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Abstract: The phase behavior of aqueous mixtures of fish gelatin (FG) and sodium alginate (SA) and
complex coacervation phenomena depending on pH, ionic strength, and cation type (Na+, Ca2+) were
studied by turbidimetric acid titration, UV spectrophotometry, dynamic light scattering, transmission
electron microscopy and scanning electron microscopy for different mass ratios of sodium alginate
and gelatin (Z = 0.01–1.00). The boundary pH values determining the formation and dissociation
of SA-FG complexes were measured, and we found that the formation of soluble SA-FG complexes
occurs in the transition from neutral (pHc) to acidic (pHϕ1) conditions. Insoluble complexes formed
below pHϕ1 separate into distinct phases, and the phenomenon of complex coacervation is thus
observed. Formation of the highest number of insoluble SA-FG complexes, based on the value of the
absorption maximum, is observed at рHopt and results from strong electrostatic interactions. Then,
visible aggregation occurs, and dissociation of the complexes is observed when the next boundary,
pHϕ2, is reached. As Z increases in the range of SA-FG mass ratios from 0.01 to 1.00, the boundary
values of рНc, рHϕ1, рHopt, and рHϕ2 become more acidic, shifting from 7.0 to 4.6, from 6.8 to 4.3,
from 6.6 to 2.8, and from 6.0 to 2.7, respectively. An increase in ionic strength leads to suppression
of the electrostatic interaction between the FG and SA molecules, and no complex coacervation is
observed at NaCl and CaCl2 concentrations of 50 to 200 mM.

Keywords: fish gelatin; sodium alginate; polyelectrolyte complexes; complex coacervation;
effect of pH; ionic strength

1. Introduction

Interactions between proteins and polysaccharides have been actively studied in
previous decades due to the widespread application of these compounds in food tech-
nologies, the cosmetic industry, medicine, pharmaceutics, tissue engineering, and many
other fields [1–8]. In particular, proteins are used as emulsifying, foaming, gelling, or
structuring agents in the food industry to develop liquid or solid matrices of functional
food products [9] and in drug delivery systems [10] and for the creation of films, coatings,
and capsules in the food, pharmaceutical, and cosmetic industries [11–13]. Polysaccharides
are also widely used in many industries as thickeners or moisture-retaining, gelling, drying,
or structuring agents [14–16].

Depending on internal and external factors, the interaction between proteins and
polysaccharides in aqueous media can adopt two directions: either attraction or repul-
sion [17,18]. Such factors include the molecular characteristics of proteins and polysac-
charides (molecular weight, conformation, chain flexibility, type and number of reaction

Polymers 2023, 15, 2253. https://doi.org/10.3390/polym15102253 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15102253
https://doi.org/10.3390/polym15102253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-6715-2530
https://orcid.org/0000-0002-2367-672X
https://orcid.org/0000-0001-8733-0595
https://orcid.org/0000-0002-5871-9320
https://doi.org/10.3390/polym15102253
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15102253?type=check_update&version=1


Polymers 2023, 15, 2253 2 of 14

groups, chain charge density); solvent properties (pH, ionic strength, polarity); and mix-
ing conditions (temperature, time, pressure, ratio of protein and polysaccharide, total
concentration of biopolymers, presence of crosslinking agents) [17,19–21].

Attractive interactions between proteins and polysaccharides occur mainly due to
electrostatic interactions between positively charged protein groups and negatively charged
polysaccharide groups [19,21,22]. Such interactions lead to the formation of soluble or insol-
uble protein–polysaccharide complexes. The insoluble complexes then separate, forming
a two-phase system consisting of the phases containing the complexes and the solvent.
This phase separation phenomenon is also called “complex coacervation” if the separated
insoluble complexes are in the liquid state or “precipitation” if the complexes are in the
solid state.

