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Abstract: An essential biomarker for the early detection of cardiovascular diseases is serum homo-
cysteine (Hcy). In this study, a molecularly imprinted polymer (MIP) and nanocomposite were used
to create a label-free electrochemical biosensor for reliable Hcy detection. A novel Hcy-specific MIP
(Hcy-MIP) was synthesized using methacrylic acid (MAA) in the presence of trimethylolpropane
trimethacrylate (TRIM). The Hcy-MIP biosensor was fabricated by overlaying the mixture of Hcy-MIP
and the carbon nanotube/chitosan/ionic liquid compound (CNT/CS/IL) nanocomposite on the
surface of a screen-printed carbon electrode (SPCE). It showed high sensitivity, with a linear response
of 5.0 to 150 µM (R2 of 0.9753) and with a limit of detection (LOD) at 1.2 µM. It demonstrated
low cross-reactivity with ascorbic acid, cysteine, and methionine. Recoveries of 91.10–95.83% were
achieved when the Hcy-MIP biosensor was used for Hcy at 50–150 µM concentrations. The repeata-
bility and reproducibility of the biosensor at the Hcy concentrations of 5.0 and 150 µM were very
good, with coefficients of variation at 2.27–3.50% and 3.42–4.22%, respectively. This novel biosensor
offers a new and effective method for Hcy assay compared with the chemiluminescent microparticle
immunoassay at the correlation coefficient (R2) of 0.9946.

Keywords: molecularly imprinted polymer; carbon nanotube; nanocomposite; biosensor;
electrochemical biosensor; homocysteine

1. Introduction

Cardiovascular disease diagnosis is gaining great attention globally because of its
prevalence and the high mortality rate. Methods for the detection of early inflammation in
cardiovascular disease include screening methods such as blood pressure tests, electrocar-
diography (ECG), exercise stress tests, and CT scans [1]. Increased levels of cardiovascular
disease markers in human serum, which are creatinine kinase MB subform (CK-MB),
Troponin I (cTnI), Troponin T (cTnT), Myoglobin, C-reactive protein (CRP), Myeloper-
oxidase (MPO), heart fatty acid binding protein (H-FABP), and homocysteine (Hcy), are
a reliable symptom associated with cardiovascular disease patients. The determination
of inflammation via cardiovascular markers plays an important role in the early diagno-
sis of cardiovascular disease [2–4]. In clinical laboratory assays, the detection methods
for cardiovascular markers include high-performance liquid chromatography [5–10], gas
chromatography–mass spectrometry (GC-MS) [11,12], capillary electrophoresis [13,14], and
photoluminescence assays [15]. All these methods require laborious derivatization process-
ing and sophisticated instruments. This is a time-consuming process. The operation costs of
specific instruments and reagents also limit their wider application in clinical laboratories.
Hence, the assay method based on the immunological reaction was developed, with its low
operation costs and suitability for point-of-care testing [16–19].
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Recently, the electrochemical method for Hcy detection was extensively developed
using enzyme-based electrodes [20,21] and screen-printed electrodes (SPE) [22]. The screen-
printed electrode is versatile, simple, low-cost, easily operated, small-sized, portable,
and capable of mass production. To improve the electrochemical signal, nanomateri-
als were applied to SPE, such as gold nanoparticles [23–25], carbon nanotubes [26–28],
graphene [29,30], and nanocomposite materials [31]. The sensitivity of Hcy detection was
noticeably improved by applying quantum dots to the assay platform [15,32,33].

To date, the aptamers and the molecularly imprinted polymers (MIPs) have attracted
substantial interest as a biomimetic recognition element to solve the limitations of anti-
bodies. They exhibit interesting selectivity and high affinity in binding to specific targets
such as antibodies, but demonstrate more stability and reusability than antibodies [34–38].
The aptamer has been established for Hcy detection using voltammetric assays and optical
detection methods [39–42]. They showed superior signal detection performance, specificity,
reproducibility, and acceptable accuracy when working with real serum samples [39–42].

Generally, MIPs are synthesized by the polymerization of functional monomers and
cross-linker monomers, which have prior interactions with target molecules, as a template.
After polymerization, the template is subsequently removed from the complex matrix to
open cavities with a size and shape complementary to the template. MIPs function as
artificial specific receptors to target molecules with a binding function, such as antibod-
ies [43]. To date, MIPs have been reported as selective recognition elements for a range of
both biological and chemical molecules, including amino acids and proteins [44–46] and
drugs [47], because of their robustness and tolerance to ambient temperatures.

