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Abstract: This laboratory investigation aimed to synthesize and characterize micron-sized Gum
Arabic (GA) powder and incorporate it in commercially available GIC luting formulation for enhanced
physical and mechanical properties of GIC composite. Oxidation of GA was performed and GA-
reinforced GIC in 0.5, 1.0, 2.0, 4.0 & 8.0 wt.% formulations were prepared in disc-shaped using two
commercially available GIC luting materials (Medicem and Ketac Cem Radiopaque). While the
control groups of both materials were prepared as such. The effect of reinforcement was evaluated
in terms of nano hardness, elastic modulus, diametral tensile strength (DTS), compressive strength
(CS), water solubility and sorption. Two-way ANOVA and post hoc tests were used to analyze data
for statistical significance (p < 0.05). FTIR spectrum confirmed the formation of acid groups in the
backbone of polysaccharide chain of GA while XRD peaks confirmed that crystallinity of oxidized GA.
The experimental group with 0.5 wt.% GA in GIC enhanced the nano hardness while 0.5 wt.% and
1.0 wt.% GA in GIC increased the elastic modulus compared to the control. The CS of 0.5 wt.% GA in
GIC and DTS of 0.5 wt.% and 1.0 wt.% GA in GIC demonstrated elevation. In contrast, the water
solubility and sorption of all the experimental groups increased compared to the control groups. The
incorporation of lower weight ratios of oxidized GA powder in GIC formulation helps in enhancing
the mechanical properties with a slight increase in water solubility and sorption parameters. The
addition of micron-sized oxidized GA in GIC formulation is promising and needs further research
for improved performance of GIC luting composition.

Keywords: glass ionomer cement; Gum Arabic; luting cement; mechanical properties; physical properties

1. Introduction

Throughout the years, a wide variety of luting materials have been proposed and
used in restorative dentistry. A range of provisional and long-term luting materials such as
silicate cement, zinc oxide eugenol, zinc phosphate cement, resin-modified glass ionomer
cement, polyalkenoate cement and resin composite are available [1]. However, among
these materials available materials, polyalkenoate cement aka glass ionomer cement (GIC)
is one such mainstream dental luting material.

In addition to adequate working and setting times, the desired attributes for any lut-
ing material for crown and bridge cementation include good bonding to tooth/restoration,
biocompatibility, low solubility, anticariogenicity and appropriate marginal seal with high
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strength properties to resist torsional, shear and compressive forces during functioning [2].
Self-adhesive resin cement is a relatively new addition to luting materials, offering favourable
properties [3]. However, it does not possess the same anti-cariogenic properties as conven-
tional GIC or resin-modified GIC, and it is also intolerant to moisture [4].

In contrast, GIC has certain specific benefits over resin cement, including high bio-
compatibility with the pulp [5], chemical bonding with the tooth structure [6], fluoride
release and recharging [7], which guard the tooth against the development of secondary
caries. Yet, one of the most important drawbacks of GICs is their inherent lower mechanical
properties [1]. Due to the inability to transfer stresses from crowns or fixed partial dentures
to the tooth structure, clinical failure of the restoration is inevitable [8].

In recent years, there have been several endeavours to enhance the characteristics of GIC
restorative materials through the incorporation of fibres into the mixture, aiming to enhance
strength and increase the elasticity modulus. Nevertheless, there is a scarcity of studies con-
centrating on reinforcing the GIC luting material. Recently, an attempt was made to reinforce
silver nanoparticles in GIC luting powder. However, the investigators observed non-significant
results on microhardness and compressive strength [9]. According to a study conducted by
Gupta et al. [10] and Saran et al. [11], incorporating a 10% of ceramic additive in GIC luting pow-
der was found to increase the compressive strength. However, this improvement in properties
came at the cost of longer setting time and increased film thickness.