It is known that flexible weakly charged anionic polysaccharides, such as gum arabic,
hyaluronic acid, dextran sulfate, and some pectins, tend to form liquid coacervates with
positively charged proteins due to their relatively weak electrostatic interaction [21,23].
On the other hand, rigid, strongly charged anionic polysaccharides, such as gellan gum,
sodium alginate, and κ-carrageenan, tend to form solid coacervates due to their stronger
electrostatic attraction with proteins [17,21].

Repulsive interactions are caused by the thermodynamic incompatibility of equally
charged or uncharged biopolymers [24,25].

Controlling protein–polysaccharide interactions could be a promising strategy for
overcoming the disadvantages when using each biopolymer separately and improving
their properties. In addition, the polyelectrolyte complex formation method is popular
due to its low cost, low energy consumption, and efficiency compared with conventional
processes such as solvent evaporation, emulsification, polymerization, etc. [26,27]. The
formation of such non-covalent complexes does not require the use of organic solvents or
crosslinking agents [28,29].

Many works have reported the interaction between proteins and polysaccharides—which
are simultaneously biopolymers and polyelectrolytes—such as gelatin–hummiarabic [30],
soy protein isolate–pectin [31,32], canola protein isolate–(θ-, η- and ι-) carrageenan [33],
and others. Protein–polysaccharide interactions, including the formation of polyelectrolyte
complexes, have been discussed in detail in previous reviews [6,21,34]. Water-soluble
polyelectrolyte complexes are formed only under strictly defined conditions (ratio of
components, pH) [35,36].

Systems containing gelatin and polysaccharides of marine origin are among the most
promising systems currently used in biomedicine, pharmaceuticals, and the food industry due
to the high availability, low cost, safety, and biodegradability of these materials [37–39]. Gelatin,
being a polyampholyte, can form complexes with both cationic and anionic polysaccharides
depending on the pH of the medium. In the literature, there are many papers devoted
to studying the interactions of gelatin with polysaccharides of different origins, such as
gum arabic [22], sodium alginate [40], and κ-carrageenan [41]. The process of gene delivery
using polyelectrolyte nanoparticles derived from cationized gelatin and anionic polysac-
charides, dextran sulfate, and chondroitin sulfate was studied in [42]. Despite the fact
that there are many research articles demonstrating the potential application of polyelec-
trolyte polysaccharide–protein complexes in drug delivery, the detailed characteristics of
these materials have not yet been described. From a practical point of view, the establish-
ment of a correlation between the structures of such complexes and their properties is
particularly interesting.

Thus, the purpose of this investigation is to study the phase behavior of aqueous
mixtures of sodium alginate with fish gelatin during complexation. This includes assessing
the effects of pH and ionic strength on the phase behavior of SA-FG aqueous mixtures.
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2. Materials and Methods
2.1. Materials

Sodium alginate from brown algae (A2033, Sigma, Gillingham, UK) was used. The
average mass molecular weight of sodium alginate was determined by HPLC using an
LC-20A chromatograph with a RID-10A refractive index detector (Shimadzu Corp., Kyoto,
Japan) with a Shodex Asahipak GS-520 HQ and GS-620 HQ (7.5 mm × 300 mm). The
molecular mass distribution of alginate was assessed by normalizing the peak areas [43].
The average mass molecular weight (Mw) of sodium alginate is ~507 kDa. The amount of
alginic acid was determined on the basis of a color reaction with 3,5-dimethylphenol, and
sulfuric acid was used as a reference [44]. The alginic acid content of the sodium alginate
sample was (92.2 ± 0.7)%.

