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Abstract: In this brief review, we discuss the recent advancements in using poly(ethylene glycol)
diacrylate (PEGDA) hydrogels for tissue engineering applications. PEGDA hydrogels are highly
attractive in biomedical and biotechnology fields due to their soft and hydrated properties that can
replicate living tissues. These hydrogels can be manipulated using light, heat, and cross-linkers to
achieve desirable functionalities. Unlike previous reviews that focused solely on material design
and fabrication of bioactive hydrogels and their cell viability and interactions with the extracellular
matrix (ECM), we compare the traditional bulk photo-crosslinking method with the latest three-
dimensional (3D) printing of PEGDA hydrogels. We present detailed evidence combining the physical,
chemical, bulk, and localized mechanical characteristics, including their composition, fabrication
methods, experimental conditions, and reported mechanical properties of bulk and 3D printed
PEGDA hydrogels. Furthermore, we highlight the current state of biomedical applications of 3D
PEGDA hydrogels in tissue engineering and organ-on-chip devices over the last 20 years. Finally, we
delve into the current obstacles and future possibilities in the field of engineering 3D layer-by-layer
(LbL) PEGDA hydrogels for tissue engineering and organ-on-chip devices.
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1. Introduction

Hydrogels have been extensively studied in recent years as potential solutions for biomed-
ical applications such as tissue engineering and organ-on-chip devices. This is due to their
biocompatibility and ability to be tailored for specific physical, chemical, and mechanical proper-
ties [1–5]. Additionally, the structure and properties of hydrogels mimic the micro-environment
of various human organ tissues [6–13] and thus, hydrogels are widely used in a diverse range of
tissue engineering and organ-on-chip devices [14–16]. Poly(ethylene glycol) diacrylate (PEGDA)
hydrogels have garnered significant interest among hydrogel materials due to their remarkable
properties, including hydrophilicity. As a result, they have been extensively explored and ap-
plied in various areas, such as three-dimensional (3D) tissue-engineered constructs, bio-sensing
mediums, and drug-controlled release matrices [17–20].

Due to its biocompatibility and ability to mimic the extracellular matrix (ECM) of living
tissues, PEGDA hydrogel has found extensive use in various biomedical applications [21,22].
PEGDA hydrogels are synthesized by the cross-linking of PEG diacrylate monomers, which
results in a three-dimensional network of polymer chains that can retain large amounts

Polymers 2023, 15, 2341. https://doi.org/10.3390/polym15102341 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15102341
https://doi.org/10.3390/polym15102341
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-6185-6716
https://orcid.org/0000-0002-8694-332X
https://orcid.org/0000-0002-6305-3906
https://doi.org/10.3390/polym15102341
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15102341?type=check_update&version=4


Polymers 2023, 15, 2341 2 of 35

of water [23]. The first reported use of PEGDA hydrogel in biomedical applications was
in the 1970s, when it was used as a scaffold for in vitro cell culture. PEGDA hydrogels
were found to be biocompatible and non-toxic, making them suitable for use in cell culture
studies (Figure 1) [24,25]. In the 1980s, PEGDA hydrogels were further developed for use
in drug delivery applications. The hydrogels were found to be able to retain drugs in
their pores and release them in a controlled manner over time [26]. This property made
PEGDA hydrogels suitable for use in the sustained release of drugs for the treatment
of chronic diseases [27]. In the 1990s, PEGDA hydrogels were also used in injectable
wound healing applications [28]. These hydrogels were found to be able to promote
the growth of new blood vessels, and to promote the growth of new tissue in wounds.
In the 2000s, PEGDA hydrogels were further developed for use in tissue engineering
applications [29,30]. The compatibility of hydrogels with diverse cell types, including stem
cells, has been demonstrated, and they facilitate the development of new tissue [31,32]. The
capacity of PEGDA hydrogels to imitate the extracellular matrix (ECM) of living tissue
enhances their appeal for tissue engineering applications [33–38]. This property made
PEGDA hydrogels suitable for use in the regeneration of various types of tissues, such as
cartilage and bone [39–42]. In recent years, PEGDA hydrogels have been further developed
for use beyond tissue engineering into other biomedical applications, such as in vivo drug
delivery and wound healing [43–46]. The hydrogels have also been used in various other
applications, such as in the fabrication of micro- and nano-devices [47–49].
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Figure 1. An overview of use of PEG-based hydrogels in biomedical and biological applications.

Moving away from molding and bulk cross-linking processes, 3D printing using stere-
olithography (SLA) and digital image processing (DLP) among other advanced printing
techniques offer a faster and more dependable manufacturing approach for creating com-
plex scaffold shapes with reliable mechanical properties [50–53]. The use of 3D printed
PEGDA hydrogels has been studied extensively for developing skeletal muscle microtis-
sues and contractile cardiac tissue as the demand for PEGDA hydrogels continues to grow
(Figure 2). However, there are still critical gaps in knowledge regarding the physicochem-
ical and mechanical behavior and properties of 3D printed PEGDA hydrogels. Previous
papers mainly focused on the synthesis of the PEGDA hydrogels and material design
and fabrication of bioactive hydrogels and their cell viability and interactions with the
ECM and neglected the importance of studying the fabrication processes and how differ-
ent parameters can influence the physicochemical and mechanical properties of the 3D
PEGDA hydrogels [54,55]. The impact of layer-by-layer (LbL) fabrication on number of
intrinsic properties of photo-cross-linked 3D printed PEGDA hydrogels including their
chemical, mechanical, and dimensional stability, physical isotropy behavior, and degree
of cross-linking has to be studied in further details [56]. Moreover, more investigation is
required to determine the basic nanomechanical behavior of 3D PEGDA hydrogels, and
how different fabrication parameters such as layer thickness and ultraviolet (UV) dosage
can affect their surface properties and interfacial layer-layer adhesion and homogeneity in
mechanical properties across the entirety of the 3D printed structures [57]. Methods such as
nanoindentation and atomic force microscopy (AFM) are well-suited for examining surface
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characteristics, including the spatial distribution of mechanical properties, which play a
vital role in cell adhesion, tissue formation, and evaluating the alignment between layers
in multilayer 3D printed structures created using layer-by-layer (LbL) techniques [58–61].
The nanomechanical tests can also be used as an indirect but more accurate method for
evaluating the degree of cross-linking in a 3D printed structures and map the variations in
mechanical properties and infer the degree of cross-linking accordingly, which has proven
to be very challenging to measure with advanced techniques such as nuclear magnetic
resonance (NMR), small angle x-ray scattering (SAXS), and rheology [61]. Extensive re-
search literature consistently highlights the significant impact of mechanical cues at the
substrate interface, where cells are cultured, on various cellular behaviors. These behaviors
encompass crucial aspects such as cell growth, migration, proliferation, differentiation,
and tissue formation [62–67]. For example, the surface elastic modulus, topography, and
adhesion of hydrogel substrates can direct the fate of stem cells which was reported on C2C12
skeletal myoblasts [68–71]. Moreover, the stiffness and surface topography of the ECM have a
direct impact on elongation direction and sarcomere alignment of muscle tissues [68–71].

Addressing these gaps will allow for optimal use of these materials in various biomed-
ical applications, including tissue engineering, drug delivery, and cancer therapy.
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2. Manufacture of 3D PEGDA Biostructures

Scalability is a vital aspect of 3D printing for the rapid production of 3D biomimetic
structures in tissue engineering and regenerative medicine. This technology enables precise
control over structure and size, customizable to specific requirements, while also facilitating
the cost-effective production of large quantities of intricate structures. Therefore, the
combination of additive manufacturing techniques, biomaterials, cells, and the scalability
of 3D printing offers a powerful approach for the development of functional tissues and
organs that can meet the clinical demands of tissue engineering and regenerative medicine.
Various 3D bioprinting strategies have been developed over the past decade, each with
its own unique advantages and limitations. In this section, we will discuss their working
principles, and their suitability for different applications (Figure 3a).