MIPs for Hcy have been fabricated and applied for Hcy detection by in situ fluores-
cent derivatizations in the optical sensor system. None of the analytical characteristics
have been presented due to the sensitivity of detection, which needs to be improved in
practical applications [45]. Recently, the use of electrochemical methods incorporating
MIPs has emerged as a well-established analytical technique employing the concept of
the selective uptake of an analyte of interest and subsequent generation of a characteristic
electrochemical signal.

In this research, a label-free electrochemical biosensor system for the detection of
serum Hcy was created by the surface modification of screen-printed carbon electrodes
(SPCE) with the combination of synthesized MIPs and a nanocomposite (carbon nan-
otube/chitosan/ionic liquid). MIP-modified carbon paste electrodes were fabricated,
characterized, and applied for the electrochemical detection of Hcy by differential pulse
voltammetry. This novel detection system provides a promising solution for the preliminary
detection of hyperhomocysteinemia and other diseases associated with homocysteine.

2. Materials and Methods
2.1. Chemicals and Specimens

Homocysteine (Hcy), methacrylic acid (MAA), 2,2′-azobis(2-methylpropio nitrile)
(AIBN), trimethylolpropane trimethacrylate (TRIM), methionine, cysteine, L-ascorbic acid,
multi-walled carbon nanotubes (MWCNT-COOH) (outer diameter x length 7–15 nm x
0.5–10 µm), 1-butyl-3-methylimidazolium tetrafluoroborate (BF4) and potassium chloride
(KCl), methanol, acetic acid, potassium hexacyanoferrate (K4[Fe(CN)6]), and chitosan (CS)
were obtained from Merck KGaA, Darmstadt, Germany. All chemicals were of analytical
grade and all solutions were prepared with ultrapure water (resistivity ≥ 18 MΩ cm) from
a Millipore Milli Q system obtained from Merck KGaA, Darmstadt, Germany. All the
solutions for electrochemical analysis were dissolved in 0.1 M phosphate buffer solution
(PBS), pH 7.

Eighteen anonymous serum samples were left-over samples from the Clinical Chem-
istry Laboratory Service Unit of the Faculty of Medical Technology, Huachiew
Chalermprakiat University.
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2.2. Apparatus

A Thermo Scientific Nicolet iS5 FTIR Spectrometer from Thermo Fisher Scientific Inc.
(Waltham, MA, USA) was used to record the Fourier transform infrared (FTIR) spectra. An
ER466, eDAQ electrochemical workstation from eDAQ Pty Ltd. (Sydney, NSW, Australia),
coupled with a three-electrode cell format, was used for cyclic voltammetric (CV) and dif-
ferential pulse voltammetric (DPV) studies. Triple screen-printed carbon electrodes (SPCE)
of 3 mm diameter carbon working electrodes, a solid-state silver/silver chloride (Ag/AgCl)
reference electrode, and carbon counter-electrodes were obtained from Quasense Co., Ltd.,
Bangkok, Thailand.

2.3. Procedures

This platform uses molecularly imprinted polymer and nanocomposite-modified
working carbon paste electrodes. The SPCE was fabricated with the mixture of Hcy-MIP
and the CNT/CS/IL nanocomposite to obtain a Hcy-MIP biosensor electrode, as shown in
Figure 1a. The Hcy in the serum sample binds with Hcy-MIP on the surface of the electrode.
As illustrated in Figure 1b, this binding event can be identified by measuring the electro-
chemical signal of differential pulse voltammetry (DPV) employing K4[Fe(CN)6]3−/4−.
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Figure 1. Scheme for homocysteine determination with the Hcy-MIP electrochemical biosensor
platform. (a) The SPCE was fabricated with the mixture of Hcy-MIP and CNT/CS/IL nanocomposite
to obtain Hcy-MIP biosensor electrode; (b) the detection was performed by measuring the electro-
chemical signal of differential pulse voltammetry (DPV) using K4[Fe(CN)6]3−/4− as an electroactive
probe molecule.
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2.3.1. Preparation of Molecularly Imprinted Polymers

According to Chow et al. [45], the molecularly imprinted polymer (MIP) was created
via precipitation polymerization with Hcy as the target molecule. The mixture solution
containing 1 mM Hcy as a molecular template and 2 mM MAA as a functional monomer
in 50 mL of methanol was agitated for 12 h. The monomer mixture was then mixed with
10 mM TRIM as a cross-linking agent and 1 mM AIBN as a radical-induced polymerization
initiator. The mixture was agitated for 15 min under a nitrogen atmosphere and maintained
at 60 ◦C for 24 h to complete polymerization. The polymerized product of Hcy containing
MIP was decanted and washed with methanol. The Hcy template was eliminated by
refluxing with 100 mL of a 10% NaOH solution for 1 h, followed by cleaning with a 1%
acetic acid solution and deionized water (DI) until the product suspension reached a pH
of 7.0. The Hcy-MIP precipitate was filtered and dried with acetone. A non-imprinted
polymer (NIP) was created by using the Hcy-MIP preparation procedure without exposure
of Hcy.

