 a 870 ± 15 b 250 ± 2 c 14.5 ± 0.3 c 
bioPP/40MAS 2375 ± 35 a 1120 ± 30 c 370 ± 6 d 16.6 ± 0.4 d 

* The Tg from the tan δ peak maximum criterion. a–d Different letters in each column indicate a sig-
nificant difference between the results (p < 0.05). 

3.5. XRD Characterization 
The results obtained from the XRD characterization of the bioPP/MAS composites 

are shown in Figure 6. These results confirm the presence of α-crystals, as suggested by 
the DSC characterization. Peaks such as 2θ = 14.3° (1 1 0), 2θ = 17.1° (0 4 0), 2θ = 18.7° (1 3 
0), 2θ = 21.2° (1 1 1), 2θ = 22.1° (1 3 1/0 4 1), and 2θ = 25.6° (0 6 0) are favored by the presence 
of this structure as proposed by Ryu et al. [75]. The intensity of the peaks related to the 
bioPP is reduced by the presence of the filler since the amount of the polymer is reduced 
and therefore the presence of crystals is reduced. In this work, as could be observed in the 
DSC, relevant changes have not occurred in the degree of crystallinity. 

An increase in the crystallinity of the samples by the introduction of the filler could 
increase the height of the peaks, as reported by Ryu et al. [76] after the introduction of 
graphene in a PP matrix, allowing a clear increase in the degree of crystallinity of the sam-
ples. It is also worth noting that the presence of the filler has no effect on the position of 
the peaks. This effect is also reported by Parparita et al. for a PP loaded with different 

Figure 5. Evolution of: (a) storage modulus (E’) vs. temperature and (b) damping factor vs. tempera-
ture of bioPP composites.

Table 5. Summary of the dynamic-mechanical properties of bioPP/MAS composites at
different temperatures.

Code E′ (MPa) at −125 ◦C E′ (MPa) at 25 ◦C E′ (MPa) at 100 ◦C Tg (◦C) *

bioPP 2032 ± 45 a 660 ± 19 a 165 ± 5 a 10.7 ± 0.4 a

bioPP/2.5MAS 2150 ± 35 a 740 ± 15 b 175 ± 4 a 10.2 ± 0.3 a

bioPP/5MAS 2280 ± 45 a 790 ± 18 b 200 ± 8 b 12.3 ± 0.1 b

bioPP/10MAS 2240 ± 61 a 850 ± 20 b 210 ± 3 b 14.9 ± 0.2 c

bioPP/20MAS 2260 ± 50 a 870 ± 15 b 250 ± 2 c 14.5 ± 0.3 c

bioPP/40MAS 2375 ± 35 a 1120 ± 30 c 370 ± 6 d 16.6 ± 0.4 d

* The Tg from the tan δ peak maximum criterion. a–d Different letters in each column indicate a significant
difference between the results (p < 0.05).

3.5. XRD Characterization

The results obtained from the XRD characterization of the bioPP/MAS composites are
shown in Figure 6. These results confirm the presence of α-crystals, as suggested by the
DSC characterization. Peaks such as 2θ = 14.3◦ (1 1 0), 2θ = 17.1◦ (0 4 0), 2θ = 18.7◦ (1 3 0),
2θ = 21.2◦ (1 1 1), 2θ = 22.1◦ (1 3 1/0 4 1), and 2θ = 25.6◦ (0 6 0) are favored by the presence
of this structure as proposed by Ryu et al. [75]. The intensity of the peaks related to the
bioPP is reduced by the presence of the filler since the amount of the polymer is reduced
and therefore the presence of crystals is reduced. In this work, as could be observed in the
DSC, relevant changes have not occurred in the degree of crystallinity.

