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Abstract: Phenolic pollutants released from industrial activities seriously damage natural freshwater
resources, and their elimination or reduction to safe levels is an urgent challenge. In this study,
three catechol-based porous organic polymers, CCPOP, NTPOP, and MCPOP, were prepared using
sustainable lignin biomass-derived monomers for the adsorption of phenolic contaminants in water.
CCPOP, NTPOP, and MCPOP showed good adsorption performance for 2,4,6-trichlorophenol (TCP)
with theoretical maximum adsorption capacities of 808.06 mg/g, 1195.30 mg/g, and 1076.85 mg/g,
respectively. In addition, MCPOP maintained a stable adsorption performance after eight consecutive
cycles. These results indicate that MCPOP is a potential material for the effective treatment of phenol
pollutants in wastewater.
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1. Introduction

Global population growth and industrial expansion have led to an increasing demand
for freshwater resources, but water pollution has become a serious problem impeding
freshwater supplies [1–3]. Phenolic pollutants in water present a particularly high potential
risk because of their toxicity, non-biodegradability, and carcinogenicity, which makes them
susceptible to human enrichment and poses serious health risks [4,5]. The development
of new methods for the efficient removal of phenolic pollutants from water has become a
pressing issue [6]. Adsorption [7,8] has the advantages of a wide processing range, low cost,
and easy operation compared to other water treatment methods such as membrane separa-
tion [9–11], ion exchange [12–15], and electrochemical [16,17] and photodegradation [18,19].
However, conventional adsorbent materials such as activated carbon [20], chitosan [21], and
mesoporous silica nanoparticles [22] have shown a relatively lower adsorption capacity and
still need further improvement to meet the practical requirements for removing phenolic
pollutants. In this sense, finding efficient, eco-friendly phenol adsorbents is always highly
desired and represents a great challenge for relative researchers.

Porous organic polymers (POPs) are an emerging class of functionalized porous ma-
terials designed and assembled from organic precursors [23]. They have tremendous
tunable functional properties in terms of high specific surface area, rich pore structure, and
type/number of chemical groups [24–27]. However, most of the current POPs feedstock is
derived from petrochemicals, and the development and reuse process inevitably results in
secondary damage [28]. Accordingly, the development of sustainable renewable raw mate-
rials for the preparation of POPs as alternatives is attractive and essential. It is known that
lignin is the most abundant natural renewable source of organic carbon as a supplementary
resource to petroleum products [29]. The depolymerization of lignin provides various
sustainable aromatic monomers [30,31], which can be used for the construction of novel
biomass-derived POPs sorbents [32,33]. By selecting and assembling different biomass
monomers and linkers, many fascinating POPs have been found to exhibit impressive
adsorption capabilities [34–37]. Catechol has certain functional monomeric advantages
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as a typical lignin-derived monomer with hydrophilic o-hydroxy functional groups and
different post-synthetic strategies [38]. Although some POPs prepared based on catechol
have proved to have potential applications in the field of adsorption and separation, studies
on their phenolic adsorption properties are still less explored [39,40].

Herein, to obtain green and efficient biomass adsorbents and to investigate the ef-
fect of catechol derivatives on the structure and adsorption properties of polymers, we
chose sustainable catechol (Ccol), 2,3-naphthalene diol (Ntdiol), and 4-methyl catechol
(Mcol) as monomers and formaldehyde dimethyl acetal (FDA) as a cross-linker to obtain
three new POPs (CCPOP, NTPOP, and MCPOP), by using the Friedel–Crafts alkylation
reaction. Cross-linked networks are formed by polymerization to form polymers with a
high specific surface area, a rich pore structure, and a polyhydroxylated structure, thus
enabling the more efficient adsorption of pollutants in water. The adsorption of three POPs
for phenolic pollutants in water was studied systematically. As a result, three catechol-
based POPs exhibit high phenol adsorption capacity compared with previously reported
porous organic polymers. In particular, NTPOP and MCPOP reached 1195.30 mg/g and
1076.85 mg/g, which are greater than most POPs that have been reported. The difference
between CCPOP, NTPOP, and MCPOP comes from the different structures of the cate-
chol derivative monomers, which enable the three polymers to have different molecular
sizes, specific surface areas, and phenolic pollutants’ adsorption capacities. The current
work provides insights into the efficient adsorption of phenolic pollutants by sustainable
biomass POPs.