2.3.2. Preparation of CNT/CS/IL Nanocomposite

The nanocomposite for the Hcy-MIP biosensor was prepared according to
Gopalan et al. [48] by dispersing 1 mg of MWCNT in 1 mL DI water with sonication
for 2 h. The solution of 0.1% chitosan (CS) in acetic acid was dropped into the CNT suspen-
sion and sonicated for 1 h. To form a complete CNT/CS/IL nanocomposite, 10 µL of BF4
was added and it was sonicated for 30 min.

2.3.3. Hcy-MIP Electrode Fabrication

The Hcy-MIP biosensor was fabricated by the modification of SPCE with the mixture
of Hcy-MIP and the CNT/CS/IL nanocomposite. The Hcy-MIP electrode was prepared
by overlaying the surface of SPCE with 1 µL of a CNT/CS/IL nanocomposite suspension
containing Hcy-MIP at the optimal concentration for 1 h at room temperature.

After being air dried, this Hcy-MIP-modified electrode was kept at 4 ◦C. An identical
process to that used to generate the Hcy-MIP-modified electrode was used to prepare the
NIP-modified electrode, but only NIP was used in place of Hcy-MIP. The optimal response
to Hcy was examined for the concentrations of Hcy-MIP of 5, 25, 50, 75, 100, and 150 µM.
The Hcy-MIP- and NIP-modified electrodes were characterized by a Nicolet 6700 FTIR
spectrometer to demonstrate the chemical bonding on the tested surface. The attenuated
total reflectance (ATR) mode IR spectrum was recorded in the range of 4000 to 625 cm−1 at
a resolution of 2 cm−1 with 64 scans.

2.3.4. Characterization and Electroanalytical Measurements of the Hcy-MIP Electrodes

The Hcy-MIP-modified electrodes were characterized by cyclic voltammetry (CV)
and differential pulse voltammetry (DPV) using K4[Fe(CN)6]3−/4− as an electroactive
probe molecule. The electrochemical behavior of Hcy-MIP/CNT/CS/IL/SPCE in 10 mM
ferro-ferricyanide (K4[Fe(CN)6]) and 1 M KCl in 0.1 M PBS pH 7.0 was investigated and
compared with that of non-modified and NIP modified electrodes. The electrochemical
signals of the non-modified, Hcy-MIP-, and NIP-modified electrodes were investigated
in the same solution unless mentioned otherwise. In this investigation, CV analyses were
performed at a scan rate of 10 mV/s in the potential range of −0.5 to 0.8 V. DPVs were
conducted in the same potential range with an amplitude of 0.05 V, pulse width of 0.05 s,
and a pulse period of 0.5 s. Prior to recording the response, the electrode was given 10 min
to interact with the analyte.

2.3.5. Determination of Homocysteine

The studies were conducted in their entirety at room temperature. The reaction of the
Hcy-MIP biosensor started by applying 150 µL of Hcy standard solution or tested sample
and allowing its complete interaction with the active sites on the Hcy-MIP biosensor surface
for 10 min. The electrode was then carefully cleansed with deionized water to remove
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any potential non-specific binding substances. The DPV peak current of K4[Fe(CN)6 was
observed from the reaction using the DPV and scanning the electrode potential from −0.5
to 0.8 V. DPVs were recorded for the Hcy-MIP biosensor.

The optimal conditions for the Hcy-MIP biosensor were investigated, namely the
appropriate incubation time, pH, and Hcy concentration for an effective Hcy measurement.
The Hcy-MIP biosensor was connected to an ER466, eDAQ electrochemical workstation as
the DPV signal detection system. To accomplish the function of the Hcy-MIP biosensor,
150 µL of 100 µM Hcy in 0.1 M PBS, pH 7.0, with 1 M KCl was applied to the Hcy-MIP
biosensor and incubated at different times from 1 to 30 min; it was then washed out to
avoid any possible non-specific interaction by rinsing with DI water. The peak current
of K4[Fe(CN)6 was observed from the reaction using the DPV by scanning the electrode
potential from−0.5 to 0.8 V to obtain an appropriate incubation time for Hcy determination.
To obtain the optimal pH and Hcy concentrations in the reaction, 0.1 M PBS at a pH of 7.0,
7.2, 7.4, 7.8, and 8.0, and Hcy solutions at concentrations of 5, 25, 50, 75, 100, and 150 µM,
were applied to the Hcy-MIP biosensor for 10 min. The current signals of K4[Fe(CN)6]3−/4−

were then recorded by scanning the electrode potential from −0.5 to 0.8 V after rinsing
with DI water.