2.1. 3D Bioprinting Techniques

Extrusion-based 3D printing is a technique which involves creating structures made
from melted materials (filament) using rollers and a heating system. However, the tech-
nique has undergone rapid development and expansion into bioprinting, becoming the
most popular technique in the field. Filaments are replaced with hydrogels and bioinks
containing living organisms, which are extruded through a shear-thinning process rather
than being melted through the application of heat [72,73]. Extrusion-based bioprinting
utilizes pneumatic or mechanical fluid dispensing systems, with pneumatic systems being
valve-free or valve-based, and mechanical systems driven by a piston or screw (Figure 3b).
Extrusion-based bioprinting offers multiple benefits, including the ability to deposit high-
viscosity bioinks and achieve high cell densities. Moreover, it allows for uninterrupted
continuous extrusion of bioinks [74,75]. However, their bioprinting speed is relatively
slow and cell viability is usually moderate due to high shear stresses experienced by cells
during the extrusion process [76,77]. Despite these limitations, extrusion-based bioprin-
ing has been widely adopted in bioprinting due to its simplicity in instrumentation [78].
In an experiment, a combination of PEGDA hydrogel and charged monomers such as
3-sulfopropyl acrylate, along with Poloxamer 407 (P407), were used for extrusion print-
ing. The material was successfully printed in a pyramidal shape but its use for direct cell
encapsulation might be limited due to P407 cytotoxicity [46]. Another study used it to
produce human-scale constructs such as nose and ear using a combination of gellan gum
and PEGDA. Murine bone marrow stromal cells (BMSCs) and a mouse osteoblastic cell
line (MC3T3-E1) were encapsulated in the constructs, which showed structural stability,
biocompatibility, and non-toxicity [79]. The technique was further developed to create 3D
printed tracheal utilizing PEGDA, sodium alginate, and calcium sulphate using a home-
made extrusion bioprinter with assisted UV laser. The results showed that by optimizing
the printing parameters such as laser power intensity the stiffness of the printed biological
tissue can be altered to match that of the biological tissue or organ [80]. Extrusion based
printing technologies are developed further to include multi-functional, multi-material 3D
printing that can be utilized to print PEGDA hydrogels with fabrication strategies for living
tissues and soft robotics [81]. For example, a mixture of gellan gum and PEGDA hydrogels
with encapsulated BMCs and MC3T3-E1 cell were successfully printed using extrusion 3D
printing and they showed a cell viability of over 87% [79].

Inkjet printing enables the precise and non-contact deposition of small quantities
of materials on diverse surfaces. It offers two types of printing: continuous and drop-
on-demand (DOD) [82], in which cells and biomaterials can be patterned into desired
substrates by repeatedly depositing droplets at pre-designed locations to form a structure
(Figure 3c) [83]. Inkjet bioprinting provides higher resolution but may have limitations
in terms of achievable cell densities and printing speed, as compared to extrusion-based
bioprinting [84]. A biocompatible ink was created by combining Pluronic F127 (PEO-PPO)
and PEGDA. The gel structures obtained remained stable when exposed to an aqueous
environment and were successfully seeded with fibroblast cells using an inkjet printer as
the delivery method [85]. Another biocompatible ink was developed by synthesizing a
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photo-cross-linkable polycaprolactone dimethylacrylate (PCLDMA) and mixing it with
PEGDA. They optimized the ink properties under a nitrogen atmosphere during printing,
demonstrating its potential for 3D structure production with good biocompatibility [86]. In
another study, PEGDA hydrogel and Irgacure 2959 photoinitiator were combined to create
micropatterns on the surface of a thin PEGDA layer that was deposited on a polycarbonate
substrate using inkjet printing. The micropatterns (wrinkles) were created through plasma
etching and were intended to enhance cell adhesion and differentiation [87].

The manufacture of PEGDA hydrogels using microfluidics is a cutting-edge technique
that utilizes microfluidics channels to produce hydrogels with a high degree of control
over their properties (Figure 3d) [88]. Microfluidics is a field of research that deals with the
manipulation of fluids at a microscale, and microfluidic devices are designed to control
the flow of fluids through tiny channels. In the case of PEGDA hydrogels, microfluidic
devices are used to control the flow of the monomers and initiators that are used to create
the hydrogel [89]. This allows for precise control over the concentration and ratio of the
monomers and initiators, which in turn allows for precise control over the properties of the
resulting hydrogel [90]. For example, by controlling the flow of the initiator, it is possible to
achieve different degrees of cross-linking in the hydrogel, which will affect the mechanical
properties of the hydrogel [91]. One of the major advantages of microfluidic fabrication
is the ability to produce PEGDA hydrogels with highly defined microstructures. For
example, by using microfluidic devices, it is possible to create hydrogels as microspheres
and micromolds [92].These microstructures are particularly useful in cell encapsulation
and drug delivery applications, as they can be used to create hydrogels that mimic the
natural microenvironment of cells and allow for controlled release of drugs [93–96].

Another way to create 3D PEGDA scaffold architectures is through the use of SLA
and DLP which are vat photo-cross-linking technologies that share similarities but also
exhibit significant differences (Figure 3e) [97–101]. In SLA, a vat of photopolymer resin is
subjected to an ultraviolet (UV) laser. Using a UV laser, a predetermined shape is projected
onto a photopolymer vat. The photopolymer reacts to UV light, creating a single layer of
the intended 3D object. The build platform gradually lowers for each layer, repeating the
process until the complete 3D object is formed [102]. DLP is a variation of SLA that utilizes
a digital projector to flash a single image of the layer across the entire resin at once using
UV or visible light [103]. DLP utilizes a digital micromirror device (DMD) chip composed
of reflective aluminum micromirrors. These micromirrors redirect UV light from a projector
to project a designed pattern or a layer of a 3D CAD model onto the resin [104]. Unlike SLA,
which uses a UV laser beam, DLP maintains a stationary UV light source that cures the
entire resin layer at once. This results in faster printing speeds but with a fixed resolution
typically ranging from 20 to 100 microns [105]. On the other hand, SLA’s laser beam moves
from point to point, allowing for higher accuracy and better-quality prints with intricate
details with smaller than 25 micron XY resolution [106,107]. Additionally, SLA 3D printers
have a more scalable build volume, whereas DLP printers are optimized for specific use
cases. These two techniques and their application in creating 3D PEGDA hydrogels for
tissue engineering are discussed further in the following sections.
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2.2. Photo-Cross-Linking Mechanism

PEG, or polyethylene glycol, is a hydrophilic, water-soluble, and biocompatible poly-
mer. In an aqueous solution, the PEG molecule is neutral, exhibits high mobility, and
maintains hydration [110,111]. PEGDA is a derivative of PEG in which the hydroxyl groups
at the ends of the PEG chains are replaced with acrylates. PEGDA hydrogels are consid-
ered synthetic hydrogels that are chemically cross-linked through the photo-cross-linking
technique, in which a UV or visible light source is used to induce the cross-linking [112].
This rapid and easy synthesis technique allows for the creation of a soft polymer with
tailored physical, chemical, and mechanical properties [113,114]. When PEGDA hydrogels
are exposed to UV or visible light, the photoinitiator molecules absorb the light energy
and generate free radicals. Free radicals react with the acrylate groups on the ends of
PEG chains, forming covalent bonds between the chains (Figure 4). This results in the
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formation of a 3D cross-linked polymer network, which gives the hydrogel its mechanical
strength and shape [115,116]. In brief, PEGDA hydrogels are created by dissolving PEGDA
powder in a solvent at a specific ratio. A photoinitiator is then added, and the solution is
exposed to UV light for a specific duration to initiate photo-cross-linking [117]. By altering
the molecular weight, pre-polymer concentration, and photo-cross-linking conditions, the
mechanical characteristics of the hydrogel can be modified. For instance, increasing the pre-
polymer concentration can raise the hydrogel’s compressive modulus while simultaneously
reducing its hydrolytic degradation rate [118].
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2.3. Bulk vs. Layer-by-Layer Photo-Cross-Linking

Different techniques have been developed to perform photo-cross-linking on PEGDA,
which include the utilization of bulk cross-linking, 3D printing, and microfluidic methods.
Each of these techniques offers unique advantages and limitations and can be chosen based
on the specific requirements of the application. The bulk cross-linking of PEGDA hydrogel
is the most straightforward process among the other two techniques, it involves mixing
the monomers and initiators together in a container and then cross-linking them under
controlled conditions [120,121]. This method of cross-linking is known as “bulk” cross-
linking because all of the monomers are added to the container at once and then cross-linked
together (Figure 5a,b) [122]. The key to this process is controlling the conditions under
which the monomers are cross-linked. This includes factors such as temperature, time, and
the concentration of photoinitiator used. However, due to the nature of bulk cross-linking,
it can lead to inhomogeneity in cross-linking, which can affect the mechanical properties
of the hydrogel [123]. This inhomogeneity is caused by the distance of the light source to
the hydrogel and the direction of light, which results in variations in the intensity of light
reaching different parts of the hydrogel, leading to non-uniform cross-linking [124,125]. By
carefully controlling these conditions and the distance and direction of the light source, it
may be possible to minimize the inhomogeneity in cross-linking and mechanical properties,
but it cannot be completely eliminated.