Fish gelatin from Atlantic Cod skin was obtained according to the method described
in [45] for use in experiments. After being preliminarily cleaned from scales and residual
muscle tissue, the cod skin was thawed, chopped into 5 mm × 5 mm pieces, and then
treated with ethanol to remove fat. Next, the cod skin was mixed with distilled water
at a ratio of 1:3 (by wt%) and stirred for 10 min. Gelatin extraction was carried out at
pH = 5 for 3 h at 50 ± 1 ◦C with constant stirring at a speed of 80–100 rpm. The medium
pH was adjusted by adding glacial acetic acid. After extraction, the reaction mixture was
neutralized to pH 5.5–6.0 and then filtered by vacuum filtration at 30 ◦C through a paper
filter with a pore diameter of 12 µm. The resulting filtrate (gelatin aqueous dispersion) was
dried in a FreeZone lyophilic dryer (Labconco, USA) at −50 ◦C and a residual pressure of
2.4–2.6 Pa. The molecular weight of fish gelatin was determined to be 153 kDa by HPLC at
a wavelength of 280 nm using the LCMS-QP8000 chromatograph (Shimadzu, Japan). The
isoelectric point of gelatin (pI) was measured as 7.4 with the turbidimetric method and as
7.1 with the viscosimetric method. The amino acid composition of the gelatin is given in
Table 1.

Table 1. Amino acid composition (amino acid content, g/100 g protein) of gelatin.

Amino Acids Content, g/100 g Protein

Glycine 18.5
Proline 12.2

Hydroxyproline 7.5
Aspartic acid 5.6
Glutamic acid 9.1

Serine 6.6
Histidine 1.9
Threonine 2.7
Arginine 7.7
Alanine 9.3
Taurine 3.7
Tyrosine 1.0

Valine 2.1
Methionine 1.8
Isoleucine 1.6
Leucine 2.9
Lysine 3.5

Phenylalanine 2.3

2.2. Aqueous Mixtures of Sodium Alginate with Fish Gelatin

Aqueous dispersions of fish gelatin (FG) and sodium alginate (SA) with a concentration
of 0.2 wt% were separately prepared by dissolution in distilled water overnight at 25 ◦C
and constant stirring. Then, aqueous mixtures of alginate with gelatin were prepared
by adding the SA dispersion to the FG. The mass ratio of sodium alginate and gelatin
(Z = CSA/CFG, gSA/gFG) in the aqueous mixtures varied between 0.01 and 1.00 with a
constant concentration of gelatin of CFG = 0.1 wt%. To study the effect of pH on the
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formation of SA-FG complexes, the pH of the mixtures was preliminarily adjusted to ~8
using 0.1 M NaOH. The effect of the ionic strength on the interaction of FG with SA was
studied by adding sodium and calcium chlorides (1–200 mM) at Z = 0.07 and CFG = 0.1 wt%.

2.3. Turbidimetric and UV Absorption Spectrum Measurements

Ultraviolet spectral measurements of pure fish gelatin, sodium alginate, and aqueous
mixtures of sodium alginate and fish gelatin (SA-FG) in the wavelength range of 190 to
700 nm were recorded at 25 ◦C with an accuracy of 1 nm using a UV–Vis spectrophotometer
Т70 (PG Instruments, Wibtoft, United Kingdom). The width of the quartz cuvette was 1 cm.
The deionized water was used as a blank sample. The concentration of biopolymers in
individual dispersions was 0.1 wt%. The mass ratio of SA and FG in the mixtures ranged
from 0.01 to 1.00, with a constant concentration of gelatin of CFG = 0.1 wt%.

The interaction of FG with SA was investigated using the method of turbidimetric
titration. The gelatin dispersion (CFG = 0.2 wt%) was titrated with a dispersion of sodium
alginate (CSA = 0.2 wt%). The optical density was measured at a wavelength of λ = 400
nm and an optical path length of l = 1 cm using a spectrophotometer Т70 (PG Instruments,
Wibtoft, United Kingdom). Measurements were carried out at room temperature (25 ◦C).

