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Abstract: Polyacrylate-based network materials are widely used in various products owing to their
facile synthesis via radical polymerization reactions. In this study, the effects of alkyl ester chains
on the toughness of polyacrylate-based network materials were investigated. Polymer networks
were fabricated via the radical polymerization of methyl acrylate (MA), ethyl acrylate (EA), and
butyl acrylate (BA) in the presence of 1,4-butanediol diacrylate as a crosslinker. Differential scanning
calorimetry and rheological measurements revealed that the toughness of MA-based networks
drastically increased compared with that of EA- and BA-based networks; the fracture energy of the
MA-based network was approximately 10 and 100 times greater than that of EA and BA, respectively.
The high fracture energy was attributed to the glass transition temperature of the MA-based network
(close to room temperature), resulting in large energy dissipation via viscosity. Our results set a new
basis for expanding the applications of polyacrylate-based networks as functional materials.

Keywords: poly(methyl acrylate); polymer networks; fracture energy; glass transition temperature;
polymer toughness; radical polymerization

1. Introduction

Polymer network materials are widely used in the industry because of their high
toughness and elasticity [1–6]. Their broad range of applications is attributed to the diverse
chemical and physical properties of their various polymer chains. Poly(alkyl acrylate)s,
such as poly(ethyl acrylate)s and poly(butyl acrylate)s, are easily accessible polymers
exhibiting high applicability to various polymerization reactions, including free-radical
and living-radical polymerizations [7–13]. However, poly(alkyl acrylate)-based materials
exhibit relatively weaker toughness compared with polymethacrylate, polybutadiene,
and polystyrene-based materials [14–17] and have been seldom used as tough materials;
Poly(ethyl acrylate)s and poly(butyl acrylate)s are used as adhesives [18–20]. Recently, the
toughness of polyacrylate-based network materials has been enhanced by block or random
copolymerization with other polymer chains and interpenetrations with polymer networks,
such as double-network materials [21–34]. Hence, despite the significant potential of
poly(alkyl acrylate)-based network materials, simple methodologies for enhancing their
toughness are limited. Therefore, the development of a simple and efficient method for
increasing the fracture energy of poly(alkyl acrylate)-based polymer networks could expand
their use in strong structural and functional materials.

Herein, the systematic investigation of alkyl ester groups in polyacrylate-based net-
work materials revealed a specific toughening effect in poly(methyl acrylate) compared
with other alkyl esters. To date, systematic evaluations of the effects of alkyl groups
of polyacrylate-based elastic network materials on their toughness have been rarely re-
ported, while the effects of alkyl groups of linear poly(alkyl acrylate)s [35–38] and rigid
networks [39] have been examined. Our investigation revealed that poly(methyl acrylate)
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exhibited the highest fracture energy among the polyacrylate-based network materials
composed of methyl, ethyl, and butyl esters, which were prepared by the radical copoly-
merization of alkyl acrylates and 1,4-butanediol diacrylate as a crosslinking agent. The
enhancement of toughness was attributed to the higher glass transition temperature (near
room temperature) of the poly(methyl acrylate) network material compared with the others.

2. Materials and Methods
2.1. Materials

Methyl acrylate (MA) and 2,2′-azobis(2,4-dimethylvaleronitrile) (ADVN) were pur-
chased from FUJIFILM Wako Pure Chemical. Ethyl acrylate (EA), n-butyl acrylate (BA),
and 1,4-butanediol diacrylate were purchased from Tokyo Chemical Industry. Dimethylfor-
mamide (DMF) was purchased from KANTO CHEMICAL. All reagents and solvents were
commercially obtained and used as received.

2.2. Preparation of Polymer Networks

The polymer networks were prepared via a general free-radical polymerization pro-
cess according to a previously published procedure [13]. As shown in Table 1, the reaction
solution composed of the monomer (MA, EA, or BA, 11.2 mmol), 1,4-butanediol diacrylate
(0.0005, 0.0020, or 0.010 eq.), and ADVN (0.011 mmol) in DMF (200 µL) was degassed in
triplicate using the freeze-thaw technique. The solution was injected into a polytetrafluo-
roethylene (PTFE)-coated reaction mold (40 × 40 × 0.5 mm3). The mold was composed of
two PTFE-coated glass slides with a 0.5 mm thick spacer, and the glass slides and spacer
were held with binder clips (Figure S1). The reaction solution was then placed in an oven
(60 ◦C, 18 h) for polymerization, affording films as network materials containing DMF. After
polymerization, the obtained network materials were placed in a vacuum oven at 120 ◦C
for 12 h to remove the remaining solvents and monomers, thus providing elastomeric films.