The process of 3D printing, or additive manufacturing, involves the creation of a
three-dimensional object by incrementally adding layers of material. The layer-by-layer
fabrication process is one of the most popular and widely used methods of 3D printing.
In the layer-by-layer fabrication process, a 3D model of the object is sliced into thin layers.
These layers are then printed one by one, starting from the bottom layer and working up to
the top layer (Figure 5c). The printer applies the material, usually in a liquid or powdered
form, in the precise shape of each layer. The layers are then fused together, either through
heat or chemical means, to create a solid object (Figure 5d) [126]. The process of 3D printing
is a popular method for fabricating PEGDA hydrogels with controlled homogeneity in cross-
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linking and mechanical properties compared to bulk cross-linking (Figure 5e) [127,128].
Techniques such as extrusion-based printing [129], SLA, and DLP printing offer precise
control over the hydrogel’s shape and properties and allow for the rapid creation of
complex shapes [72,108,119,130]. SLA is a highly advanced technique for 3D printing
hydrogels, using a layer-by-layer approach and UV to control photo-cross-linking [100,131].
The utilization of DLP in PEGDA hydrogel compositions, with different water content
and concentrations of a photoinitiator and light absorber, demonstrated encouraging
prospects for custom implant solutions tailored to individual patients [132]. Another
study investigated DLP 3D printing of PEGDA-based photopolymers with dexamethasone
(DEX) drug-loading, finding that drug release is prone to burst-release and DEX degrades
significantly in the 3D-printed samples over time [133].
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Figure 5. (a) Schematic illustration of synthesis of PEGDA hydrogels using a mould technique [134].
Reproduced with permission from ref. [134]. Copyright 2016 Elsevier. (b) SEM photographs illustrate
a comparison between a Silicon master mould (left) and cross-linked PEGDA (right) in replicating
low aspect ratio structures with 50 and 100 µm diameter and 50 µm height. [121]. Reproduced with
permission from ref. [121]. Copyright 2012 Royal Society of Chemistry. (c) Schematic of the typical 3D
printing techniques using a layer-by-layer printing [135]. Reproduced with permission from ref. [135].
Copyright 2020 Elsevier. (d) Optical microscopy image of grid shaped PEGDA hydrogel fabricated
using 3D printing technique. (e) Advantages and disadvantages of bulk and 3D fabrication processes.

The ability to control the elasticity, swelling, and degradation of hydrogels is crucial in
biomedical applications, particularly in tissue engineering. Photo-cross-linkable hydrogels
offer the ability to mimic the dynamic nature of cellular microenvironments, providing a
valuable tool for studying cellular mechanisms.
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3. Properties of Photo-Cross-Linked PEGDA Hydrogels
3.1. Swelling Behavior and the Effect of the Environment

Hydrogels are a type of polymer that have the ability to absorb and retain large
amounts of water, which leads to the formation of a gel-like structure (Figure 6a). Their
extensive usage in biomedical applications stems from their biocompatibility and capacity
to replicate the mechanical characteristics of natural tissue. (Figure 6b). The physical
properties of hydrogels can vary depending on the type of polymer and the conditions
under which they are prepared. The structural and physical properties of the hydrogels can
be significantly influenced by adjusting the molecular weight and concentration of PEGDA
in the prepolymer solution. (Table 1) [136].

Increasing the molecular weight of PEGDA from 3.4 kDa to 20 kDa in the prepolymer
solution while maintaining a 10% precursor concentration, led to a 101% increase in swelling
ratio and 190% increase in mesh size, resulting in higher cell proliferation [137]. To the
contrary, an increase in PEGDA concentration led to a decrease in hydrogel swelling, mesh
size, and limited vessel invasion, which may be required for neovascularization [138].
UV irradiation of PEGDA solution with different UV dosage resulted in hydrogels with
a varying cross-link density. Increased UV exposure time led to a decrease in swelling
capacity due to enhanced cross-linking and increased elasticity of the polymer chains [139].
The swelling ratio of the PEGDA hydrogel decreases as the ionic strength within the
physiological range (0–300 mM) increases, while the hydrogel’s swelling ratio gradually
increases across the entire pH range tested (2.5–11), with an approximate 10% increase [139].
PEG hydrogels are often used in short-term, in vitro studies as non-degradable controls
due to the hydrolytic stability of the poly(ether) backbone. A 6-week study of storage of
PEGDA hydrogels in PBS showed a slight increase in swelling ratio of 5–10% but it was
within the standard deviation, indicating no degradation [140].

Fabrication techniques used for making the hydrogel can also affect the swelling
kinetics of hydrogels. Studies indicate that 3D printed GelMA/PEGDA hydrogels created
through extrusion-based printing demonstrate an approximately 10% higher swelling ratio
than bulk cross-linked hydrogels. This enhancement can be attributed to the presence of
pores within the 3D printed hydrogel matrix, which expands the surface area exposed to the
PBS solution and consequently leads to increased water absorption [141]. In an extrusion
based printed PNIPAM/PEGDA bilayer, the PEGDA composite fibre was reported to have
a swelling ratio in the range of 0.1–3 [129]. In SLA printing, a variety of 3D printed PEGDA
hydrogels with different molecular weights and concentrations have been synthesized in
combination with other polymers such as PCL, PEGMEMA, and PEDOT for biomedical
applications. The swelling ratios of these hydrogels range from 0.03 to 73, as reported in
studies [72,142,143]. The values of swelling ratio reported in literature may vary due to the
different methods used to calculate them (Table 1); some use percentage increase from dried
hydrogel [144–146], others do not multiply the results by 100 [147–149] and others calculate
by dividing the swollen state hydrogel by the dried hydrogel [129,150]. Although the
swelling ratio of PEGDA hydrogels can vary across different types, a comparison between
bulk and 3D printed PEGDA hydrogels at a fixed molecular weight of 0.7 Da reveals a
consistent trend. However, it is noteworthy that the 3D printed hydrogels exhibit higher
swelling ratios, indicating that the fabrication technique can significantly influence the
swelling behavior of PEGDA hydrogels.

Examining the volumetric change as a result of swelling and water uptake is crucial
when it comes to printing resolution and fidelity of the printed parts (Figure 6c). A study
found that dog-bone shaped 3D printed PEGDA (575 Da) had a swelling ratio of approx-
imately 35%, but there was a dimensional change of 15% in length/width and 40% in
thickness [146]. The volumetric swelling ratio of bulk PEGDA hydrogel cylinders with
molecular weights of 10 kDa and 20 kDa, determined through optical microscopy measure-
ments of the hydrogel’s physical dimensions, was observed to be non-proportional to the
gravimetric swelling ratio obtained by weighing the samples [151]. This means that while
the swelling ratio indicates a change in volume, the volumetric percentage change may be
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different from the swelling, as the dimensional changes in length/width and thickness are
also considered. A study that focused on microfluidic channel fabrication found that the
mixture of water-miscible acrylate (HBA), PEGMEMA, and PEGDA resulted in internal
cross-sections as small as 71 µm, which is smaller than the intended internal diameter of
108 µm. This was due to the swelling and volume change of the hydrogel material during
the fabrication process [152]. To optimize the dimensional accuracy of 3D printed PEGDA
hydrogels, a study varied UV exposure time and PEGDA concentration. Results showed
that increasing UV exposure decreased accuracy and as PEGDA concentration increased
from 2% to 80%, the percentage change in lateral dimensions while swelling also increased
from 1% to 11% [153]. The volumetric degree of swelling can also be calculated indirectly
by measuring the swelling ratio while taking into account the solvent and polymer density.
However, that approach might not be as accurate because it does not directly measure
the volume change but assumes constant solvent density and the density of the initial
prepolymer solution which may change due to incomplete cross-linking after the initial
photo-cross-linking process [151,154].

It is also important to understand the swelling kinetics of PEGDA hydrogels in cell
culture media within the relevant physiological environment [155]. In many studies, the
use of phosphate-buffered saline (PBS) at a pH level of 7.4 was implemented to replicate
the necessary physiological conditions for cell culture [54,156–159]. It was reported that a
combination of Poly(ε-caprolactone) maleic acid (PGCL-Ma) and PEGDA produced by bulk
cross-linking has resulted in no degradation when stored for 20 days [144]. Introduction
of PEGDA in a PEGDA/GelMA hydrogel also has been shown to reduce the enzymatic
degradation profile of the hydrogel photo-cross-linked with UV light in PBS [141,148].
However, a bulk photo-cross-linked PEGDA hydrogel on its own has shown to undergo a
very slow degradation when stored in BPS at 37 ◦C for a duration of 8 weeks [160]. The
slow degradation of ester linkages in acrylated PEG diols in vivo can take months or even
years [140]. Nevertheless, the degradation of PEGDA hydrogel can be considerably accel-
erated by higher molecular weights and lower concentrations, primarily due to elevated
ratios of hydrolysable esters and reduced cross-link density [156].Here, we prioritize the
in vitro degradation of the PEGDA hydrogels, as it is more relevant to the application of
organ-on-chip devices in tissue engineering. The main focus is to understand the expected
physical, chemical, and mechanical stability for such applications. However, future studies
may require a separate investigation of in vivo applications.