2. Materials and Methods
2.1. Materials

Catechol (Ccol), 2,3-naphthalene diol (Ntdiol), and 4-methyl catechol (Mcol) were
purchased from Shanghai McLean Biochemical Technology Co., Ltd. (Shanghai, China).
Formaldehyde dimethyl acetal (FDA), bisphenol A (BPA), 4,4′-sulfonyldiphenol (BPS), phe-
nol, 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP), and 2,4,6-trichlorophenol (TCP) were
purchased from Sa’en Chemical Technology Co., Ltd. (Shanghai, China). 1,2-dichloroethane
was purchased from Tianjin Fuyu Fine Chemical Co., Ltd. (Tianjin, China). FeCl3 was
purchased from Tianjin Bodi Chemical Co., Ltd. (Tianjin, China). Methanol anhydrous
was purchased from Tianjin Dongli District Tianda Chemical Reagent Factory (Tianjin,
China). Activated carbon was purchased from Tianjin Beichen Fangzheng Reagent Factory
(Tianjin, China).

2.2. Polymer Synthesis

The polymer synthesis process is shown in Scheme 1, according to the previously
reported work [38]. In a typical Schlenk tube, 20 mmol of Ccol, Mcol, or Ntdiol was
dissolved in 30 mL of 1,2-dichloroethane solvent separately. Further, 40 mmol of FDA and
FeCl3 was added to the reaction mixtures under dry conditions. The resulting mixtures
were stirred for 5 h at 45 ◦C and then heated to 80 ◦C for 19 h. After cooling, the resulting
solids were collected by filtration and washed with methanol solvent until colorless filtrates
were found. Moreover, the reaction mixtures were purified with methanol by the Soxhlet
extraction process for 24 h and dried under the vacuum pump to obtain polymers, i.e.,
CCPOP, MCPOP, and NTPOP, respectively.
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2.3. Characterization

The Fourier transform infrared (FT-IR) spectra of the polymers were tested by the
JASCO IR-4100 spectrometer (JASCO, Tokyo, Japan). The solid-state 13C cross-polarization
with magic-angle spinning (CP/MAS) results were collected by a 599.7 MHz nuclear
magnetic resonance spectrometer (JNM-ECZ600R, Agilent, Santa Clara, CA, USA). Powder
X-ray diffraction (PXRD) results were obtained by using a Rigku D/max-2400 diffractometer
(40 kV, 200 mA) from 5◦ to 80◦ with a scanning rate of 2◦/min (Bruker AXS, Madison, WI,
USA). The scanning electron microscopy (SEM) analysis was examined by using HITACHI-
SU5000 (HITACHI, Tokyo, Japan). The results of the adsorption and desorption of N2 were
obtained by an analyzer called Quantachrome-Autosorb IQ (Quntachrome, Kanagawa,
Japan). The thermogravimetric (TGA) analysis was executed by using Mettler Toledo
TGA/DSC 3+ (Mettler Toledo, Greifensee, Switzerland) under a nitrogen atmosphere.
Samples were heated from 25–800 ◦C with a 10 ◦C/min heating rate. The ultraviolet (UV)
spectra of the polymers were measured by the JASCO V-750 (JASCO, Tokyo, Japan). The
X-ray photoelectron spectroscopy (XPS) analysis was examined by using ESCALAB XI+
(thermo, Oxford, UK).

2.4. Batch Adsorption Experiments

Phenol, 4-CP, DCP, TCP, BPA, and BPS were used as model pollutants to study the
adsorption properties of the polymers (CCPOP, NTPOP, and MCPOP). Solutions of phenol
contaminants with a certain concentration gradient were prepared, the absorbance at
different concentrations was measured by a UV spectrophotometer, and the peak values
at the corresponding wavelengths (λPhenol = 269.8 nm, λ4-CP = 280 nm, λDCP = 284 nm,
λTCP = 286.8 nm, λBPA = 276 nm, λBPS = 277 nm) were recorded. The standard curves were
fitted to the absorbance concentrations according to the Lambert–Bier law. The actual
concentration of the solution can be calculated from the standard curve. The polymeric
adsorbents were added to an initial concentration of 100 mg/L of model aqueous solution
(10 mL) for adsorption. After the adsorption experiment, the solid and liquid phases were
separated by a 0.22 µm filter membrane syringe, and the filtrate was collected. The residual
concentrations of phenol, 4-CP, DCP, TCP, BPA, and BPS in the filtrate were determined by
UV spectrophotometry. The amount of adsorption at the equilibrium state (Qe, mg/g) is
calculated by the given equation.