2.4. Turbidimetric Acid Titration

The turbidimetric acid titration method was used to study the phase behavior of
aqueous mixtures of FG with SA at 25 ◦C. To study the effect of pH on the phase behavior
of SA-FG mixtures with Z from 0.01 to 1, SA-FG aqueous mixtures were titrated to pH ~2
using acetic acid solutions of different concentrations (1–100%) to minimize dilution effects.
During titration, the pH and optical density values were recorded. The optical density and
pH of the mixtures were determined during titration at a wavelength of λ = 400 nm and an
optical path length of l = 1 cm using a UV–Vis spectrophotometer T70 (PG Instruments,
Wibtoft, United Kingdom) at 25 ◦C.

The critical pH values (pHc, pHϕ1, pHopt, pHϕ2) were determined from the depen-
dence of absorbance on pH obtained during acid titration in accordance with the method
described in [17,18,30], where pHc is the limiting pH value at which there is initial weak
interaction between the polymers with the formation of soluble complexes; pHϕ1 is the lim-
iting pH value below which the mixture becomes turbid due to the formation of insoluble
sodium alginate–gelatin complexes; pHϕ2 is the limiting pH value below which turbidity
disappears due to dissociation of those complexes [18]; and pHopt is the pH value at which
the highest optical density was observed (Figure 1).

2.5. Particle Size Measurements

The average hydrodynamic radius of particles was measured by dynamic light scat-
tering using the Photocor Complex-ZI analyzer (Photocor, Moscow, Russia). A thermally
stabilized semiconductor laser (λ = 638 nm, 30 mW) was used as a light source. The
samples were held for 1 h before measurements. Measurements of the SA-FG complexes’
hydrodynamic radii were carried out at a scattering angle of 90◦ and temperature of 25 ◦C.
All of the measurements were done at least in triplicate.

2.6. Zeta Potential Measurements

Zeta potential was measured using an analyzer—Photocor Complex-ZI (Photocor,
Moscow, Russia)—equipped with a thermally stabilized semiconductor laser (λ = 638 nm,
30 mW) as the light source. Doppler signal analysis was performed in a mode of phase
analysis light scattering (PALS). Electrophoretic mobility µE of particles was converted to
zeta potential using the Smoluchowski equation. All values of zeta potential were obtained
at a scattering angle of 20◦. The measurements were performed at 25 ◦C, and the samples
were held for 60 min before the measurements. All of the measurements were done at least
in triplicate.
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Z = 0.10, where λ = 400 and T = 25 ◦C.

2.7. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)

Field emission scanning electron microscopy multipurpose analytical complex Merlin
(Carl Zeiss, Oberkochen, Germany) and an HT7700 Exalens transmission electron micro-
scope (Hitachi, Tokyo, Japan) were used to capture images of SA-FG mixtures.

3. Results
3.1. Influence of the SA-FG Mass Ratio

The UV absorption spectra of the SA, FG dispersions, and SA-FG aqueous mixtures
were obtained at a mass ratio of biopolymers, Z (Z = CSA/CFG, gSA/gFG), from 0.01 to 0.1
(Figure 2). In sodium alginate aqueous dispersion, the absorption maximum was observed
at a wavelength of 197 nm. This is due to the presence of hydroxyl and carboxyl groups in
the molecule, which absorbs in the ultraviolet range [46]. For the fish gelatin dispersion,
a broad absorption band was detected at 224 nm. Undivided nitrogen electron pairs
conjugated to double bonds in histidine and arginine residues [46], as well as conjugated
double bonds in the benzene ring of aromatic amino acids, especially tyrosine [47], were
found to contribute significantly to the absorption band position of gelatin.