Temperature can affect the swelling kinetics of PEGDA hydrogels. While a study
reported insensitivity to changes in temperature and solvent composition, it was found that
bulk cross-linked PEGDA hydrogels had slightly higher swelling ratios when incubated
in deionized water at 37 ◦C compared to room temperature [129,139]. However, a recent
study that looked at the reversible swelling/deswelling mechanism using environmental
scanning electron microscopy (SEM) showed that depending on the degree of cross-linking,
the 3D printed PEGDA fabricated by SLA can revert back to close to its original volume
when the temperature varies between 4–15 ◦C [161]. This phenomenon occurs due to
the hydrogel’s absorption of condensed water, resulting in an expansion of its volume at
low temperatures. Conversely, as the temperature rises, the water is desorbed from the
hydrogel, causing the volume to decrease. This behavior is typically observed when the
samples are not fully immersed in the storage environment.
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Figure 6. Swelling behavior of PEGDA hydrogels at different scale and shape complexity. (a) Side
view of swelling of bulk polymerized PEGDA hydrogel in at 37 ◦C for first 24 h [162]. Reproduced
with permission from ref. [162]. Copyright 2017 American Chemical Society. (b) Images of a complex
brushite/PEGDA hydrogel biocomposite implant that can be implanted into a bone defect and fixed
through swelling. The biocomposite is initially placed freely in the dry state (top), but swells and
tightly fills the defect within 30 min by absorbing a red-colored aqueous solution containing an azo
dye (bottom) [163]. Reproduced with permission from ref. [163]. Copyright 2020 Elsevier. (c) The 3D-
printed samples stored in water for 48 h, showing an increase in inner channel and overall structural
dimensions [164]. Reproduced with permission from ref. [164]. Copyright 2021 Springer Nature.

The properties of hydrogels depend on the type of polymer and the chemical and
physical bonds between polymer chains. Ideally, cross-linked hydrogels have better me-
chanical properties than non-ideally cross-linked ones, but the effect of these cross-linking
sites on water and polymer interaction is not well understood [165,166]. The photo-cross-
linking process can be hindered by factors such as oxygen inhibition, which can lower
the conversion rate of the prepolymer solution. Acrylates are particularly sensitive to
oxygen inhibition, and the dissolved oxygen in the solution must be completely con-
sumed before cross-linking can begin, leading to a slower reaction rate [161]. PEGDA
(CH2=CHCO(OCH2CH2)nOCOCH=CH2) is a type of PEG that has repeated ethylene
oxide units and active end groups which can be cross-linked by exposing it to a light source
and a photoinitiator [167]. FTIR spectroscopy was used to study the surface chemical
composition of bulk PEGDA membranes with varying PEGDA monomer concentrations.
The spectra for all cross-linked samples were mostly identical, indicating a similar chemical
composition [167]. The gel fraction was used as a complementary technique to qualitatively
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evaluate the efficiency of the network formation or degree of cross-linking [168]. In a
separate investigation, the chemical structure was analyzed using proton nuclear magnetic
resonance (1H NMR) spectroscopy, revealing that the C=C of PEGDA of PEGDA monomers
were photo-cross-linked in the presence of a photoinitiator [169]. Measuring the peak areas
of C=C and C-O-C bonds provides an indirect method to qualitatively assess the degree of
cross-linking or conversion of the double bonds in PEGDA hydrogel, indicating the extent
of acrylate group conversion [155]. Understanding the degree of cross-linking can aid in
understanding how it affects the microstructure, porosity, and mechanical properties of
PEGDA hydrogels. The following section discusses the different characterization tools
used for understanding the mechanical properties of PEGDA hydrogels with more focus
on SLA fabricated samples.
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Table 1. Swelling characteristics of PEGDA with/without comonomer.

PEGDA/Comonomer Molecular
Weight (kDa) Conc (%) Bulk/3D Type of Study Cells Used Sample Type Storage Solution pH Temp (◦C) Volumetric Change

Yes/No
Duration

(Day) Degradation Swelling Ratio Ref.

PEGDA 0.7 20 3D-projection
lithography Materials only * N/a

Cuboid, 5 × 5 × 10 mm,
20 and 150µm

layer thicknesses
Deionized water 7.4 8–45 Yes 7 No (−)10–(+)24 [56]

PEGDA 0.7 20 3D-projection
lithography Materials only N/a

Cuboid, 5 × 5 × 5.1 mm,
20 and 150µm

layer thicknesses

Deionized water/
cell culture media 7.4 8–37 Yes 30 No (−)6–(+)20 [57]

PEGDA/poly-(ε-
caprolactone)

(PCL)
1 15 3D-SLA-DLP In vitro viability of

tissue constructs

Human umbilical
vein endothelial
cells (HUVECs)

n/a Water n/a RT No 3 No 5 [72]

PEGDA 0.7, 3.4, 5, 10 40 3D-SLA Long-term viability
of SMT NIH/3T3 cells Disks 100µm, dia 5 mm,

1 mm thickness PBS 7.4 37 No 1 No 5–35 [100]

Poly-N-isopropylacrylamide
(PNIPAM)/PEGDA N/a 10 3D-extrusion Materials only N/a Multilayer, 260µm Water N/a RT Yes, reversible

between 20–50 ◦C 1 No 0.1–3 [129]

GelMA/PEGDA 0.7 0–15 Bulk and
3D-extrusion Drug delivery N/a Multilayer, 200µm, PBS 7.4 36.1 No 1 Yes, 7 days 4–7 [141]

PEGDA/poly(ethylene
glycol) methyl ethyl

methacrylate (PEGMEMA)
0.25, 0.575 45–100 3D-SLA

In vitro Viability of
cell encapsulation

in micro-
stereolithography

HUVECs Multilayer 50µm,
Φ9 mm, 1 mm PBS N/a RT No 1 No 0.03–0.74 [142]

PEGDA/poly(3,4-
ethylenedioxythiophene)

(PEDOT)
0.575 50, 70, 90 3D-SLA Materials only N/a Multilayer PBS N/a 37 No 1 No 0.13–0.35 [143]

Poly(ε-caprolactone) maleic
acid (PGCL-Ma) and PEGDA 2, 3.6, and 8 0–100 Bulk

In vitro release of
bovine serum

albumin (BSA) for
drug delivery

N/a No specific shape,
a section 25 mg PBS 7.4 37 N/a 40 No degradation

for 20 days 4.1–73 [144]

PEGDA/gelatine
methacrylate (GelMA) 0.7 5–20 Bulk Cell-laden cartilage

tissue construct
Human bone

marrow MSCs Nanospheres PBS N/a 37 No N/a N/a 6–10 [145]

PEGDA/SiO2 0.575 N/a 3D-SLA Materials only N/a Multilayer 25, 50, 100µm
(145 × 145 × 175µm) Water N/a 25 Yes, 22% in thicknees

and 15% on width 4 No 0.35 [146]

PEGDA N/a 10 Bulk Materials only N/a Cylinder, diam 3 mm,
15 mm thickness Deionized water N/a 37 No 3 N/a 5–13.5 [147]

PEGDA/GelMA 1, 4, 8 15, 20, 30 Bulk

3D cell culture
platform for
studying cell

invasion

MDA-MB-231 cells N/a PBS 4, 7, 7.4 37 No 3 No degradation
for 21 days 10–12 [148]

PEGDA/tendon tECM N/a 10 3D-SLA

Tendon
extracellular

matrix for bone
regeneration

Mesenchymal stem cell Multilayer Water N/a 25 No 1/2 No 0.06–0.12 [150]

Water-miscible acrylate
(HBA)/poly(ethylene glycol)

methyl ethyl methacrylate
(PEGMEMA)/PEGDA

0.575, 0.7, 2.5,7.5 3D-SLA Materials only N/a Multilayer, 50µm, dia
9 mm, 0.8 mm thickness Mili-Q waer and PBS N/a RT Yes 3–24 h No 0.1–0.8 [152]

PEGDA 0.575 2–80 3D-DLP Materials only N/a Multilayer, 50, 100,
500µm, Deionized water N/a RT Yes 1 No 0.01–0.2 [153]

PEGDA 0.7, 3.4 10,20,40 Bulk In vitro 3D
synthetic matrices NIH 3T3 cells Cylinder, dia 10 mm,

thickness 1 mm Deionized water N/a RT No N/a No 2–9 [155]
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Table 1. Cont.

PEGDA/Comonomer Molecular
Weight (kDa) Conc (%) Bulk/3D Type of Study Cells Used Sample Type Storage Solution pH Temp (◦C) Volumetric Change

Yes/No
Duration

(Day) Degradation Swelling
Ratio Ref.