Qe =
(C0 − Ce)V

m
(1)
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in which Qe (mg/g) is the equilibrium adsorption capacity; C0 and Ce (mg/L) are the initial
and final equilibrium concentrations of phenol, 4-CP, DCP, TCP, BPA, and BPS in solution;
V (mL) is the volume of solution; and m (mg) is the mass of the adsorbent.

Adsorption kinetics experiments were carried out at room temperature by magnetic
stirring. CCPOP, NTPOP, and MCPOP (30 mg) were added to TCP aqueous solution
(150 mg/L, 80 mL) and BPA aqueous solution (50 mg/L, 60 mL), respectively. The con-
centrations of TCP and BPA were calculated at different times by UV spectrophotometry.
Pseudo-first-order and pseudo-second-order kinetic models were used to analyze the
kinetics of the adsorption of phenolic pollutants. The kinetic model equations for pseudo-
first-order and pseudo-second-order are as follows.

Qt = Qe

(
1−Qte−k1t

)
(2)

Qt =
k2Q2

e t
1 + Qek2t

(3)

in which Qe (mg/g) is the equilibrium adsorption amount, t (min) is the adsorption time,
Qt (mg/g) is the phenolic pollutants adsorption amount at time t (min), k1 (min−1) is the
pseudo primary rate constant, and k2 (g/(mg min)) is the pseudo secondary rate constant.

To assess the saturation adsorption capacity of the polymeric adsorbents for TCP
and BPA, adsorption isotherms were tested at 25 ◦C. CCPOP, NTPOP, and MCPOP (4 mg)
were added to an aqueous solution of TCP (concentration: 100–500 mg/L, 10 mL); CCPOP,
NTPOP, and MCPOP (5 mg) were added to an aqueous solution of BPA (concentration:
50–300 mg/L, 10 mL) and adsorbed while stirring to ensure saturation of adsorption. The
Langmuir and Freundlich models were used to quantify and compare the adsorption per-
formance of different polymeric adsorbents (CCPOP, NTPOP, and MCPOP). The equations
for the Langmuir and Freundlich models are as follows.

Qe =
QmKLCe

1 + KLCe
(4)

lnQe = lnKF +
1
n

lnCe (5)

in which KL and KF are the constants of the Langmuir and Freundlich models, respectively,
1
n is the empirical parameter of the Freundlich model, Ce (mg/g) is the equilibrium con-
centration of phenolic pollutants, Qe (mg/g) is the equilibrium adsorption capacity, and
Qm (mg/g) is the maximum adsorption capacity.

2.5. Adsorption Cycling Experiments

The adsorbent is desorbed and regenerated by immersion in a solution of acetone
and ethanol. The precipitate was collected by centrifugal precipitation and dried at 80 ◦C
for the next cycle. The regeneration performance of the adsorbent was explored through
eight consecutive adsorption–desorption cycles. The pollutant removal efficiency after each
cycle was calculated separately. Equilibrium removal efficiency (%) is calculated using the
following equations.

Removal e f f iciency (%) =

(
C0 − Ce

C0

)
× 100% (6)

where C0 and Ce (mg/L) are the initial and final equilibrium concentrations of TCP in
solution. The initial TCP concentration was 200 mg/L.

2.6. Adsorption Mechanism

To understand the mechanism of interaction between MCPOP and TCP, pH experi-
ments and FT-IR spectroscopy were carried out. In the pH effect experiments, MCPOP
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(5 mg) was added to TCP aqueous solution (200 mg/L, 10 mL) at different pH (pH ad-
justed by HCl and NaOH), and the residual concentration was measured to calculate the
adsorption amount.