Table 1. Composition of the reaction solution for the synthesis of the network materials MAX, EAX,
and BAX.

Network
Material

Monomer
(MA, EA, or BA)

Crosslinker
(1,4-Butanediol Diacrylate)

Initiator
(ADVN) Solvent (DMF)

[mL] [mmol] [µL] [mmol] [mg] [mmol] [mL]

MA005 1.00 11 1.05 0.0055 2.8 0.011 0.20
MA020 1.00 11 4.21 0.022 2.8 0.011 0.20
MA100 1.00 11 21.0 0.11 2.8 0.011 0.20
EA005 1.19 11 1.05 0.0055 2.8 0.011 0.20
EA020 1.19 11 4.21 0.022 2.8 0.011 0.20
EA100 1.19 11 21.0 0.11 2.8 0.011 0.20
BA005 1.59 11 1.05 0.0055 2.8 0.011 0.20
BA020 1.59 11 4.21 0.022 2.8 0.011 0.20
BA100 1.59 11 21.0 0.11 2.8 0.011 0.20

2.3. Characterization

Differential scanning calorimetry (DSC) measurements were performed using Shi-
madzu DSC-60A Plus under nitrogen flow. Approximately 10 mg of polymer network
materials were loaded into aluminum pans. For the measurement of the glass transition tem-
perature, the samples were first heated to 120 ◦C at 10 ◦C/min and equilibrated for 20 min
to remove thermal history. A subsequent cool/heat cycle was carried out at 5 ◦C/min. The
Tg data presented in the main text was taken from the second heating curves.

Tensile tests were performed with a Shimadzu EZ-SX tester equipped with a 50 N
load-cell. The dumbbell-shaped sample (ISO 37-4 shrunk by 2/3, the initial length of the
parallel section was 8 mm) with a thickness of 0.3−0.4 mm was cut from the polymer
network materials. The test piece was stretched at a constant crosshead speed at 5 mm/min,
50 mm/min, and 500 mm/min until the test piece failure. At least three test pieces were
tested at room temperature, and their mean and standard error were calculated.
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The linear viscoelastic properties of the network materials were investigated using a
TA Instruments HR30 rheometer equipped with a convection oven and a liquid nitrogen
cooling system. The round sample (a radius of 9 mm) with a thickness of 0.3−0.4 mm was
cut from the polymer network materials and placed in a parallel plate geometry with a
radius of 8 mm. The storage modulus (G′) and loss modulus (G′′) were measured with
sinusoidal oscillatory shear at a constant strain amplitude (0.2% or 0.5%) and varying fre-
quency.

The analytical size-exclusion chromatography of linear polymers was performed with
a GL-Science GL-7400 HPLC System equipped with Shodex KF-802, -803, -804 columns, a
GL-7410 HPLC pump, a GL-7400 UV detector, and a GL-7454 RI detector using THF as the
eluent at a flow rate of 0.6 mL/min.

3. Results and Discussion
3.1. Preparation of Network Materials

As shown in Figure 1, three types of poly(alkyl acrylate) network materials were
prepared via free-radical polymerization. We polymerized 11 mmol of MA, EA, and BA
monomers with 1,4-butanediol diacrylate as a crosslinker in the presence of a radical
initiator (ADVN, 0.1 mol%) in DMF at 60 ◦C for 18 h [40]. Three types of crosslinking
densities (0.0005, 0.0020, and 0.010 eq.) were introduced to each poly(alkyl acrylate)
network. Consequently, nine types of network materials were prepared with different
alkyl chains and crosslinking densities, named MAX, EAX, and BAX, where X is 005, 020,
and 100 (Table 1). Polymerization proceeded in a polytetrafluoroethylene (PTFE)-coated
reaction mold (40 × 40 × 0.5 mm3) affording films as network materials containing DMF.
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Figure 1. Chemical structures of MAX, EAX, and BAX. (X = 005, 020, and 100 in the case of x = 0.0005,
0.0020, and 0.010, respectively).