An increase in the crystallinity of the samples by the introduction of the filler could
increase the height of the peaks, as reported by Ryu et al. [76] after the introduction of
graphene in a PP matrix, allowing a clear increase in the degree of crystallinity of the
samples. It is also worth noting that the presence of the filler has no effect on the position
of the peaks. This effect is also reported by Parparita et al. for a PP loaded with different
lignocellulosic materials [77]. Regarding the MAS, in the literature, it is proposed that
the internal structure of this byproduct is mainly cellulose; as a result, the main peak in
the XRD scan has a low intensity peak around 2θ = 21.1◦ (0 0 2), which is related to the
crystalline phase of cellulose [78]. Near this peak of argan, there are some other peaks in
PP that are not affected by the composite materials herein prepared.
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3.6. Color Measurements and Visual Aspect

The development of a WPC is always associated with a color change from the neat
polymer matrix by the introduction of a wood-colored filler. In this case, after the man-
ufacturing process in which two heating cycles were applied, the final color is shown in
Figure 7, and the measurements made are presented in Table 6. In general terms, bioPP is
mainly white, with a* and b* parameters mainly 0 and a high luminance. With the addition
of only 2.5 wt. % MAS, the color changed significantly with a ∆E*

ab of 24.4 compared to
the neat sample. The additional incorporation of MAS also promoted higher differences
in terms of ∆E*

ab. The most relevant color change is the L* parameter, which is reduced to
obtain darker shades with a value of 27.0 for the 40MAS composite. This change in the
luminosity of the samples is highly related to the manufacturing process. MAS is mainly
composed of cellulose but also has lignin and hemicellulose. During the manufacturing
process, temperatures up to 175 ◦C are used, which is more than enough to start the degra-
dation of lignin. As proposed by Diez et al. [79], lignin can start its thermal degradation at
temperatures above 150 ◦C. In addition, a change in the parameters a* and b* allowed for a
change in the tonality. The positive a* values allow for reddish shades, and the positive b*
values provide yellowish shades. Both effects give the samples a brownish hue that results
in a color similar to some woods, such as Peltogyne lecointei Ducke [80].

Table 6. Color coordinates (L*a*b*) and luminance of the bioPP green composites.

Code L* a* b* ∆E*
ab

bioPP 62.7 ± 0.1 a −1.77 ± 0.03 a −3.50 ± 0.06 a -
bioPP/2.5MAS 43.6 ± 0.6 b 6.51 ± 0.14 b 8.64 ± 0.22 b 24.4 a

bioPP/5MAS 36.4 ± 0.1 c 7.82 ± 0.09 c 8.67 ± 0.11 b 30.5 b

bioPP/10MAS 31.1 ± 0.1 d 6.88 ± 0.11d 6.64 ± 0.13 c 34.3 c

bioPP/20MAS 28.2 ± 0.2 e 6.13 ± 0.34 d 6.14 ± 0.63 c 36.7 d

bioPP/40MAS 27.0 ± 0.1 e 5.37 ± 0.15 e 4.85 ± 0.12 d 37.4 d

a–e Different letters in each column indicate a significant difference between the results (p < 0.05).
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3.7. Water Absorption of bioPP/MAS Composites

The use of lignocellulosic fillers is linked with an increased affinity for water, as can be
seen in Figure 8. While bioPP shows a low ability to absorb water during the immersion,
with less than 0.25% of water uptake after 6 weeks, this weight remained constant until
the end of the test. Kuciel et al. [81] also reported low water uptake values for neat PP,
with a similar value after 240 days of immersion. In addition, with the introduction of a
filler, the water uptake is increased. In their case, the amount of water absorbed is different
depending on the type of filler present. For example, the introduction of kenaf fiber at
a 25 wt. % resulted in a water uptake value of more than 4.5% after 240 days, while
the same proportion resulted in a water uptake value of only 1.5% after 240 days. The
introduction of MAS introduces free hydroxyl groups in cellulose. These groups have a
high affinity for water, resulting in increased water uptake values. An interesting effect
mentioned by Garcia-Garcia et al. is the reduction of water uptake in PP composites with
spent coffee ground, depending on the compatibilization strategy used to improve the
interaction between the polymer and the filler.