Gum Arabic (GA), also known as Gum acacia, is a naturally obtained polymer with
antimicrobial activity [12]. It is a non-toxic natural excipient commonly used for the
sustained release of drugs due to its bioactive formula delivery capabilities [13]. GA is
extracted from the hardened exudates of plants Acacia Senegal and Acacia Seyal [10].
It is biocompatible and considered an exceptional binder [13]. For clinical success, the
luting material must exhibit mechanical stability during mastication and parafunctional
habits [14,15]. Considering these traits, we presumed that the addition of micron-sized
oxidized GA powder would provide improved bonding due to surface modification and
introduction of functional groups. This may provide increased reactivity between GA and
GIC particles and reduce the brittleness and prevent sudden crack propagation in GIC.

The primary objective of this laboratory study was to modify the powder composition
of GIC luting cement by incorporating oxidized GA powder in different weight percentages.
The aim was to improve the mechanical characteristics of GIC luting. Specifically, the study
focused on evaluating the compressive strength (CS) and diametral tensile strength (DTS)
of the modified GIC luting through these commonly used tests in research. Additionally,
the surface and physical properties of the experimental GIC luting were examined. The
hypothesis was that the inclusion of GA powder in conventional GIC luting cement would
enhance the aforementioned properties of the experimental GIC luting material.

2. Materials and Method
2.1. Oxidization of GA Powder

In 20 mL of distilled water, 1 g of GA powder was added and the mixture was heated at
70 ◦C and stirred for 30 min. Next, 30 mL of 30% H2O2 was added incrementally followed
by a catalytic amount of FeSO4 (2 mg). The reaction mixture was heated at 100 ◦C for 2 h
and during this time distilled water was added in increments to keep the overall volume of
the mixture remains same. After completion of the reaction which was checked by peroxide
strip test, the water was evaporated in a vacuum.

2.2. Fourier Transform Infrared (FTIR) Spectroscopy Analysis

All solvents and reagents were purchased from Aldrich Chemical Company. To check
for the presence of peroxide in the mixture, peroxide strips were employed as a detection
method. Furthermore, FTIR spectroscopy was conducted to analyze and identify the
molecular components and structures of the GA powder following the oxidation process.
The spectra were performed with the ATR attachment using a spectrometer (Alpha II,
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Bruker, Billerica, MA, USA). The GA powder was placed on the crystal of ATR-FTIR and
the spectra were scanned in the range of 400 to 4000 cm−1.

2.3. X-ray Diffraction (XRD)

XRD evaluation of GA powder was performed for crystal size and phase detection
using Ultima IV diffractometer (Rigaku Corporation, Tokyo, Japan) over 3–140◦ 2θ range at
2.0 deg./min scan speed. Based on the reported procedures, the crystallinity and crystallite
were determined [16]. The tube anode was Cu with Ka = 0.154 nm monochromatized
with a graphite crystal. The pattern was collected at tube voltage (40 kV) and tube current
(40 mA) in step scan mode (step size 0.02◦, counting time 1 s per step).

2.4. Preparation of Samples

Two commercially available type 1 GIC, i.e., Medicem (Promedica, Dental Material
GmbH, Neumuenste, Germany) and Ketac Cem Radiopaque (3M ESPE, Seefeld/Oberbay,
Germany) were obtained and used. To prepare experimental cement, oxidized GA powder
of 50–150 microns in size was added in different weight % (0.5, 1.0, 2.0, 4.0, 8.0 wt.%) to the
powder of each GIC used. The mixture was initially mixed manually and then placed on a
vibrator for 5 min for optimal mixing. The control groups of each GIC brand were prepared
with 0 wt.% of GA (Table 1). The samples of both the control and experimental GICs were
mixed with the liquid according to the recommended powder:liquid ratio, i.e., 1:1.

Table 1. The study groups with their corresponding GA wt.% and a powder:liquid ratio used for the
fabrication of the samples.