After polymerization, the obtained films were vacuum-dried to remove the residual
monomers and solvents because they possibly influence the mechanical properties of the
network materials during the heating processes. The vacuum-drying of the films was
conducted at 120 ◦C for 12–18 h, resulting in a 17–19% decrease in material mass. The
complete removal of the solvent and monomer was confirmed from the constancy of the
material mass. After vacuum drying, transparent elastic films of a 0.3–0.4 mm thickness
were obtained as network materials (Figure S2). The films were cut into specimens for
characterization.

3.2. Thermal Properties of Polymer Materials

The thermal properties of the poly(alkyl acrylate)-based network materials were
investigated. The degradation temperatures of MA020, EA020, and BA020 were determined
by thermogravimetry (TG) analysis. The 5% weight reduction temperature was greater than
250 ◦C for all the network materials, indicating their high thermal resistance (Figure S5).
Differential scanning calorimetry (DSC) measurements were conducted on nine network
samples (MAX, EAX, and BAX; X = 005, 020, and 100). The results clearly revealed the
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reversible base shifts due to glass transitions in all the samples (Figure S4). For example,
the glass transition temperature (Tg) of MA020 was at 16.1 ◦C, which was remarkably
higher than that of EA020 and BA020, −14.7 and −50.2 ◦C, respectively (Table 2). The
high Tg of MA0 was derived from the small mobility of its side chains with methyl groups,
which decreased the activation barrier for the segmental motion of the polymer chains [40].
However, the increase of crosslinking density slightly affected the Tg of the network
materials; the Tg of MAX, EAX, and BAX (X = 005, 020, and 100) were in the range of 16 to
18 ◦C, −15 to −12 ◦C, and −46 to −50 ◦C, respectively. These results indicate that the Tg of
the poly(alkyl acrylate)-based network materials is significantly influenced by the type of
alkyl ester chains rather than by the crosslinking density. Hence, as the number of carbon
atoms on the ester chains decreased, the Tg of the network materials increased near room
temperature, particularly in the case of MA (16–18 ◦C).

Table 2. Glass transition temperatures of the network materials MAX, EAX, and BAX.

X
Tg of Network Materials [◦C]

MAX EAX BAX

0
(homopolymer) 10.041 −24.041 −54.041

005 16.5 −15.1 −49.0
020 16.1 −14.7 −50.2
100 17.6 −12.1 −46.0

The dependence of Tg on the alkyl chain length was consistent with the behavior of
linear homopolymers without crosslinkers, namely poly(methyl acrylate) (MA0), poly(ethyl
acrylate) (EA0), and poly(butyl acrylate) (BA0); the Tg of the linear polymers increased in
the order of BA0 (−54 ◦C), EA0 (−24 ◦C), and MA0 (10 ◦C) as previously reported [40,41].
Notably, the Tg of the network materials was 3–10 ◦C higher than that of the respective
linear homopolymers, because the presence of crosslinks causes an increase in Tg [3,42,43].
As a result, the Tg of MAX (X = 005, 020, and 100) approached room temperatures because
of the crosslinking and the potential high Tg of poly(methyl acrylate).

3.3. Viscoelastic Properties of Polymer Materials

The dynamic behavior of the poly(alkyl acrylate)-based network materials was inves-
tigated by conducting rheological measurements. The frequency-dependent characteristics
of MA020, EA020, and BA020 were examined at room temperature as shown in Figure 2a–c.
Remarkably, the G′ and G′′ of MA020 at 1 Hz were 100 and 1000 times higher, respectively,
than those of EA020 and BA020. Notably, below 10 Hz, only MA020 exhibited a G′′ larger
than G′ and the intersection between G′ and G′′ was observed. Consequently, only MA020
exhibited a relaxation as a peak in tanδ at 0.3 Hz, indicating segmental motions that resulted
in energy dissipation. The viscoelastic differences among MA020, EA020, and BA020 were
attributed to the Tg of MA020 at approximately room temperature.

Additionally, the frequency-dependent moduli of MA020, EA020, and BA020 were
measured at temperatures 100–120 ◦C above the corresponding Tg. This condition enables
the removal of the effects of segmental relaxation and highlights the elasticity of the network.
G′ was independent of the frequency and was much higher than G′′ for MA020, EA020,
and BA020 (Figure 2d–f). This confirms that these materials consist of permanent covalent
networks. The rubber elasticity theory states that the shear elastic modulus G is determined
by the number density of the elastically effective chains ν, and is described by Equation (1),

G = νRT, (1)

where R and T are the gas constant and temperature, respectively, assuming an affine
network model. Equation (1) was used to calculate ν from the observed G values.
The ν of MA020, EA020, and BA020 was obtained to be 7.64 × 10−5, 5.29 × 10−5, and
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2.94 × 10−5 mol/cm3, respectively, showing a decreasing trend upon increase in the length
of the alkyl side chain.