GelMA-PEGDA 20 10 Bulk In vitro 3D hydrogels to
mimic the neural tissue

Mouse neuroblastoma cell
line Neuro2a

Cylinder, dia 10 mm,
3 mm thickness Collagenase type II N/a RT No 2 Yes, 0.01–0.8 [156]

PEGDA 0.575 N/a 3D-SLA Materials only N/a Multilayer, 100µm,
200 × 200µm Water N/a 4–15 Yes, reversible depending

on cross-linking N/a N/a 0.2–2.3 [161]

PEGDA 10 7.5 Bulk Materials only N/a Tubes with diameters 3.85–7.2 Mili-Q 7.4 37 Yes 2 No 30 [162]

Calcium phosphates
(Cap)/PEGDA 0.250, 0.575, 0.7 N/a 3D-SLA In Vivo

3D bone grafts N/a Multilayer. 6 mm dia, 200µm
thickness Water N/a RT No 7 No 0.20–0.60 [163]

PEGDA 0.575 N/a 3D-SLA Materials only N/a Multilayer, cantilevers Ethanol, Water, acetone N/a RT N/a 60 min no 1.2–1.7 [170]

PEGDA/Acrylic acid (AA) 1, 4, 10 9–36 Bulk In vitro contractile SMT C2C12 mouse myoblast cell Single layer, 0.4 mm thickness PBS 7.4 RT Yes 3 Yes, after 4 weeks 1–3.5 [171]

PEGDA 0.7 20 3D-SLA In vitro contractile SMT C2C12 mouse myoblast Multilayer, 20 um, dia 6 mm,
5 mm thickness Deionized water N/a RT No 1 No 5.1–5.6 [149,154]

* N/a: No information is available or provided in the study.
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3.2. Mechanical Properties of PEGDA Hydrogels

Methods have been developed to assess the elastic modulus of in vitro scaffolds, partic-
ularly hydrogels, which are widely utilized in 3D culture due to their tunable characteristics
and compatibility with biological systems, with the goal of achieving a 3D matrix that
accurately replicates the mechanical properties of the tissue or pathological environment
under study [172,173].

3.2.1. Bulk Characteristic of PEGDA Hydrogels

Soft biological tissues typically demonstrate an increasing resistance to deformation
with the rise in applied stress, which is commonly evaluated using the tensile test to mea-
sure the Young’s modulus as the ratio of applied stress to resultant strain (Figure 7a). When
conducting tensile tests on biological samples, it is crucial to measure the strain at a specific
stress while assuming the material behaves as a perfectly elastic one (Figure 7b) [174].
The 3D printed PEGDA hydrogel using SLA tested on tensile machine reported an elastic
modulus of 1.4 MPa [175]. Combining hydrogels with other polymeric materials can be
a viable approach to overcome the inherent limitation of low mechanical stability exhib-
ited by hydrogels under physiological conditions [176]. In the same study, blending the
PEGDA with tetraethoxysilane nanoparticles increased the modulus by at least 50% [175].
Another study showed that a bilayer of PNIPAN/PEGDA produced by extrusion-based 3D
printing had a Young’s moduli of 36 kPa [129]. Even though the mechanical properties of
PNIPAN/PEGDA were considerably low, the addition of PNIPAN has resulted in having
a thermoresponsive composite hydrogel that reacts differently at temperatures ranging
from 20 to 50 ◦C. A study that used a combination of PEGDA/GelMA hydrogels produced
through bulk cross-linking for researching neurodegeneration found that the modulus
measured during a tensile test was in the range of 10 kPa. This value is consistent with the
range required for neural stem cell therapies, which is typically between 1–7 kPa [156,177].

The compression test is another frequently employed method to evaluate the elastic
modulus of PEGDA hydrogels, requiring well-defined cylindrical samples with specific
shapes and dimensions (Figure 7a,c) to ensure precise and reliable results, similar to tensile
tests [178]. Multiple studies found that PEGDA hydrogels created by both bulk cross-
linking and 3D printing with similar molecular weight of 700 Da had compression moduli
in the range of 0.02 to 1.29 MPa. The compressive modulus has an inverse relationship
with polymer molecular weight and a direct relationship with polymer concentration
(Figure 7d,e) [100]. A bulk characterization of GelMA/PEGDA (700 Da) hydrogel us-
ing a compression test showed a compressive modulus of 5–20 MPa. A combination of
GelMa/PEGDA (20 kDa) also produced by bulk cross-linking reported a considerably lower
compressive modulus compared to GelMA/PEGDA (700 Da), as low as 0.8 KPa [156]. Such
a change in compression modulus could also be due to the different strain rate used in the
studies [179]. A composite of 3D printed PEGDA hydrogels with SiO2 nanoparticles using
SLA had a compressive modulus of 50–85 MPa which is considerably higher than what
was reported in literature review [146]. Such nanocomposites with enhanced mechanical
properties can be explained by the high surface area-to-volume ratio surface interaction
between nanofillers and polymers [180].
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dynamic mechanical analyzer (DMA) is warranted. Although measurements using these 
techniques have been conducted on both bulk and 3D PEGDA hydrogels, it is important 
to note that these techniques are beyond the scope of the present research. Nonetheless, 
future investigations should consider employing rheology and DMA to further elucidate 
the mechanical properties of 3D printed PEGDA hydrogels. Moreover, the variation in 
reported elastic properties emphasizes the necessity of establishing a standardized proto-

Figure 7. (a) Schematic of tensile and compression. Blue arrows illustrate the direction of force [181].
Reproduced with permission from ref. [181]. Copyright 2017 Elsevier. (b) Image of PEGDA hydrogel under
tensile tension [116]. Reproduced with permission from ref. [116]. Copyright 2022 De Gruyter. (c) Image
of 3D PEGDA hydrogel under compression. (d) Compressive moduli of hydrogels with varying PEGDA
concentrations. n = 5, * p < 0.05. Error bars represent standard deviation [145]. Reproduced with permission
from ref. [145]. Copyright 2018 IOP Publishing. (e) Mechanical properties of laser-polymerized PEGDA
hydrogels were measured for 20% PEGDA hydrogels as a function of molecular weight (0.7, 3.4, 5, and
10 kDa) [100]. Reproduced with permission from ref. [100]. Copyright 2010 Royal Society of Chemistry.

The mechanical properties of PEGDA hydrogels produced using photo-cross-linking
can be altered by changing the UV light dosage. Increasing the UV light dosage may result
in a decrease in the compressive modulus due to over-cross-linking. This was observed in
studies where PEGDA hydrogels were exposed to different UV light durations. This was
observed in studies where PEGDA hydrogels were exposed to 20, 40, and 60 s of UV light.
The compression modulus increased from 0.49 to 0.7 MPa when exposed to 20 and 40 s,
respectively, but dropped to 0.64 MPa when exposed to 60 s of UV light [147].

The findings presented in Table 2 indicate that both bulk and 3D printed PEGDA hydrogels
exhibit strain-dependent behavior, suggesting that they are viscoelastic materials. However, further
investigation is needed to fully understand the mechanical properties of these hydrogels. It is
worth noting that conventional compression or tensile testing methods, typically used for bulk
characterization, may not provide an accurate representation of the PEGDA system. Therefore,
in order to gain a better understanding of these 3D printed systems, the utilization of more
specialized techniques such as rheology and dynamic mechanical analyzer (DMA) is warranted.
Although measurements using these techniques have been conducted on both bulk and 3D PEGDA
hydrogels, it is important to note that these techniques are beyond the scope of the present research.
Nonetheless, future investigations should consider employing rheology and DMA to further
elucidate the mechanical properties of 3D printed PEGDA hydrogels. Moreover, the variation
in reported elastic properties emphasizes the necessity of establishing a standardized protocol
specifically tailored for hydrogels. Given the established application of PEGDA hydrogels in the
biomedical field, particularly in their interaction with living tissues and cells, it is essential to
consider that the mechanical properties of 3D printed cell-laden cartilage constructs, which have
been assessed using bulk samples, might not accurately reflect the mechanical behavior at a smaller
scale. This discrepancy arises despite the material’s intended use in 3D bioprinting. Therefore,
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it becomes imperative to explore alternative testing approaches that can provide more accurate
representations of the mechanical properties at the desired scale, ensuring that the performance
of PEGDA hydrogels aligns appropriately with their biomedical applications [145,163]. To obtain
accurate surface mechanical properties at the micro and nanoscale, advanced techniques such as
AFM and nanoindentation are commonly employed in various studies [182]. Although indentation
testing may produce comparable results to compression testing in terms of the elastic modulus, it
differs significantly due to differences in loading geometry and boundary conditions [183–185].