Group GIC Powder (gm) GA wt.% in GIC Experimental Powder Formulation (gm) Powder:Liquid Ratio

G1 (Control) 4 0.0 4.00 1:1
G2 4 0.5 4.02 1:1
G3 4 1.0 4.04 1:1
G4 4 2.0 4.08 1:1
G5 4 4.0 4.16 1:1
G6 4 8.0 4.32 1:1

The disk-shaped samples having dimensions of 6 mm diameter and 3 mm height were
prepared from each study group (Figure 1). The samples were prepared by mixing the
powder and liquid until a paste-like consistency was achieved and poured into a silicon
mould. The samples were removed from the mould after 30 min and stored in labelled
containers at 37 ◦C in an incubator for 24 h and subjected to tests to evaluate the physical
and mechanical properties. All samples were prepared by a single trained operator at room
temperature (23 ◦C).
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2.5. Nanoindentation Test

A nanomechanical tester (UMT1, Bruker, Santa Barbara, CA, USA) with a Berkovich
diamond indenter tip having a nominal radius of 100 nm was used to make the nanoin-
dentations. The system was calibrated to produce an accurate indenter area function and
correct instrument compliance. The experiments on study samples (n = 8) were conducted
at a room temperature of 23 ◦C, with loading and unloading rates of 2.0 mN/s and a dwell
time of 10 s during the peak load period. The maximal load was set to 20.0 mN. Each
sample yielded a total of 3 measurements, and the mean value of nano hardness and elastic
modulus for each sample was computed [17].

2.6. Diametral Tensile Strength (DTS) Test

The samples from each group (n = 8) were placed so that their flat ends were parallel
to the base plate of the universal testing machine (Model no. 3369, Instron, Canton, MI,
USA) to put the strain on the samples’ diameter (Figure 2A). A compressive force was
applied using a load cell of 5 kN and a crosshead speed of 1.0 mm/min. The sample was
subjected to compressive force until it fractured. The diametral tensile strength in mega
Pascal was calculated using proprietary software (Bluehill ver. 2.4).
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for diametral tensile strength and (B) under compressive load for compressive strength.

2.7. Compressive Strength (CS) Test

For the compressive strength testing, the samples from each study group (n = 8) were
placed with the flat ends up between the plates of the universal testing machine (Model no.
3369 Instron, Canton, MI, USA). The sample was subjected to a compressive force with a
load cell of 5 kN at a crosshead speed of 0.5 mm/min until it cracked.

2.8. Water Sorption and Solubility Tests

Three samples from each group were selected and stored in a desiccator with silica gel
for 2 h. Next, the samples were incubated at 37 ◦C for 24 h, aiming to reach constant mass.
The samples were weighed using a precise electronic weighing scale (Precisa, EP 320A;
Dietikon, Switzerland), accurate to 0.1 mg to obtain the initial mass (m1) values. After
achieving the initial mass, the specimens were individually immersed in a 5 mL container
with distilled water and stored for 7 d. At the end of the period, samples were removed
from the container and dried with blotting paper to get m2 values. Once again the samples
were placed for dehydration in an incubator at 37 ◦C for 24 h and the weight measurements
were repeated after 24 h (m3).

The difference between the initial mass and the wet mass (m2 − m1) was used to
compute the quantity of water sorption. While the difference between the initial and final
drying mass values of each specimen (m1 − m3) was used to calculate the water solubility.
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The following formulae were used to determine the percentages of water sorption (Wsp)
and solubility (Wsol) for each sample:

Wsp = 100 × (m2 − m1)/m1

Wsol = 100 × (m1 − m3)/m1

where, V is the sample volume before immersion (mm3). For each group, the means and
standard deviations for solubility and sorption were calculated.

2.9. Statistical Analysis

The acquired data were analyzed using statistical software, i.e., SPSS ver. 28 (IBM Corp.,
New York, NY, USA). The one-way analysis of variance (ANOVA) and Tukey’s post hoc tests
were used to compare groups at a 95% confidence level (p < 0.05).

3. Results

In Figure 3, the FTIR spectrum suggests that there was a slight shift of the chemical
peaks from the pure GA to the oxidized sample. It was shown that the fingerprint of GA
(between 900 and 1200 cm−1) was changed confirming that the polysaccharide backbone
was modified by the peroxide reaction. The higher absorbance at 1034 cm−1 could be
attributed to a C-O stretches while at 1640 cm−1 and 1725 cm−1 the absorption peak could
be linked to the vibration of a C=O. It could be related to the aldehyde group present. The
absorption peak at 3316 cm−1 could be related to OH stretching of the acid groups [18].
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Figure 3. FTIR spectra: (A) of the unoxidized GA powder and (B) of the oxidized GA powder.