3. Results and Discussion
3.1. Characterization of the Adsorbents

The FT-IR spectra of CCPOP, NTPOP, and MCPOP are shown in Figure 1a. For CCPOP,
NTPOP, and MCPOP, the peaks at 2985 cm−1 and 2831 cm−1 (stretching vibration of C−H)
are ascribed to the methylene group of the FDA. The source of the bands at 3500 cm−1 and
1200 cm−1 (O−H and C−O) is the hydroxyl group fixed on the aromatic ring. In addition,
three polymers were further characterized by solid-state 13C cross-polarization magic-angle
spinning (CP-MAS) NMR spectroscopy. As shown in Figure S1, the high-intensity charac-
teristic resonance observed at 14–50 ppm represents the methylene signal of cross-linking
with FDA in the framework, which indicates that the catechol-derived monomers were
successfully cross-linked with FDA. Furthermore, the characteristic resonances observed
at around 120–150 ppm represent the aromatic and non-substituted aromatic carbons on
phenolic hydroxyl groups, and the specific resonance peaks indicate that the polymer is a
chemical structure cross-linked by catechol monomers.

Polymers 2023, 15, x FOR PEER REVIEW 5 of 14 
 

 

mg) was added to TCP aqueous solution (200 mg/L, 10 mL) at different pH (pH adjusted 
by HCl and NaOH), and the residual concentration was measured to calculate the adsorp-
tion amount. 

3. Results and Discussion 
3.1. Characterization of the Adsorbents 

The FT-IR spectra of CCPOP, NTPOP, and MCPOP are shown in Figure 1a. For 
CCPOP, NTPOP, and MCPOP, the peaks at 2985 cm−1 and 2831 cm−1 (stretching vibration 
of C−H) are ascribed to the methylene group of the FDA. The source of the bands at 3500 
cm−1 and 1200 cm−1 (O−H and C−O) is the hydroxyl group fixed on the aromatic ring. In 
addition, three polymers were further characterized by solid-state 13C cross-polarization 
magic-angle spinning (CP-MAS) NMR spectroscopy. As shown in Figure S1, the high-
intensity characteristic resonance observed at 14–50 ppm represents the methylene signal 
of cross-linking with FDA in the framework, which indicates that the catechol-derived 
monomers were successfully cross-linked with FDA. Furthermore, the characteristic res-
onances observed at around 120–150 ppm represent the aromatic and non-substituted ar-
omatic carbons on phenolic hydroxyl groups, and the specific resonance peaks indicate 
that the polymer is a chemical structure cross-linked by catechol monomers. 

  

  

Figure 1. (a) Fourier transform infrared (FT-IR); (b) X-ray photoelectron spectroscopy (XPS); (c) N2 
adsorption–desorption curves; (d) pore-size distribution curve of CCPOP, NTPOP, and MCPOP. 

Powder X-ray diffraction (PXRD) plots show a broad rather than a sharp peak at 
around 2θ = 20° (Figure S2), indicating that all three polymers are not crystalline but amor-
phous structures. The XPS measurements were performed to investigate the elemental 
composition of CCPOP, NTPOP, and MCPOP. The XPS images (Figure 1b) indicated the 
existence of C and O in the CCPOP, NTPOP, and MCPOP. A consecutive series of binding 
energies in the range of 284.4–284.6 eV, 285.0–285.22 eV, 286.27–286.42 eV, and 288.70–

4000 3500 3000 2500 2000 1500 1000 500

1200cm-1

3450cm-1

(a)

2831cm-12985cm-1

Tr
an

sm
itt

an
ce

 (%
)

Wavenumber (cm-1)

 CCPOP
 NTPOP
 MCPOP

1200 1000 800 600 400 200 0

O1s

MCPOP

NTPOP

In
te

ns
ity

 (a
.u

.)

Binding Energy (eV)

CCPOP

C1s
(b)

0.0 0.2 0.4 0.6 0.8 1.0

0

50

100

150

200

250

300
 

V
ol

um
e A

ds
or

be
d 

(c
c/

g)

Relative Pressure (P/P0)

CCPOP

NTPOP

MCPOP

(c)

0 2 4 6 8 10 12 14 16 18 20

 

dV
/d

W

Pore Width (nm)

MCPOP

NTPOP

CCPOP

(d)

Figure 1. (a) Fourier transform infrared (FT-IR); (b) X-ray photoelectron spectroscopy (XPS);
(c) N2 adsorption–desorption curves; (d) pore-size distribution curve of CCPOP, NTPOP, and MCPOP.