Without compatibilization, all the hydroxyl groups of the filler are free to interact with
water, but with, for example, the addition of PP-g-MA, the amount of hydroxyl groups
is reduced, allowing the water uptake values to decrease over time [82]. In prepared
composites, PP-g-MA is included in all formulations to improve the overall properties. In
this case, the amount of water absorbed in the composite with the highest amount of filler
is lower than 2.5%, and the trend during the last few weeks has been stable, so no more
water could be absorbed. In addition, the incorporation of the compatibilizer also allows to
reduce or avoid the presence of gaps between the filler and the polymer matrix, these gaps
being responsible for increasing the water uptake values of the composites as proposed by
Chen et al. [83]. Different strategies have been successfully employed to reduce the water
uptake of the polymer composites made with lignocellulosic fillers; all of them try to reduce
the voids between the filler and the polymer, reduce the hydroxyl groups exposed at the
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filler surface, or both of the effects at the same time [84]. Having a low water uptake is an
interesting property for some applications, like garden decking. With repetitive cycles of
getting wet and dry, those materials that tend to absorb high amounts of water can promote
crack formation [85].
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3.8. Wettability

The surface wetting ability of the bioPP composites has also been evaluated, and Fig-
ure 9 summarizes the water contact angle (θw). Hydrophilic materials are representative
of low values of θw, while high values of θw are synonymous with high water affinity or
hydrophobic behavior. In the literature, several authors consider that a contact angle
θw > 65◦ can be considered the threshold of hydrophobicity [86]. PP is characterized by a
hydrophobic material with θw > 90◦; other authors have proposed a similar result for the
neat polymer, and with the addition of a lignocellulosic filler, this value decreases [87].
As suggested in the water uptake characterization comment, the introduction of MAS
leads to an increase in the water affinity, which favors the increase in the amount of water
absorbed over the time tested. Despite these results, the introduction of 40MAS resulted
in a θw > 75◦ at time 0, which means that the samples can be considered hydrophobic.
Nevertheless, a decrease in the water contact angle is observed to θw = 55◦ after 30 min.
This effect is more pronounced in the composites, as it can be observed that the bioPP
hardly changes the deposition angle during the characterization time. Essaby et al. [40]
reported a similar effect for composites, where a significant decrease in the contact angle
is measured during the first minutes of deposition but a small change is observed after
about 10 min. As they also propose, the incorporation of a coupling agent is beneficial
from the point of view of the hydrophobic behavior since the reduction of the gaps
between the filler and the polymer matrix increases the water affinity and consequently
increases the water contact angle.
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4. Conclusions

The methodology proposed in this work allows the proper obtaining of wood plastic
composites made of bioPP/MAS and PP-g-MA as a compatibilizer. With the twin screw
extrusion process followed by an injection molding process, it is possible to obtain a proper
dispersion of the particles as observed in the morphological study. With this methodology,
a reinforcing effect is obtained in the samples with increased stiffness and tensile strength.
In return, a reduction in the ductile properties is obtained by reducing the chain mobility
with the addition of MAS. This reduced ductility is observed in the surface morphology,
with lower plastic deformation marks. From a thermal point of view, DSC shows that the
introduction of MAS has little effect on the thermal transitions. In TGA, a reduction in
thermal stability is observed since the filler contains cellulose, hemicellulose, and lignin
that start to degrade at low temperatures. This increase in stiffness is also observed in
the thermomechanical analysis with an increase in the storage modulus of the samples.
In addition, XRD tests show that the bioPP forms a α structure during crystallization.
The addition of argan byproducts modified other properties, such as the water affinity.
Proportionally with the filler content, there is an increase in the water uptake values and
a reduction in the water contact angle measured due to the presence of hydroxyl groups
with high affinity to water. Finally, the introduction of the filler leads to a modification of
the color of the samples, making them similar to wood, so that the prepared composites
can be used for the manufacture of products typically made of wood.
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