In Figure 4, the x-ray diffraction spectra of pure GA (Figure 4A) and oxidized GA
(Figure 4B) are demonstrated. Pure GA is amorphous with a few distinct peaks. While
oxidized GA exhibited typical x-ray diffraction peaks particularly in the range of 10◦ to 50◦

(2 θ) indicated a high degree of crystallinity. The diffraction pattern of GA conformed with
the previous published data [19].

Figure 5 displays the graphical representation of the mean and standard deviation
nano hardness values of the study groups. The highest nano hardness was calculated in G2
Medicem (0.57 ± 0.16 GPa). While the lowest nano hardness was observed in G6 Medicem
(0.16 ± 0.06 GPa). The two-way ANOVA model suggests materials had an insignificant
effect (p = 0.113) on nano hardness while study groups caused a significant effect (p = 0.000).
However, the interactive effect was observed as insignificant (p = 0.545).

Figure 6 displays the graphical representation of the mean and standard deviation
elastic modulus values of the study groups. The highest elastic modulus was calculated
in G3 Medicem (24.94 ± 5.54 GPa). While the lowest nano hardness was observed in G6
Medicem (1.53 ± 0.41 GPa). The two-way ANOVA model suggests that materials, study
groups and their interactive effect all had a significant effect on elastic modulus (p < 0.001).
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Figure 6. Bar graph illustrating the mean elastic modulus of the experimental GICs modified with
functionalized GA powder. Note: Insignificant differences were observed between G1:G2; G2:G4;
G5:G6 in Medicem while insignificant differences were observed between G1:G2; G1:G3; G1:G4;
G2:G3; G2:G4; G5:G6 in Ketac Cem Radiopaque.

Figure 7 displays the graphical representation of the mean and standard deviation
diametral tensile strength of the study groups. The highest diametral tensile strength
was calculated in G2 Medicem (18.96 ± 3.08 MPa). While the lowest nano hardness was
observed in G6 Ketac (7.04 ± 1.24 MPa). The two-way ANOVA model suggests that both
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materials and study groups had a significant effect on diametral tensile strength (p < 0.001).
However, their interactive effect was observed as insignificant (p = 0.698).

Figure 8 displays the graphical representation of the mean and standard deviation
compressive strength of the study groups. The highest compressive strength was calculated
in G2 Ketac (60.89 ± 9.78 MPa). While the lowest nano hardness was observed in G6 Ketac
(24.26 ± 2.89 MPa). The two-way ANOVA model suggests that the study groups had a
significant effect on compressive strength (p < 0.001). However, the materials (p = 0.459)
and the interactive effect of materials and study groups were observed as insignificant
(p = 0.119).
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Figure 8. Bar graph illustrating the mean compressive strength of the experimental GICs modified
with functionalized GA powder. Note: Insignificant differences were observed between G1:G2;
G3:G4; and G4:G5 in both Medicem and Ketac Cem Radiopaque.

The ANOVA indicated that there was a significant difference in the water solubility
between the groups (p < 0.001). The control groups of both GICs demonstrated the lowest
solubility %, i.e., 0.29 ± 0.01 and 0.13 ± 0.04 for Medicem and Ketac Cem radiopaque,
respectively. However, the solubility parameters of their corresponding experimental
cement with 0.5% GA formulations were also observed as insignificant compared to the
control groups. Increased wt.% of GA in GICs caused to increase in the solubility %,
irrespective of the GIC cement used. Similarly, water sorption of the control groups
exhibited the least values compared to the experimental formulations. The details are in
Table 2.
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Table 2. Mean (±Standard Deviation) percentage change of water solubility and sorption among the
control and experimental study groups.