3.2.2. Localized Characteristics of PEGDA Hydrogels

Nanoindentation and AFM are extensively utilized techniques for assessing the mechani-
cal properties of soft biological tissue materials and optical thin films. They are particularly
beneficial for testing hydrogels, as they require only small samples, can be performed on a
single sample, and reduce differences between samples. Both techniques involve pressing a
probe onto the surface of the hydrogel and creating a force-indentation distance curve, from
which the hydrogel’s Young’s modulus can be obtained [186,187]. The probe characteristics,
such as material, spring constant, and radius, have a significant impact on the measurement’s
resolution, accuracy, and sensitivity [188–190]. AFM has been utilized to examine the elastic
modulus of PEG based hydrogels (Figure 8a) [191–193]. For instance, AFM results for PEGDA
hydrogels with varying molecular weight showed an increase in elastic modulus [194], contra-
dicting bulk compression test results of an inverse relationship between the molecular weight
and compression modulus [155]. Therefore, it could possibly be a difference in results obtained
in macroscale such as compression testing and nanoscale such as AFM. The elastic modulus
of bulk-cross-linked PEGDA hydrogels increased from 30 to 80 kPa as the concentration of the
PEGDA monomer increased from 20 to 50%, as determined by AFM analysis (Figure 8b) [195].
The mechanical properties of 3D printed PEGDA hydrogels produced by SLA and direct laser
writing (DLW) were analyzed using AFM. The results showed that the elastic modulus of
these hydrogels was in the range of 1-10 MPa (Figure 8c) [161,196]. A longer UV light dosage
results in higher elastic modulus as it dictates the degree of cross-linking. AFM measurements
on 3D PEGDA hydrogel show that elastic modulus increases linearly with increased UV light
dosage and increased degree of cross-linking (Figure 8d) [195].
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Table 2. Bulk characterization of PEGDA hydrogels.

PEGDA/Comonomer Molecular Weight
(kDa) Conc (%) Bulk/3D Type of Study Cells Used Sample Shape UV Variations Storage Solution Temperature (◦C) Mechanical Test Modulus Ref.

PEGDA/poly-
(ε-caprolactone) (PCL) 1 15 3D-SLA-DLP In vitro viability of

tissue constructs HUVECs Disks, 100µm, dia 8 mm,
3 mm thickness Yes * N/a N/a Compressive modulus,

1 N load cell, 0.1–30% strain 50–250 kPa [72]

PEGDA 0.7, 3.4, 5, 10 40 3D-SLA Long-term viability of SMT NIH/3T3 cells Disks 100 um, dia 5 mm,
1 mm thickness No PBS 25

Compressive modulus,
compression test, 1 mm/s,

strain at 10%
5–503 kPa [100]

Poly-N-isopropylacrylamide
(PNIPAM)/PEGDA N/a 10 3D-extrusion Materials only N/a Multilayer, 260µm, No Solution 25 Tensile strength, uniaxial

tension, loading rate 2 mm/s 85 kPa [129]

PEGDA/gelatine
methacrylate (GelMA) 0.7 5–20 Bulk Cell-laden cartilage

tissue construct
Human bone

marrow MSCs N/a No Dry RT Compression/100 N load,
2 mm/min 5–20 MPa [145]

PEGDA/SiO2 0.575 N/a 3D-SLA Materials only N/a Multilayer 25, 50, 100µm
(145 × 145 × 175µm) No Swollen (water) 25 Compression testing,

2 mm/min 50–85 MPa [146]

PEGDA N/a 10 Bulk Materials only N/a Cylinder, diameter
15 × 3 mm thickness Yes Dry RT Compression/ 2 kN,

0.5 mm/min 0.49–0.7 MPa [147]

PEGDA/GelMA 1, 4, 8 15, 20, 30 Bulk 3D cell culture platform for
studying cell invasion MDA-MB-231 cells N/a No Hydrated (water) 37

Storage modulus,
rheometry, 1 to 400 rad/s,

amplitude of 0.3%.
1–8 kPa [148]

PEGDA/tendon tECM N/a 10 3D-SLA Tendon extracellular matrix
for bone regeneration

Mesenchymal
stem cell Multilayer No Dry RT Compression,

compressive modulus 0.2–0.3 MPa [150]

PEGDA 0.7, 3.4 10, 20, 40 Bulk In vitro 3D
synthetic matrices NIH 3T3 cells Cylinder, dia 10 mm,

thickness 3 mm No Swollen (water) RT Confined compression,
19µm/min, 10% deformation 22–118 kPa [155]

GelMA-PEGDA 20 10 Bulk In vitro 3D hydrogels to
mimic the neural tissue

Mouse neuroblastoma
cell line Neuro2a

Tensile 30 × 10 × 3 mm,
compression dia 10 mm,

5 mm thickness
No PBS 37

Tensile modulus, max strain at
50%, 1 mm/min compressive

modulus, 0.5 mm/min

10–60 kPa
0.8–6 kPa [156]

Calcium phosphates
(Cap)/PEGDA 0.250, 0.575, 0.7 N/a 3D-SLA In vivo

3D bone grafts N/a Multilayer. 200 um.
6 mm dia, 12 mm thickness No Dry and swollen (water) 25 and 37 Compression testing,

1 mm/min 0.21–19.87 MPa [163]

PEGDA/Acrylic acid (AA) 1, 4, 10 9–36 Bulk In vitro contractile SMT C2C12 mouse
myoblast cell

Single layer,
2 × 5 cm 0.4 mm No PBS RT Tensile test, elastic modulus,

1.5 mm/min 68–214 kPa [171]

PEGDA 0.6 N/a 3D-DLP Materials only N/a 10 × 80 × 0.7 mm No N/a N/a Tensile test, Young’s modulus,
load cell 500 N 1.4 MPa [175]

PEGDA 0.258 7–40 Bulk Human articular cartilage N/a Cylinder, dia 11 mm, height
8 mm No Dry

wet RT
Tensile test, elastic modulus,

20 N, compression test, elastic
modulus

4–20 MPa
0.05–3.19 MPa [182]

PEGDA 0.7 20 3D-SLA In vitro contractile SMT C2C12 mouse
myoblast

Multilayer, 20 um, dia
6 mm, 5 mm thickness No Swollen (water) RT Compression testing shear

modulus, 0.5 mm/min 0.43 MPa [149,154]

* N/a: No information is available or provided in the study.
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Figure 8. Localized mechanical properties of PEGDA hydrogels measured using AFM and nanoin-
dentation techniques. (a) Elastic modulus map of bulk hydrogels showing variations between
18–32 kPa [193]. Reproduced with permission from ref. [193]. Copyright 2011 Elsevier. (b) Young’s
modulus of a hydrogel with change in PEGDA concentration between 20 to 50 w/v% measured
using AFM [195]. Reproduced with permission from ref. [195]. Copyright 2022 Elsevier. (c) AFM
topographic image of 3D hydrogels produced using DLW using PeakForce QNM mode showing
elastic modulus ranging between 6 to 12 MPa in dry state [196]. Reproduced with permission from
ref. [196]. Copyright 2021 Elsevier. (d) The influence of light intensity on the mechanical properties of
hydrogel is examined by AFM, showing an overall positive trend [195]. Reproduced with permission
from ref. [195]. Copyright 2022 Elsevier. (e) Plots of nanoindentation for 3D printed hydrogel using
inkjet printing showing the difference in nanomechanical properties at top and bottom of the hydrogel
after postcuring process. The results show that unidirectional postcuring results in heterogeneity in
elastic modulus across the sample [86]. Reproduced with permission from ref. [86]. Copyright 2016
Wiley. (f) Multilayer hydrogels produced by DLP printer with irradiance intensity (I0), and layer
thickness (Z) parameters used to control cure depth (Cd). AFM used for mapping elastic modulus
cross-sectioned of hydrogels showing how incorporating a light absorber, can result in exponential
decay in light intensity with penetration depth, resulting in a limited thickness of resin that undergoes
gelation [197]. Reproduced with permission from ref. [197]. Copyright 2021 Wiley.

Nanoindentation, as an alternative method, allows for the mapping of elastic properties
of soft materials at a microscopic level by employing an indenter tip to apply a controlled
force and precisely measuring the indentation depth with sub-nanometer accuracy [198].
This technique proves valuable in studying the influence of the micro-environment on the
mechanical behavior of the matrix, with specialized flat punches and large-radius spherical
indenters developed specifically for soft samples [95,199]. The elastic modulus of 3D PEDGA
hydrogels used as a scaffold for bone marrow mesenchymal stem cells, produced by two-
photon polymerization, increased from 100–1500 kPa as laser intensity and raster speed were
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increased [200]. In another study, 3D PEGDA structures were created using a technique called
mask projected excimer laser SLA, without adding a photoinitiator to the prepolymer solution.
This method relies on high levels of light energy and resulted in a significant increase in elastic
modulus, as measured by nanoindentation [201]. The 3D PEGDA hydrogels produced by
this technique without photoinitiator showed a 10-fold increase in elastic modulus when
analyzed by nanoindentation [202]. Such advancement in 3D printing helps with reducing the
risk of cytotoxicity from the photoinitiator molecules during cell proliferation [202]. Nanoin-
dentation measurements provide insight into the time dependent behavior of hydrogels and
how surface characteristics affect cell behavior when in contact with the hydrogel surface.
These measurements have shown that hydrogels used for multicellular spheroid culturing
exhibit time-dependent stress curves, indicating viscoelastic behavior that leads to better
cell adhesion, spreading, and tissue formation [203]. Nanoindentation was used to compare
the mechanical characteristics of the top and bottom surface of a 3D printed PCL/PEGDA
hydrogel, revealing that the top surface had a higher elastic modulus than the bottom surface
(Figure 8e). This difference can be attributed to the reduced intensity of UV light reaching the
bottom surface during 3D printing, resulting in a lower degree of cross-linking [86]. This sug-
gests that 3D printing can result in structures with variations in cross-linking and mechanical
properties. It was found that 3D printed PEGDA hydrogels produced by DLP printing have a
mechanical gradient across the layers, as confirmed by measuring the elastic modulus along
the surface of cross-sectioned 3D-printed structures (Figure 8f) [197]. Moreover, examining
samples in their hydrated and dried state also showed to report different elastic modulus
with dry samples always have a higher modulus in comparison with swollen hydrated
samples [146,163]. Nanoindentation research on PEGDA hydrogels showed that the elastic
modulus of a dried PEGDA hydrogel was 5 MPa, while the modulus of hydrated samples
was slightly above 1 MPa [204]. In Table 3, the elastic modulus variations are presented from
multiple studies, taking into account different printing parameters, fabrication methods, and
starting prepolymer solutions. The analysis reveals that although all the studies focused on
tissue engineering applications, a significant portion (58%) of them were conducted under
dry conditions, which do not reflect the actual conditions in which the hydrogel samples will
be used. This leads to an overestimation of the elastic properties of PEGDA hydrogels in
these studies. Once again, this raises the discussion surrounding the necessity of developing a
standard protocol specifically designed for measuring the mechanical properties of hydrogels.
Such a protocol would help minimize the discrepancies in measurement results found in the
literature, ensuring greater consistency and reliability for researchers worldwide.