Polymers 2023, 15, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 2. Storage modulus (G′), loss modulus (G″), and tanδ at room temperature for (a) MA020, (b) 
EA020, and (c) BA020. The G′, G″, and tanδ  for (d) MA020 measured at 130 °C, (e) EA020 measured 
at 90 °C, and (f) BA020 measured at 60 °C. 

3.4. Tensile Testing to Reveal the Toughness of the Network Materials 
The mechanical characteristics of the network materials were assessed via uniaxial 

tensile testing, conducted at an elongation speed of 50 mm/min, which approximately 
corresponded to the nominal strain rate of 0.10 s−1. As shown in Figures 3a and S6, MAX 
exhibited the highest toughness compared with the corresponding EAX and BAX. The 
fracture strains of MAX (X = 020 and 100) were 1.5 times and 2.5 times larger than those 
of EAX and BAX, respectively (Figure S7). The fracture strain of MA005 was similar to 
that of EA005 but 2.5 times larger than that of BA005. In contrast, the fracture stresses of 
MAX significantly surpassed those of EAX and BAX (Figure 3b). Similarly, MAX exhib-
ited a four- and eight-fold higher Young’s modulus compared with EAX and BAX, re-
spectively, for X = 005, 020, and 100 (Figure 3c). 

Consequently, as shown in Figure 3d, the fracture energy of MA020 was approxi-
mately 10 and 100 times greater than those of EAX and BAX, respectively, demonstrating 
the large resistance to mechanical strain. Comparisons of the fracture energies of MA005, 
MA020, and MA100 revealed that a decrease in the crosslink density increased the fracture 
energy of the material [44]; MA005 exhibited the highest fracture energy (83 MJ/m3). Re-
gardless of the amount of crosslinker, MAX exhibited remarkably high fracture energies, 
which were improved by one or two orders of magnitude compared with the correspond-
ing EAX and BAX, suggesting the superior mechanical properties of the poly(methyl acry-
late)-based network materials. 

The superior mechanical performance of MAX can be attributed to the unique glass 
transition temperature of MA-based polymer network materials (close to room tempera-
ture); regarding MA020, such a performance was attributed to the methyl ester groups 
and crosslinking. As mentioned in Section 3.3, a large relaxation via segmental motion 
was observed in MAX at room temperature. The relaxation took place in the time scale 
ranging from 0.1 to 100 s (corresponding to the frequency of 0.01–10 Hz), which should 

0

0.1

0.2

0.3

0.4

0.5

1

10

100

1000

0.01 0.1 1 10

ta
nδ

G
', 
G

'' [
kP

a]

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

1

10

100

1000

0.01 0.1 1 10

ta
nδ

G
', 
G

'' [
kP

a]

Frequency [Hz]

0

0.1

0.2

0.3

0.4

0.5

1

10

100

1000

0.01 0.1 1 10

ta
nδ

G
', 
G

'‘ 
[k

P
a]

Frequency [Hz] 

0
0.5
1
1.5
2
2.5
3
3.5
4

100

1,000

10,000

100,000

1,000,000

0.01 0.1 1 10

ta
nδ

G
', 
G

'' [
kP

a]

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1

10

100

1000

0.01 0.1 1 10

ta
nδ

G
‘, 
G

’’ [
kP

a]

Frequency [Hz]

0

0.2

0.4

0.6

0.8

1

1

10

100

1000

0.01 0.1 1 10

ta
nδ

G
’, 
G

’’ [
kP

a]

Frequency [Hz]

MA020

EA020

BA020

MA020

EA020

BA020

(a)

(b)

(c)

(d)

(e)

(f)

tanδG’

G’’

tanδ

G’’

G’

tanδ

G’’

G’

tanδ

G’’

G’

tanδ

G’’

G’

tanδ

G’’

G’

Figure 2. Storage modulus (G′), loss modulus (G′′), and tanδ at room temperature for (a) MA020,
(b) EA020, and (c) BA020. The G′, G′′, and tanδ for (d) MA020 measured at 130 ◦C, (e) EA020
measured at 90 ◦C, and (f) BA020 measured at 60 ◦C.