It was found that the introduction of sodium alginate into the gelatin dispersion
led to a shift in the maximum absorption wavelength from 220 to 229 nm, and this was
accompanied by an increase in absorbance and a significant broadening of the obtained
absorption band (Figure 2). The observed changes in the spectra of gelatin are associated
with electrostatic interactions between charged carboxyl groups of the β-D-mannuronic
and α-L-guluronic acid residues of sodium alginate and the amino groups of gelatin.
These changes were also observed as a result of the formation of hydrogen bonds between
hydroxyl groups of sodium alginate and tyrosine residues of gelatin. The increase in the
absorption intensity in this region of the spectrum is associated with light scattering by the
particles of polyelectrolyte complexes.
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The dependence of absorbance on the mass ratio of sodium alginate and fish gelatin
was obtained (Figure 3). An increase in absorbance up to Z ≤ 0.07 is associated with an
increase in the content of stoichiometric insoluble SA-FG complexes. During the formation
of stoichiometric complexes, negatively charged sodium alginate molecules are completely
masked by positively charged gelatin. These complexes exist in the system together with
unbound macromolecules of gelatin. The observed maximum value at Z = 0.07 on the curve
corresponds to the formation of the maximum observed number of stoichiometric com-
plexes as a result of the mutual neutralization of charges and the most effective formation
of ionic pairs. A further increase in Z led to a decrease in the optical density of mixtures
due to the formation of soluble, nonstoichiometric sodium alginate–gelatin complexes
of variable composition. With an increase in the content of sodium alginate, its negative
charge becomes uncompensated, which leads to an increase in complex dissolution and a
decrease in absorbance.

The zeta potential of SA-FG complexes was measured to better understand the effects
of the SA-FG mass ratio on the electrostatic interactions between FG and SA. The zeta
potential of the mixtures was between 9.06 and −4.47 mV in the range of SA-FG mass ratio
values from 0.01 to 0.10 (Figure 4a). A decrease in the zeta potential, whose value was
generally between the values of pure FG (9.24 mV) and SA (−14.66 mV), with an increase
in Z indicates the charge compensation between FG and AL molecules. However, the value
of the zeta potential did not approach zero at Z = 0.07; therefore, complete neutralization
of charges at this value is not observed. This may indicate that the maximum absorbance
observed in Figure 3 is associated with an increase in the electrostatic interaction between
SA and FG, which led to the formation of larger light-scattering aggregates. Indeed, as can
be seen from Figure 4b, the maximum value of the average hydrodynamic radius (379 nm)
is observed at Z = 0.07.
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3.2. Influence of рН
The phase behavior of SA-FG aqueous mixtures depends largely on the pH of the medium,

the value of which affects, in turn, the degree of ionization of the biopolymers [17,22,23].
Figure 5a shows the UV spectra obtained for SA-FG aqueous mixtures at different pH
values and Z = 0.07, at which the maximum value of optical density was observed. It can be
seen that there is practically no shift in the absorption maximum in the pH range of 6 to 7.
In this pH range, gelatin is predominantly negatively charged, although it carries a positive
charge, and aqueous mixtures of SA-FG are transparent single-phase systems that contain
individual molecules of biopolymers and their soluble complexes, which are formed due to
the weak electrostatic interaction between the positive charge areas of the gelatin molecule
and the negatively charged groups of sodium alginate molecules. However, the electrostatic
repulsion between the molecular chains is greater than the electrostatic interaction. When
the pH is decreased from 5 to 2, there is a significant shift in the absorption maximum from
212 to 237 nm (Figure 5b). At these pH values, gelatin is predominantly positively charged;



Polymers 2023, 15, 2253 8 of 14

hence, there is stronger electrostatic interaction between gelatin and sodium alginate. As a
result, insoluble complexes are formed, which separate into distinct phases, and complex
coacervation is thus observed.
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The zeta potential of the SA-FG aqueous mixtures increased with decreasing pH from
8 to 2 due to the charge compensation between SA and FG molecules (Figure 5c). The
SA-FG complexes are recharged in the pH range of 6 to 5, as evidenced by the change in the
zeta potential from −4.39 to 2.30 mV, respectively. Consequently, in this pH range, there is
almost complete neutralization of charges and the formation of insoluble complexes.