Polymers 2023, 15, 2341 21 of 35

Table 3. Localized characterization of PEGDA hydrogels using AFM and nanoindentation.

PEGDA/Comonomer Molecular Weight
(kDa) Conc (%) Bulk/3D Type of Study Cells Used Sample Shape UV Variations Storage Solution Temperature (◦C) Mechanical Test Modulus Ref.

PEGDA 0.7 20 3D-projection
lithography Materials only * N/a

Cuboid, 5 × 5 × 1.2 mm,
20 and 150µm

layer thicknesses
Yes Deionized water/

cell culture media RT Nanoindentation 0.67–1.69 MPa [57]

PEGDA 0.7 20 3D-projection
lithography Materials only N/a Cuboid, 5 × 5 × 3 mm, 20µm

layer thickness Yes Deionized water RT AFM 2.8–13.1 kPa [61]

Polycaprolactone
di-methacrylated

(PCLDMA)/PEGDA
0.250 0–50 3D-Inkjet printing Biocompatibility test NIH3T3 fibroblasts Multilayer, 5µm, 100 layers,

cuboid, 5 × 5 × 0.5 mm Yes N/a RT
Nanoindentation,
spherical indenter

50µm radius
25–75 MPa [86]

PEGDA 0.575 N/a 3D-SLA Materials only N/a Multilayer, 100µm,
200 × 200µm Yes N/a N/a AFM, elastic modulus 1.25–4 MPa [161]

PEGDA 0.6 N/a 3D-DLP Materials only N/a Multilayer,
10–100µm thickness No Dry N/a Nanoindentation, radius

1µm diameter, 7 MPa [175]

PEGDA 0.258 7–40 Bulk Human articular
cartilage N/a Cylinder, dia 11 mm,

height 8 mm No Wet RT Nanoindentatio, flat
punch. 54µm diameter 1.84–3.29 MPa [182]

PEGDA/Hyaluronic acid (HA) 0.575 N/a Bulk Influence of the
network architecture

Murine L929
fibroblasts N/a No No 25 AFM, 2.5–25 kPa [193]

PEGDA 0.258, 0.575, 0.7 N/a Bulk Materials only N/a Single layer, 1.5 mm thickness No Water N/a AFM 2.48–4.33 MPa [194]

PEGDA 0.7 20–50 Bulk Materials only N/a Cuboid, 6 × 6 × 0.4 mm Yes N/a N/a AFM 35–95 kPa [195]

PEGDA 0.7 N/a 3D-Direct Laser
writing (DLW) Materials only N/a Single layer, Yes No N/a AFM, elastic modulus 6.9–9.5 MPa [196]

PEGDA 0.7 N/a 3D-DLP Materials only N/a Multilayer, 10, 30, 100µm Yes Dry RT AFM 9.5–34.5 MPa [197]

PEGDA 0.7 50 3D-DLW
In vitro woodpile

structures, model for
leukemic disease

Bone marrow
mesenchymal stem

cells (BM-MSCs)
Multilayer, 100 × 100 × 50µm Yes Water RT Nanoindentation,

spherical 28µm radius 100–1500 kPa [200]

PEGDA (no photoinitiator) 0.7 N/a 3D-laser SLA In vitro cell viability
and biocompatibility

Chinese hamster
ovarian cells (CHO) Multilayer, 100µm thickness Yes Dry N/a Nanoindentation,

Berkovich tip 10–100 MPa [202]

PEGDA 6, 20 15 3D-SLA
In vitro 3D

microenvironment
and viability test

Cardiac progenitor
cells (hCPCs)

Multilayer, 250µm layer
thickness, 10 layers No Dry and wet Water Nanoindentation 5 MPa

1 MPa [204]

PEGDA 0.575 5–20 Bulk Materials only N/a Single layer, 70µm No Water 20 AFM, 2.5µm radius
spherical tip 2.8–228.9 kPa [205]

PEGDA 0.7 N/a 3D-SLA Materials only N/a Multilayer, 600 um height,
diameter 300µm No N/a N/a AFM 200 MPa [206]

PEGDA (PEG-fibrinogen) 0.4, 4 5–25 Microfluidic Material stiffness
and cell viability

human foreskin
fibroblasts (HFFs) Single layer, No N/a N/a AFM 0.7–50 kPa [207]

Polyacrylamide
(PAM)/PEGDA 0.7 5–16 Microfluidic Materials only N/a Hydrogel particles No Water, dry RT AFM 2–7 kPa (hydrated)

25–180 kPa (dry) [208]

* N/a: No information is available or provided in the study.
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4. 3D PEGDA Hydrogel for Cardiac Tissue Engineering

As discussed previously, PEGDA hydrogel has been used for various applications
within the field of tissue engineering [37,209,210]. In the area of organ-on-chip devices,
it has been tested for 3D cell culture platforms such as skeletal muscle microtissues
(SMT) [211–213]. Designing functional in vitro SMT involves two crucial elements: scaf-
fold architecture and functionality. The scaffold should facilitate muscle differentiation
and myogenesis leading to aligned, dense, and well-oriented myofibers. The scaffold’s
functionality can be improved through artificial electrical stimulation promoting myogenic
cell transformation into functional myofibers [214–217].

The popular scaffold design for contractile cardiac tissue resembles PDMS molded
cantilever beams (posts), with tissue hanging from both ends. It evolved from 2D to repre-
sentative 3D tissue studies and multiple commercial systems exist (Figure 9a–h) [218–225].
The technique measures the deflection of vertical posts caused by the contraction of the
SMT. As the tissue construct is connected to the top of the posts, it exerts a force that brings
the posts closer together, resulting in horizontal displacement. This displacement can be
utilized to calculate the contraction force [226–228].
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Figure 9. State-of-the-art MTS formation based on the quantification of the deflection of a pair of ver-
tical cantilever PDMS beams (posts) for functional read-out assays. (a) Schematic of contractile force
measurement for STM that is grown in vitro between flexible cantilevers (posts) serving as tendons.
Force is quantified by tracking post displacements in response to stimulation and knowing platform
mechanics [213]. Reproduced with permission from ref. [213]. Copyright 2022 eLife. (b) Molding
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process was employed to make caps for the posts, using primary mouse myoblasts, tissue strips were
created encased in either a collagen/matrigel or fibrin scaffold [218]. Reproduced with permission
from ref. [218]. Copyright 2008 Wiley. (c) Skeletal muscle bundle of rats myoblasts embedded with
matrigel/fibrinogen and collagen I [219]. Reproduced with permission from ref. [219]. Copyright
2011 Elsevier. (d) Human engineered cardiac tissues (hECT) created using differentiated human
pluripotent stem cells in multi-tissue bioreactor [220]. Reproduced with permission from ref. [220].
Copyright 2016 JoVE. (e) Atrial-like engineered heart tissue generated from human induced pluripo-
tent stem cells (hiPSC) [229]. Reproduced with permission from ref. [229]. Copyright 2016 ICCSR.
(f) Muscle tissue was created by embedding either C2C12 cells or iPSC-derived cardiomyocytes in
a fibrin-based scaffold [230]. Reproduced with permission from ref. [230]. Copyright 2018 Elsevier.
(g) The transformation of the ECM by human myoblasts forming a human muscle micro-tissue held
by two posts for a 96-well culture platform [223]. Reproduced with permission from ref. [223]. Copy-
right 2020 Nature. (h) Miniaturized hiPSC-based cardiac tissue formed around micropillars [224].
Reproduced with permission from ref. [224]. Copyright 2020 IEEE.