Powder X-ray diffraction (PXRD) plots show a broad rather than a sharp peak at
around 2θ = 20◦ (Figure S2), indicating that all three polymers are not crystalline but
amorphous structures. The XPS measurements were performed to investigate the elemen-
tal composition of CCPOP, NTPOP, and MCPOP. The XPS images (Figure 1b) indicated
the existence of C and O in the CCPOP, NTPOP, and MCPOP. A consecutive series of
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binding energies in the range of 284.4–284.6 eV, 285.0–285.22 eV, 286.27–286.42 eV, and
288.70–288.81 eV were distinguished in the C1s XPS spectra (Figure 2a–c), which could be
attributed to C=C, C−C, C−OH and C=O functional groups, respectively. The C−OH and
C=O photoelectron peaks approximately appeared at 533.05 and 532.00 eV, respectively. In
addition, the surface morphology of the polymers was investigated by scanning electron
microscopy (SEM). As shown in Figure S3, after cross-linking to form the polymers, CCPOP
and NTPOP are composed of fused small particles with partially spherical structures; in
contrast, MCPOP shows a porous structure and irregular surface state. FeCl3 is loaded into
the polymer by complexation with the O atoms in the catechol monomer [41].
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The permanent porosities and surface areas of the three polymers were further mea-
sured and calculated by using N2 adsorption–desorption isotherm at 77 K. As shown in
Figure 1c, the specific surface areas of CCPOP, NTPOP, and MCPOP were 33.89 m2/g,
93.26 m2/g, and 665.97 m2/g, respectively. MCPOP formed a type I adsorption and desorp-
tion curve while CCPOP and NTPOP formed type III adsorption and desorption graphs.
Combined with pore-size distribution (PSD) (Figure 1d), the significant increase in adsorp-
tion at low pressure indicates a large number of micropores in the MCPOP. As shown in
Table 1, the pore volume of MCPOP is significantly larger compared to CCPOP and NTPOP,
indicating a better degree of cross-linking of MCPOP. MCPOP had large SBET and abundant
pore space, which can be attributed to two reasons: (1) Different catechol monomers have
different effects on the pore size, pore volume, and specific surface area of the polymer.
Mcol as a reaction precursor significantly increases the pore volume and specific surface
area of the polymer. The spatial site resistance effect is also an important factor. (2) The
adjacent hydroxyl structure may not be conducive to Friedel-Crafts reaction cross-linking
to form a network structure, as the FeCl3 catalyst tends to complex with the O atoms to
deactivate the catalyst [31].
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Table 1. Information on the polymers’ specific surface area, pore volume, and main pore size.

Samples SBET (m2/g) VTotal (cm3/g) Pore Size (nm)

CCPOP 33.89 0.05 2.38
NTPOP 93.26 0.22 2.00
MCPOP 665.97 0.42 0.67

TGA was used for the thermal analysis of the three catechol polymers, as shown in
Figure S4. First, the weight loss between room temperature and 100 ◦C was caused by
the evaporation of water from the samples. The weights of the three catechol polymers
remained essentially constant between 100 ◦C and 250 ◦C, indicating that the evaporation of
crystalline water from the polymers was complete. Between 250 ◦C and 450 ◦C, the polymer
weight loss increased sharply, presumably due to the decomposition of the polymers.

3.2. Batch Adsorption Experiments

To investigate the adsorption performance of the three polymers on phenolic pollutants
in water, batch adsorption experiments were first performed on phenol, 4−CP, DCP, TCP,
BPA, and BPS, as shown in Figures 3 and S5. The 100 mg/L TCP solution was passed
through the filter membrane as a blank control experiment. The error of approximately
4% is within reasonable limits. When the initial concentration of phenolic pollutants in
water was 100 mg/L, all three polymers were able to adsorb them to some extent, and
the adsorption amounts are shown in Table S1. Comparing the three polymer adsorbents,
MCPOP had the highest adsorption capacity. For chlorophenols, the adsorption capacity
of the adsorbent increased with the number of −Cl substituents on the benzene ring.
Chlorophenol adsorption mainly relies on hydrogen bonding, and the more the number of
−Cl substituents increases, the easier it is to form hydrogen bonds between the adsorbent
and the chlorophenols. This leads to the significant adsorption of TCP by the polymer. In
addition, CCPOP, NTPOP, and MCPOP also showed high adsorption amounts for BPA
(0.3536 mmol/g, 0.2712 mmol/g, and 0.6368 mmol/g). Therefore, TCP and BPA were
selected to further investigate the adsorption properties of the polymers.
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Figure 3. UV-vis spectra of (a) phenol, (b) 4-CP, (c) DCP, and (d) TCP aqueous solution. (Adsorbents:
5 mg, initial concentration: 100 mg/L, t = 8 h).
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3.3. Adsorption Kinetics