To rationalize the difference in the obtained ν, we estimated the ideal number density of
elastically effective chains (νideal) from the monomer and crosslinker feeds. For considering
ideal networks, we assumed that all crosslinkers (1,4-butanediol diacrylate) serve as a
4-branch point and the network is free of any defects such as dangling chains and loops.
This led to Equation (2),

νideal = 2ρx/M, (2)

where ρ is the physical density of the polymer, x is the crosslinker-to-monomer ratio, and
M is the molecular weight of the repeat unit. Detailed calculation procedures can be found
in the Supporting Information. The νideal was determined to be 5.7 × 10−5, 4.5 × 10−5, and
3.3× 10−5 mol/cm3 for MA020, EA020, and BA020, respectively. The order and the trend of
the experimental values (ν) were generally consistent with those of the ideal values (νideal).
From Equation (2), the difference in νideal among the above three samples comes from the
difference in M/ρ, which can be recognized as the apparent molar volume per repeat unit.
Therefore, the different crosslinking densities and plateau modulus can be explained based
on the bulkiness of the repeat units. At the same degree of polymerization, less bulky
monomers result in less bulky polymer chains. Therefore, the use of less bulky monomers
leads to higher number density of chains and hence higher ν in the bulk network material.

3.4. Tensile Testing to Reveal the Toughness of the Network Materials

The mechanical characteristics of the network materials were assessed via uniaxial
tensile testing, conducted at an elongation speed of 50 mm/min, which approximately
corresponded to the nominal strain rate of 0.10 s−1. As shown in Figures 3a and S6, MAX
exhibited the highest toughness compared with the corresponding EAX and BAX. The
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fracture strains of MAX (X = 020 and 100) were 1.5 times and 2.5 times larger than those of
EAX and BAX, respectively (Figure S7). The fracture strain of MA005 was similar to that of
EA005 but 2.5 times larger than that of BA005. In contrast, the fracture stresses of MAX
significantly surpassed those of EAX and BAX (Figure 3b). Similarly, MAX exhibited a
four- and eight-fold higher Young’s modulus compared with EAX and BAX, respectively,
for X = 005, 020, and 100 (Figure 3c).
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Figure 3. Tensile testing for elastomer materials. (a) Representative stress-strain curves for MA020,
EA020, and BA020. Comparison of (b) fracture stress, (c) Young’s modulus, and (d) fracture energy
between MAX, EAX, and BAX. The tests were conducted in triplicate at room temperature, and their
average and standard deviation were calculated.

Consequently, as shown in Figure 3d, the fracture energy of MA020 was approximately
10 and 100 times greater than those of EAX and BAX, respectively, demonstrating the large
resistance to mechanical strain. Comparisons of the fracture energies of MA005, MA020,
and MA100 revealed that a decrease in the crosslink density increased the fracture energy
of the material [44]; MA005 exhibited the highest fracture energy (83 MJ/m3). Regardless of
the amount of crosslinker, MAX exhibited remarkably high fracture energies, which were
improved by one or two orders of magnitude compared with the corresponding EAX and
BAX, suggesting the superior mechanical properties of the poly(methyl acrylate)-based
network materials.

The superior mechanical performance of MAX can be attributed to the unique glass
transition temperature of MA-based polymer network materials (close to room temper-
ature); regarding MA020, such a performance was attributed to the methyl ester groups
and crosslinking. As mentioned in Section 3.3, a large relaxation via segmental motion
was observed in MAX at room temperature. The relaxation took place in the time scale
ranging from 0.1 to 100 s (corresponding to the frequency of 0.01–10 Hz), which should
cover the time scale of the uniaxial tensile tests (~0.1 s−1 or ~10 s). Therefore, a considerable
amount of energy is absorbed and dissipated by the segmental motion of the poly(methyl
acrylate) chains during stretching of the network material, probably owing to the small
activation barrier for the segmental motion of the polymer chains derived from the small
side-chain methyl groups in MAX [40]. However, EA- and BA-based network materials



Polymers 2023, 15, 2389 7 of 10

lack this energy dissipation mechanism due to their Tg, which is much lower than room
temperature. The energy dissipation contributes to the high Young’s modulus of the MA-
based networks and is also responsible for the large strain at break, leading to the high
stress at break and toughness of MA-based networks. In general, the fracture of a polymer
network begins with a tiny crack that propagates through the material, eventually leading
to catastrophic failure. The extent of the energy concentration at the crack tip is considered
to play an important role in the fracture process [45–49]. In MAX, the energy dissipation
via segmental motions should help dissipate the strain energy at the crack tip, delaying
crack propagation and hence the fracture of the material. Consequently, MAX exhibited
significantly superior strain at break, stress at break, and fracture toughness compared with
EAX and BAX.