As a better alternative to PDMS, which absorbs lipophilic compounds, PEGDA hy-
drogels limit nonspecific adsorption of proteins, DNA, and lipophilic drugs, making them
suitable for drug testing devices [149]. Additionally, techniques such as masked pho-
tolithography and mold-based fabrication are both inefficient and unsuitable for large-scale
production. These methods lack flexibility when it comes to creating complex shapes with
reliable and repeatable mechanical properties that match living cells. On the other hand,
3D printing using micro-SLA and DLP offers a faster and more dependable manufacturing
approach. These techniques involve the layer-by-layer fabrication of 3D PEGDA hydrogel
posts. The concept originated from miniaturized walking robots that were constructed
from a 3D-printed PEGDA hydrogel base and cantilever with two different molecular
weights. Subsequently, the cantilever was seeded with contractile cardiomyocyte cells [231].
The cantilever was initially polymerized, then its base was 3D printed, and its surface
was functionalized with collagen. The thickness of the cantilever was altered to assess its
performance. Further development led to the creation of cantilevers with varying molecular
weights, as a correlation between substrate stiffness and its impact on cardiomyocyte con-
tractile behavior was established (Figure 10a,b) [232–234]. It was discovered that increasing
the molecular weight of the PEGDA monomer in the prepolymer solution creates more
compliant structures with elasticity similar to native myocardium, measured in kiloPas-
cals [232]. Such knowledge led to the creation of a 3D printed flexible bio-bot that can hold
a muscle strip together and respond to optical and electrical pulses [235]. The same printing
technique was further developed to help investigate fabrication and the cryopreservation
of skeletal MTS and the multicellular spinal cord-muscle bioactuator using 3D PEGDA
hydrogels (Figure 10c) [131,236]. In another study the focus was to optimize 3D PEGDA hy-
drogel as an artificial muscle, focus was on adjusting its stiffness by changing the molecular
weight and measuring its contractile strength and durability [171]. It was discovered that
the hydrogels had a decline in performance after 4 weeks due to the gradual degradation
of the material. In a most recent work, a 3D PEGDA microenvironment was printed to
facilitate and support the formation of MTS [149]. This study investigated the impact of
altering the diameter of 3D PEGDA micro-cantilevers and the concentration of PEGDA in
the prepolymer solution on the behavior of MTS. It was observed that both increasing the
diameter of the micro-cantilevers and raising the PEGDA concentration led to a decrease in
the tissue’s ability to generate sufficient contractile forces for bending the cantilever. The
force exerted by the tissue on the cantilever was calculated using the Euler-Bernoulli theory
based on cantilever stiffness and deflection (Figure 10d) [149].
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from ref. [131]. Copyright 2020 AIP Publishing. (d) Muscle tissue created by embedding contractile 
cells of C2C12 hanging on 3D printed PEGDA hydrogels for multi assay platform [149]. Reproduced 
with permission from ref. [149]. Copyright 2019 American Chemical Society. 
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For example, to accurately analyze the pillar bending in contractile force measure-
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Figure 10. Images of 3D printed PEGDA cantilevers using SLA for contractile tissue studies.
(a) Bio-bot 3D printed PEGDA cantilever with cardiac cell sheet seeded on bottom of the can-
tilever [231]. Reproduced with permission from ref. [231]. Copyright 2012 Nature. (b) Multi-material
3D PEGDA cantilever and base with cardiomyocytes seeded on the cantilever. Deflection occurs due
to intrinsic stress in the formed tissue [232]. Reproduced with permission from ref. [232]. Copyright
2012 Nature. (c) Spinobot from the spinal cord and C2C12 myoblasts with tissue attached to the
hydrogel skeleton which causes bending by generating passive tension [131]. Reproduced with
permission from ref. [131]. Copyright 2020 AIP Publishing. (d) Muscle tissue created by embedding
contractile cells of C2C12 hanging on 3D printed PEGDA hydrogels for multi assay platform [149].
Reproduced with permission from ref. [149]. Copyright 2019 American Chemical Society.

To achieve higher maturity in the MTS for enhanced cardiomyocyte research, a study
proposed the integration of a flexible support structure made of the same material as the
3D printed PEGDA hydrogel beneath the cantilevers to enhance mechanical stimulation
of the tissue for its maturity [237]. This was achieved by stretching the flexible structure,
which in turn horizontally stretches the cantilever and mechanically contracts the MTS,
thus promoting tissue maturation. In addition to mechanical stimulation, electrical and
optical stimulation are widely recognized as key techniques for promoting maturity in
mechanically-tensioned tissues [238–240].

5. Knowledge Gap and Future Perspective

Despite the development of advanced techniques such as SLA, DLP, microfluidic,
and inkjet printing, there are still many gaps in our knowledge of 3D printed PEGDA
hydrogels. One critical area that needs to be addressed is the impact of layer-by-layer
fabrication on their behavior and properties, including their thermal response, isotropic
behavior, cross-linking homogeneity, dimensional and mechanical stability, and the effect of
printing parameters on their surface nanomechanical properties and viscoelastic behavior
(Figure 11). All of these factors are crucial for the majority of organ-on-chip devices,
especially in contractile force measurements, where the 3D PEDGA hydrogel pillars are
used to apply or resist force [149].

For example, to accurately analyze the pillar bending in contractile force measure-
ments, we must fully understand the hydrogel’s dimensional stability, physical isotropy,
mechanical behavior, and viscoelasticity, which are crucial in determining the model used
to predict the tissue force. Furthermore, the hydrogel’s dimensional stability resulting from
changes in temperature should be thoroughly investigated to understand their thermal
response fully. The effects of layer-by-layer printing on physical anisotropy, which can
depend on the printing direction and direction of light, also need further exploration.

Moreover, the impact of swelling on 3D printed PEGDA hydrogels remains an area
that requires further investigation. While studies have mainly focused on water and PBS,
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little exploration has been carried out on the effects of cell culture media on these hydrogels.
Understanding their behavior and properties in a realistic cell culture setting is crucial
for future research. Additionally, the long-term stability of these hydrogels is crucial,
and longer-term studies spanning months or even years are required to establish their
shelf life. The relationship between different environments, such as temperature and cell
culture medium, and the behavior of these hydrogels also needs to be thoroughly studied,
including their reversibility as a result of temperature change.

Furthermore, the stability of the hydrogels based on their storage and transportation
conditions and how dehydration and rehydration may affect their long-term physical and
mechanical stability requires investigation. Improving our understanding of the funda-
mental nanomechanical properties of 3D PEGDA hydrogels and how altering fabrication
parameters such as layer thickness and UV dosage can impact their surface nanomechanical
behavior uniformity is essential. Future studies should also focus on understanding the
correlation between force and the nanomechanical properties of these 3D printed PEGDA
hydrogels in all directions, which can significantly impact cell adhesion, differentiation,
and integration with the host microstructure.

In conclusion, further research is needed to enhance the effectiveness of 3D printed
PEGDA hydrogels in biomedical applications, particularly in the study of contractile tissue
studies. Ensuring their physical, chemical, dimensional, and mechanical stability, as well
as structural integrity, is critical for achieving positive outcomes.
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6. Conclusions

In conclusion, this review has highlighted the recent advances in additive manufac-
turing of PEGDA hydrogels and their potential for tissue engineering applications. The
various printing techniques, such as extrusion-based, inkjet-based, and stereolithography-
based printing, have been discussed, along with their advantages and limitations. The
physicomechanical properties of PEGDA hydrogels and biocompatibility have been shown
to be highly tunable and can be tailored to match specific tissue engineering requirements.
The reviewed literature indicates that PEGDA hydrogels possess many favorable properties
that make them suitable for use in tissue engineering, such as excellent biocompatibility,
high water content, and the ability to support cell growth and proliferation. However, there
are still many research gaps that need to be addressed in the future, such as investigating
the optimal conditions for PEGDA hydrogel fabrication and functionalization, as well as



Polymers 2023, 15, 2341 26 of 35

the effects of different printing techniques on the resulting structures and properties. Addi-
tionally, the potential of layer-by-layer printing to improve the mechanical properties and
functionality of PEGDA hydrogels should be further explored. Further in-depth in vitro
and in vivo studies are needed to elucidate the mechanisms underlying the interactions
between cells and PEGDA hydrogels and optimize the design of scaffolds for specific tissue
engineering applications. Despite these challenges, continued exploration and advance-
ment in the area of additive manufacturing of PEGDA hydrogels will lead to significant
breakthroughs in tissue engineering, and ultimately improve the quality of life for patients
in need of tissue replacement therapies. As the technology continues to improve and
become more widely available, PEGDA hydrogels have the potential to become a versatile
platform for various biofunctional living systems such as artificial organs, organ-on-chip,
microphysiological systems, and drug testing models.
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