To study the adsorption capacity of polymeric adsorbents on TCP and BPA, we investi-
gated the adsorption kinetics of TCP and BPA. The data are shown in Figures 4a–c and S6a–c.
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Figure 4. Kinetic modeling of TCP adsorption onto (a) CCPOP, (b) NTPOP, and (c) MCPOP. (Adsor-
bents: 30 mg, initial concentration: 150 mg/L, V = 80 mL, temperature: 25 ◦C).

The adsorption of TCP rapidly increased in the initial stage of adsorption, indicating
that CCPOP, NTPOP, and MCPOP have significant adsorption affinity for TCP. Moreover,
during the adsorption of BPA, MCPOP reached the adsorption equilibrium within 60 min,
and CCPOP and MCPOP reached the adsorption equilibrium within 480 min. The adsorp-
tion efficiency of the adsorbents on TCP and BPA was evaluated by pseudo-first-order
and pseudo-second-order kinetic models. The corresponding parameters and correlation
coefficients obtained from the two models are listed in Tables 2 and S2. Predictably, for
CCPOP, NTPOP, and MCPOP adsorbents, pseudo-second-order kinetics can better describe
TCP and BPA adsorption (R2 > 0.996), indicating that the adsorption of CCPOP, NTPOP,
and MCPOP is mainly by chemisorption.

Table 2. Parameters of the pseudo-first-order and pseudo-second-order models of adsorption TCP.

Models Parameters CCPOP NTPOP MCPOP

Pseudo-first-
order model

Qe (mg/g) 167.9811 166.6401 316.5042
k1 (min−1) 0.0732 0.0746 0.1718
R2 0.9751 0.9950 0.9840

Pseudo-second-
order model

Qe (mg/g) 182.6841 180.6428 335.2129
k2
(g·mg−1·min−1) 5.7793 × 10−4 6.0143 × 10−4 7.7736 × 10−4

R2 0.9967 0.9978 0.9999

3.4. Adsorption Isotherms

The maximum adsorption capacities of polymeric adsorbents for TCP and BPA were
evaluated by adsorption isotherms.

The initial concentrations of aqueous solutions of TCP were in the range of 100–500 mg/L,
and the initial concentrations of BPA were in the range of 50–300 mg/L. The adsorption pro-
cesses of TCP and BPA were fitted using Langmuir and Flanders models, as shown in
Figures 5a–c and S7a–c, and the relevant parameters and correlation coefficients are listed
in Tables 3 and S3. The maximum adsorption amounts of TCP by CCPOP, NTPOP, and
MCPOP were 808.06 mg/g, 1195.30 mg/g, and 1076.85 mg/g, respectively; the maxi-
mum adsorption amounts of BPA by CCPOP, NTPOP, and MCPOP were 203.94 mg/g,
272.94 mg/g, and 264.48 mg/g, respectively. The adsorption capacities of several repre-
sentative materials in phenol solutions are presented in Table 4. The results illustrated
that NTPOP and MCPOP have a higher adsorption capacity in solution compared to the
reported adsorbent materials [42–47]. The adsorption capacity of activated carbon for
TCP is 16.23 mg/g. The new polymers have a higher adsorption capacity for TCP. The
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higher saturation adsorption capacity can be attributed to the large specific surface area
of the polymeric adsorbent, the rich pore structure, and the presence of a large number of
o-hydroxyl groups on the benzene ring of the polymer. The adsorption process is influenced
by several different factors such as hydrogen bonding, mass transfer, and π−π interactions.
The polymers are structurally different, but the combined effect of many factors results in
similar adsorption capacities.
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Figure 5. Isothermal adsorption curves of TCP onto (a) CCPOP, (b) NTPOP, and (c) MCPOP. (Adsor-
bents: 4 mg, V = 10 mL, temperature: 25 ◦C).