To verify the toughening mechanism, the strain rate dependence of the tensile behavior
was investigated. MA020, EA020, and BA020 were tested at the additional elongation
speed of 5 and 500 mm/min, which approximately corresponded to the nominal strain
rate of 0.01 and 1.0 s−1, respectively. Figure S8 compares the fracture energies at different
elongation speeds derived from the stress-strain curves. The mechanical properties of
MA020 and BA020 were independent of the elongation speed, whereas increasing the
elongation speed improved the toughness of EA020; the fracture energy of EA020 at
50 mm/min was approximately 3 times higher compared with that at 5 mm/min. The
enhancement of the toughness of EA020 can be attributed to the segmental relaxation. In
Figure 2b, EA020 showed an upturn in tanδ at the high-frequency limit (>1 Hz), indicating
that the relaxation via segmental motion becomes more prominent at a shorter time scale.
Thus, more energy dissipation takes place at a higher elongation speed, leading to an
increased toughness. BA020 did not show an increase in tanδ within the frequency range
tested (Figure 2c). There was almost no energy dissipation by the segmental motion
in BA020 in the accessible time scale, resulting in the independence of the mechanical
properties on the elongation speed. In MA020, dynamic moduli and tanδ considerably
varied with the frequency (Figure 2a). Therefore, it was rather surprising that MA020
did not show the elongation speed dependence. We speculate that the time scale of the
tensile tests corresponded to a relatively high-frequency region in the rheological spectra.
In Figure 2a, the storage and loss moduli almost become independent of the frequency at
>1 Hz. Thus, MA020 had a similar degree of energy dissipation at all elongation speeds,
leading to the toughness independent of the elongation speed. These results support the
proposed mechanism, i.e., the toughness of poly(alkyl acrylate)-based network materials
was drastically enhanced through the energy dissipation from the segmental relaxation.

4. Conclusions

In this study, the effects of the alkyl groups of polyacrylate-based network materials
on their thermal and rheological properties were systematically evaluated. We synthesized
nine types of polymer network materials with different crosslinking densities and different
alkyl ester lengths on the polymer side chains: methyl, ethyl, and n-butyl esters. The
MA network materials exhibited elevated glass transition temperature (Tg), around room
temperature, which was attributed to the potentially high Tg of poly(methyl acrylate) and
the crosslinking of the network. Rheological measurements indicated that the loss modulus
of the MA-based network materials exceeds their storage modulus at room temperature.
Consequently, the materials exhibited high toughness owing to their large fracture en-
ergy, which was induced by energy dissipation from the viscosity, compared with other
poly(alkyl acrylate)-based counterparts, poly(ethyl acrylate), and poly(butyl acrylate).

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/polym15102389/s1, Figure S1. Schematic representation of reaction
mold for the synthesis of network materials: Figure S2. The photograph of network materials (MA020,
EA020, and BA020) cut out in a round shape: Figure S3. SEC analyses of the polymerization of
methyl acrylate, ethyl acrylate, and butyl acrylate without a crosslinker (1,4-butanediol diacrylate)
(Detector: RI): Detailed discussion for calculation of ideal number density of elastically effective
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chains (νideal): Figure S4. DSC thermograms of MA020 during the 2nd and 3rd heating processes:
Figure S5. Thermogravimetric analyses of MA020, EA020, and BA020: Figure S6. Representative
stress-strain curves for (a) MA005, EA005, and BA005 and (b) MA100, EA100, and BA100: Figure S7.
The comparison of fracture strain for MAX, EAX, and BAX (X = 005, 020, and 100): Figure S8. Fracture
energies of MA020, EA020, and BA020, that were measured with tensile tests at the elongation speed
of 5, 50, and 500 mm/min: Figure S9–S23. Stress-strain curves of MA005, EA005, BA005, MA020,
EA020, BA020, MA100, EA100, and BA100 [50].
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