Figure 6 shows the dependence of the optical density of aqueous mixtures of gelatin
and sodium alginate on pH obtained during acid titration. It can be seen that with an
increasing mass ratio, Z, i.e., an increase in the content of sodium alginate in the system,
the maximal optical density shifts to the acidic region of pH, and the system turbidity
also increases. The increase in absorbance is connected with the formation of insoluble
SA-FG complexes. At a pH corresponding to the curve maxima, the highest number
of insoluble sodium alginate–gelatin complexes form as a result of strong electrostatic
interactions between the positively charged amino groups of gelatin and the negatively
charged carboxyl groups of sodium alginate. As the pH further decreases, a drop in
the absorbance values is observed. This is due to the fact that the pH decrease causes
protonation of carboxyl groups present in the sodium alginate molecule, which leads to a
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decrease in the total charge in the sodium alginate molecule, which leads to the fewer and
weaker interactions between biopolymers [18,30].
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Four types of critical values of pH (pHc, pHϕ1, pHopt, pHϕ2) can be graphically
defined regarding the dependence of optical density on the pH. The dependence of critical
pH values on Z for systems containing fish gelatin and sodium alginate is shown in Figure 7.
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As can be seen in Figure 7, the values of pHc, pHϕ1, pHopt, and pHϕ2 depend on the
mass ratio of the components in the system. As Z increases from 0.08 to 1, a drop in the
critical pH values is observed. Thus, as Z increases in the SA-FG mass ratio range from 0.01
to 1.00, the pHc, pHϕ1, pHopt, and pHϕ2 values shift to a more acidic region: from 7.0 to
4.6, from 6.8 to 4.3, from 6.6 to 2.8, and from 6.0 to 2.7, respectively.

In the pH range from 8.0 to pHϕ1, SA and FG co-dissolve. As the pH decreases from
pHc to pHϕ1, soluble complexes are formed in SA-FG aqueous mixtures due to the weak
electrostatic interactions of FG with SA. Thus, the system is a single-phase system in which
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individual negatively charged sodium alginate molecules and soluble SA-FG complexes
are present. In the range of pHϕ1 and pHϕ2, the phenomenon of complex coacervation is
observed. As a result of the strong electrostatic interaction of biopolymers—wherein the
conditions are optimal for biopolymer interactions with neutralized charges—insoluble
complexes are formed. In this case, mixtures of sodium alginate with gelatin represent a two-
phase system in which one phase is represented by molecules of the dissolving agent, and
the other phase is enriched by SA-FG complexes. In the range from pHϕ1 to pHϕ2, the SA-
FG complexes visibly aggregate. Below pHϕ2, dissociation of the alginate–sodium gelatin
complexes are observed as the sodium alginate chains become increasingly protonated.

Thus, a gradual decrease in pH allows gelatin to neutralize the charge of sodium
alginate because an increase in the charge of gelatin increases its binding to the polyelec-
trolyte. Thus, the complex charge approaches a neutral value. This contributes to increased
associations and, eventually, to phase separation.

TEM and SEM images were also captured to study the effect of pH on the structure
of SA-FG complexes at Z = 0.07 with a total FG concentration of 0.1% (Figure 8). TEM
images revealed that the maximum number of complex particles was observed at pH = 5.5
with a minimum particle size (Figure 8a). At pH 4.5, the number of particles decreased
significantly due to the dissociation of the complexes (Figure 8b).
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The analysis of SEM images allows us to conclude that complex coacervates have
different structures. The most homogeneous surface, characterized by the inclusion of
small spherical particles (0.1–4 µm), is observed at pH = 5.5 (Figure 8e). At pH = 4.5,
oval cavities ranging in size from 1 to 8 µm are observed on the surface of the coacervate
phase (Figure 8d). The least homogeneous, friable structure is characteristic of the system
obtained at pH = 6.0 (Figure 8f).