Table 3. Parameters of Langmuir and Freundlich adsorption isotherm models of adsorption TCP.

Models Parameters CCPOP NTPOP MCPOP

Langmuir
Qm (mg/g) 808.06 1195.30 1076.85
KL (L/mg) 0.0056 0.0039 0.0138
R2 0.9998 0.9927 0.9664

Freundlich
n 0.6027 1.6035 0.4672
KF
[(mg·g−1)(mg·L−1)−1/n] 17.2516 17.9525 68.5325

R2 0.9838 0.9991 0.9999

Table 4. Comparison of adsorption rates and Qm with reported adsorbents.

Absorbents Equilibrium Time (min) Qm (mg/g) References

[Zn(hba)2(tmdp)]n 180 207.8 [42]
GO-PVPP 240 466.7 [43]

TEPM-MON 3 294.6 [46]
β-CDP 10 108.0 [47]

PCD-PCP(L) 150 816.5 [48]
PCD-PCP(H) 150 647.6 [48]

CCPOP 120 808.06 This work
NTPOP 120 1195.30 This work
MCPOP 60 1076.85 This work

3.5. Adsorption Cycling

The recoverability of phenolic adsorbents is an important indicator for achieving
industrial applications. Specifically, the recoverability of MCPOP for TCP was investigated
by cyclic adsorption–desorption experiments. As shown in Figure 6, after eight adsorption–
desorption regeneration cycles, the removal efficiency of TCP decreased slightly and
remained above 80%; presumably, the decrease in removal was mainly due to the partial
loss of polymeric adsorbent during the cyclic regeneration process.
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Figure 6. Removal efficiency of TCP by MCPOP in different cycles. (Adsorbents: 5 mg, V = 10 mL,
C0 = 200 mg/L, t = 600 min).

3.6. Adsorption Mechanism

To further analyze the adsorption mechanism of MCPOP-adsorbed TCP, we performed
pH experiments and FT-IR spectroscopy studies on MCPOP.

As shown in Figure 7a, the adsorption of MCPOP was high and relatively stable when
the pH was in the range of 3.0 to 8.0, but it decreased sharply as the pH in the solution
continued to increase. It is presumed that this is due to the protonation of TCP under
acidic conditions, which gives MCPOP the characteristics of strong electrostatic attraction
and adhesion to TCP. However, under alkaline conditions, TCP deprotonates and forms
electrostatic repulsion, resulting in the poorer adhesion of ionized MCPOP.
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Figure 7. (a) The effect of pH on the adsorption of TCP by MCPOP; (b) FT-IR spectra of before and
after loading phenolic pollutants.

The FT-IR spectra of MCPOP polymer adsorbent before and after the adsorption of
TCP are shown in Figure 7b, where the original −OH of MCPOP was red-shifted (from
3372 to 3341 cm−1) after adsorption, indicating the formation of hydrogen bonds between
MCPOP and TCP [48]. Based on the above adsorption model fitting, pH experiments, and
instrumental analysis results, Figure 8 shows a schematic representation of the adsorption
of TCP by MCPOP, elucidating the electrostatic interactions, π–π interactions, and hydrogen
bonding interactions between the adsorbent and the contaminant.
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Figure 8. Adsorption mechanism of MCPOP for TCP.

4. Conclusions

In this study, three new polyhydroxy biomass POPs, CCPOP, NTPOP, and MCPOP,
were successfully constructed by cross-linking for sustainable catechol as the functional
monomer and FDA as the linker. The small structural variations of the catechol derivatives
produced significant differences in the specific surface area of the polymers, with CCPOP
having a specific surface area of 33.89 m2/g and MCPOP having a specific surface area
of 665.97 m2/g. As a result of the adsorption, the POPs showed highly efficient phenolic
pollutants adsorption capacities of 808.06 mg/g (CCPOP), 1195.30 mg/g (NTPOP), and
1076.85 mg/g (MCPOP), which is much better than previously reported for POPs adsorbent
materials, especially biomass materials. Moreover, the MCPOP in cycling experiments
maintained an adsorption efficiency of over 80% after 10 cycles, which is more suitable for
complex and realistic environments. This study is expected to facilitate the application of
bio-based porous polymers in the field of phenolic pollutant adsorption.
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