Group
Medicem Ketac Cem Radiopaque

Water Solubility (%) Water Sorption (%) Water Solubility (%) Water Sorption (%)

G1 (Control) 0.29 ± 0.11 a 5.82 ± 0.54 a 0.23 ± 0.14 a 1.69 ± 0.17
G2 0.39 ± 0.13 a 6.71 ± 0.32 a,b 0.36 ± 0.17 a 2.18 ± 0.11 a

G3 0.72 ± 0.16 b 7.25 ± 0.27 b,c 1.16 ± 0.24 b 2.59 ± 0.20 a,b

G4 0.85 ± 0.25 b 7.99 ± 0.35 c 1.46 ± 0.12 b,c,d 2.63 ± 0.16 b

G5 1.23 ± 0.10 9.23 ± 0.55 d 1.68 ± 0.31 c,e 3.13 ± 0.49
G6 1.51 ± 0.18 9.88 ± 0.38 d 1.97 ± 0.42 d,e 5.08 ± 0.40

Same lower case letters within the column depict statistically insignificant differences between the groups.

4. Discussion

The current laboratory study successfully synthesized different formulations of GA-
incorporated GICs. The obtained data suggest enhanced physical and mechanical proper-
ties of the few experimental formulations using lower weight ratios of GA powder in GIC
compared to the control group. Therefore, the hypothesis that the experimental GA-based
GIC luting materials would enhance the physical-mechanical characteristics is accepted in
the current investigation.

Peroxide-mediated oxidation of GA converts the polysaccharides present into various
reactive oxygen species. Due to oxidation, many small and large acid groups such as glu-
curonic acid, galacturonic acid, glucaric acid, guluronic acid are formed (Figure 9). These
acids have carboxyl (-COOH) and hydroxyl (-OH) groups attached to the glucose molecule.
The hydroxyl groups of the acids bind with silica, alumina and calcium, present in surplus
amounts in the powder composition of GIC. Also, the formation of acid groups lowers the pH
of the oxidized GA which helps in setting the reaction and improves strength and hardness.
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Because of the fluoride release, GIC is considered to exhibit cariostatic properties.
The fluoride ion may prevent demineralization and bacterial growth. As a result, a luting
material must impede the colonization of cariogenic bacteria at the interface of restoration
and dentine for the longevity of the restoration [7,20]. Hence, GIC luting is the material
of choice. Although visual examination of GIC samples incorporating different weight
percentages of Gum Arabic (GA) revealed a noticeable increase in discoloration (as shown
in Figure 1), the inclusion of 0.5 and 1.0 wt.% of GA in GIC exhibited a relatively minimal
impact on the degree of discoloration. It is anticipated that the color change observed in
0.5 and 1.0 wt.% GA-GIC formulations would be deemed acceptable when utilized for
dental restorations. In this study, we observed that modified GIC with 0.5 and 1.0 wt.%
GA enhanced the nano hardness and elastic modulus. This might suggest that when
GA powder is added in low weight ratios to GIC, it can enhance the nano hardness and
elastic modulus of the set cement by improving the adhesion between the cement particles.
Additionally, due to a high surface area, GA might conform to irregular surfaces in the



Polymers 2023, 15, 2679 9 of 11

set cement. Thus, improving the nano hardness. GA is a natural binding agent [21]. Due
to the adhesive properties and formation of a strong interface with the glass particles,
glass particles might have bonded together and enhanced the cohesion of the cement.
The improved cohesion of the cement particles might help in strengthening the matrix of
the GIC hence resistant to deformation under stress [22]. However, at increased weight
ratios we observed detrimental effects. GA can interfere with the setting reaction of the
GIC, leading to reduced conversion of the reactants and a weaker overall cement matrix.
Additionally, Gum Arabic may contribute to the formation of pores or voids in the GIC
matrix, which can further reduce its mechanical strength. The excess GA powder may lead
to a decrease in the powder’s flowability, making it difficult to mix and handle.

The improved diametral tensile strength using low weight ratios of GA powder
(i.e., 0.5, & 1.0 wt.%) in GIC powder might suggest that the addition of rubbery fillers such
as GA help to reduce the brittleness of the cement by introducing a more ductile phase
into the material [23]. The impregnated fillers prevent crack propagation and increase the
overall strength of the material [24]. Also, the addition of GA can increase the toughness of
the material by absorbing energy during deformation [25]. This results in a material that
is more resistant to fracture and can withstand higher stresses and improved diametral
tensile strength. While the higher wt. ratios of GA powder might lead to a reduction in the
degree of conversion of the cement, which is a measure of the extent to which the liquid
phase has reacted with the powder particles to form a solid network. A decrease in the
degree of conversion resulted in a weaker material with lower diametral tensile strength.