3.3. Influence of Ionic Strength and Cation Type

The presence of salts in the protein–polysaccharide system can result in decreased
electrostatic interaction between protein and polysaccharide due to masking of the total
charge carried by macromolecules, which leads to a decrease in the degree of complexa-
tion [48,49]. The effect of ionic strength on the interaction of gelatin and sodium alginate
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during acid titration was studied in aqueous solutions of sodium and calcium chlorides.
The NaCl and CaCl2 concentration was varied from 1 to 200 mM at a mass ratio of Z = 0.07
and a gelatin concentration of 0.1% wt.

We found that the presence of electrolytes has a strong influence on the phase behavior
of aqueous mixtures of sodium alginate with fish gelatin (Figure 9). As the concentration of
the electrolyte increases, the absorbance decreases, and the peak position shifts to more
acidic pH values. At NaCl concentrations from 1 to 10 mM, formation of the coacervate
phase was observed, although the release of insoluble sodium alginate coacervates with
gelatin occurred at lower pH values compared with the system containing no electrolyte
(C(NaCl) = 0). At sodium chloride concentrations from 50 to 200 mM, no phase coacervation
was observed, and the system is a transparent single-phase, which is indicative of almost
complete suppression of the electrostatic interaction between gelatin and sodium alginate
molecules because the increase in ionic strength led to an accompanying increase in the
condensation of low-molecular counterions on the biopolymer surface. When NaCl was
added to the SA-FG aqueous mixtures, the critical pH values (pHc, pHϕ1, pHopt, pHϕ2)
shifted toward lower values (Figure 9a). This shift in the critical pH values is explained
by the shielding effect of NaCl on sodium alginate and gelatin. CaCl2 caused even greater
suppression of the interaction between SA and FG due to the larger cation radius (Figure 9b).
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Complexation occurs only when gelatin is sufficiently protonated at lower pH values.
It should be noted that the absorption maximum also decreases as the electrolyte concentra-
tion increases. Similar effects were observed for systems containing fish gelatin and sodium
alginate [17], whey protein and carrageenan [50], bovine whey albumin and pectin [51],
and pea protein isolate and hummiarabic [52].

4. Conclusions

The results of this study indicate that SA-FG aqueous mixtures exhibit different phase
behaviors depending on the pH and ionic strength. During acid titration, it was shown that,
as the mass ratio of the components (Z) was increased from 0.01 to 1.00, the turbidity of the
system increased, and the optical density maximum shifted to the acidic region from pH
6.6 to 2.8. A decrease in pH induces complex coacervation in SA-FG aqueous mixtures. In
the pH range from 8.0 to pHϕ1, aqueous SA-FG mixtures represent a single-phase system
containing single negatively charged SA molecules and soluble SA-FG complexes that form
due to weak electrostatic interactions. In the pHϕ1 to pHϕ2 range, a biphasic system is
formed in which one of the phases consists of insoluble SA-FG complexes. The maximum
observed interaction between SA and FG occurs at pHopt, and a further decrease in pH to
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pHϕ2 causes visible aggregation of SA-FG complexes. Below pHϕ2, complex disassociation
occurs as the SA chains become increasingly protonated.

With an increase in SA-FG mass ratios from 0.01 to 1.00, the boundary values of рНc,
рHϕ1, рHopt, and рHϕ2 become more acidic: shifting from 7.0 to 4.6, from 6.8 to 4.3, from
6.6 to 2.8, and from 6.0 to 2.7, respectively.

The addition of NaCl or CaCl2 leads to suppression of the electrostatic -interaction
between gelatin and sodium alginate molecules, whereas interaction is suppressed almost
completely at high concentrations of NaCl or CaCl2 (100 and 200 mM), and no coacervation
occurs in the SA-FG system.

Understanding the phase behavior and patterns of complex formation in aqueous
mixtures of SA-FG will allow the physical and chemical properties of polyelectrolyte
complexes of SA-FG to be regulated in order to obtain compositions for developing new
functional materials for different applications, such as encapsulation, textural modification,
and stabilization in food systems.
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