Because of weak compressive strength, GIC luting has limitations for clinical use [26].
We observed that GA powder when added to GIC at low weight ratios, increased the CS.
This might indicate that GA, which is hydrophilic, prevent the water escape before it became
strongly bound by hydration of the cations released from the glass or siloxane groups on the
surface of glass particles [27,28]. The early loss of water reduces the degree of cross-linking and
increases the porosity of the cement [29], leading to a weaker CS. Additionally, GA contains
water-soluble polysaccharides, which can form hydrogen bonds with the polyacrylic acid
component of the cement. These hydrogen bonds help to create a stronger, more cohesive
matrix within the cement, which results in a material that is more resistant to compression [30].
Also, GA contains calcium ions which can react with the glass particles in the cement to form
a stronger bond. This additional bonding mechanism helps to further increase the strength of
the cement and improve its overall mechanical properties.

Water sorption and solubility are critical parameters and are directly related to the
longevity of cement [31]. We observed that with the increasing weight ratios of GA powder
in GIC, the water solubility and sorption of the set GIC cement increased. This is because of
the hydrophilic nature of the GA powder which allows it to interact with water molecules,
which in turn facilitates the penetration of water into the cement matrix [32]. This increased
water penetration leads to enhanced ion exchange between the glass particles and the
surrounding environment, resulting in increased solubility and sorption. The presence
of water can lead to a reduction in mechanical properties and deterioration of the bond
between the luting agent and the tooth surface [33]. Although the G1 group (control) of
both cement showed the least water solubility and sorption values. However, among
the experimental groups, the G2 group of both cement showed insignificant differences
compared to their corresponding G1 groups. The highest solubility and sorption % were
observed in G6 groups, irrespective of the GIC used. This is because GA consists of
polysaccharide that contains both arabinose and galactose sugars [34]. These sugars have
hydroxyl (-OH) groups that make them highly hydrophilic and able to form hydrogen
bonds with water molecules [35]. Since various techniques exist for evaluating solubility
and sorption therefore it is challenging to compare our results with earlier studies.

The improved mechanical attributes of GIC using lower filler loading of GA could have
several seasons such as better particle dispersion and less clustering due to which improved
packing and interfacial bonding between the filler and matrix. The reaction between a
rubbery powder and a weak acid may result in some level of chemical breakdown of the
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rubber, which could cause it to soften or dissolve to some extent leading to better particle
packing. We assume that the higher filler loading of GA interferes with the hydration and
setting reactions of the cement. Hence, the tested properties deteriorated.

The use of GA-reinforced GIC luting would be beneficial in patients with high caries
risk or sensitivity to resin-based materials. GICs are known for their biocompatibility
and low cytotoxicity. They release fluoride, which has antibacterial actions and helps
prevent secondary caries and remineralize the tooth structure [4] and provides long-term
protection to the tooth-restoration interface. Being easier to handle and manipulate during
the cementation process and the ability to set and bond in the presence of moisture, GIC
luting is an appropriate luting choice in most clinical situations.

Experimental studies are often conducted under highly controlled and artificial con-
ditions that may not accurately reflect clinical situations. In future, the effects of different
particle sizes of GA can be studied. The chemical modification of GA such as silanization or
acetylation can be explored. The synergistic effects of the different fillers on the GIC matrix
can be investigated.

5. Conclusions

The chemical characterization of the GA powder confirms the successful oxidation of
polysaccharides into various reactive oxygen species. The findings of this laboratory study
suggest that GA powder is a promising additive for conventional GIC luting material. The
addition of GA in lower weight ratios such as 0.5 and 1.0 wt.% in GIC powder can increase
the mechanical attributes of GIC luting material such as nano hardness, elastic modulus,
CS and DTS. However, statistically insignificant increase in water solubility and sorption
parameters using 0.5 or 1.0 wt.% GA formulations in GIC might suggest further research.
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