The optimal reaction time, reaction pH, and dose response for Hcy detection were
obtained by plotting the peak current from the DPV against the incubation time, the pH of
the buffer, and the Hcy concentrations, respectively.

2.3.6. Evaluation of Hcy-MIP Biosensor Performance

The analytical precision of Hcy detection by the Hcy-MIP biosensor was determined
via the intra- and inter-assay variation by measuring Hcy at the concentration of 5 and
150 µM. Both the intra- and inter-assay variation were obtained via 20 measurements and
each measurement was conducted in triplicate under optimal conditions. The mean of the
replicates and the standard deviation (SD) were used to calculate the coefficient of variation
(CV) of this evaluation.

The limit of detection (LOD) of Hcy was determined using the 3-standard-deviation
(3SD) values of the test results of 1 M Hcy in PBS, pH 7.0, under optimal conditions with
10 repetitions.

The analytical accuracy of the Hcy-MIP biosensor was determined via a recovery
assay. A spike recovery was employed by adding known concentrations of 50, 75, 100, and
150 µM Hcy. The recovery as a percentage was calculated as the ratio of the observed Hcy
concentration to that of the spiked concentration.

The specificity of the assay was evaluated by exposing the Hcy-MIP biosensor to
500 µM of several physiological substances: cysteine, methionine, glutathione, and ascorbic
acid. The analysis was performed under the same procedure as the Hcy assay.

Additionally, the performance of the Hcy-MIP biosensor was evaluated by determin-
ing the Hcy concentration in the serum sample. The Hcy-MIP biosensor measurement
and the chemiluminescent microparticle immunoassay (CMIA) method often used in
clinical laboratories were compared using 18 serum samples. The correlation between
these two measuring techniques was assessed using paired-sample t-test analysis and
correlation analysis.

3. Results and Discussion
3.1. Characterization of Hcy-MIP

The morphology of the imprinted polymer for homocysteine was observed under
scanning electron microscopy (SEM). The SEM images in Figure 2 show the spherical shape
of the Hcy-MIP and NIP particles with the approximate diameters of 100 ± 10 nm and
150 ± 15 nm, respectively. These were consistent with most of the imprinted polymer
particles prepared by the precipitation method [45]. The chemical characterization or
elemental analysis of these imprinted particles was also observed by the FTIR spectrometer.
The FTIR spectra in Figure 3 present the unique chemical characteristics of the polymerized
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compounds of MAA both in Hcy-MIP and NIP particles (red dashed line). The peaks at
2920 cm−1 and 3438 cm−1 indicate the stretching vibrations of the methyl C-H and O-H
groups, respectively. The peak at 1720 cm−1 represents the >C=O, 1631 cm−1 the alkenyl
>C=C< stretching, 1463 cm−1 and 1386 cm−1 the methyl C-H bending, 1295 cm−1 the
vinylidene bending, and 1140 cm−1 the C-O stretching. Hcy (green solid line) had its
characteristic peak at 2910 cm−1 due to C-H stretching from tertiary carbon, at 2080 cm−1

due to C-O stretching, 1520 cm−1 due to N-H bending, 1322 cm−1 due to >C-C< stretching,
1060 cm−1 due to C-N stretching, 853 cm−1 due to S-H bending, 758 cm−1 due to methylene
CH2 rocking, and 691 cm−1 due to –CH2-SH bending.
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The IR spectrum showed decreasing signals of C=O and C-O and an increase in the
C-N peak at 1060 cm−1 and N-H at 1520 cm−1 when Hcy bound to Hcy-MIP (blue line).
These changes were due to the bonding of the H atom of Hcy and O atom of MIP.
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3.2. Electrochemical Characteristics of Hcy-MIP

The CV analysis of all electrodes was conducted using K4[Fe(CN)6]3−/4− as an
electrochemical marker. Figure 4 shows the CV of a different modified electrode from
the nanocomposite-modified electrode (CNT/CS/IL/SPCE), MIP/CNT/CS/IL/SPCE,
MIP/CNT/CS/IL/SPCE after interaction with 1 mM Hcy for 10 min, and NIP/CNT/CS/
IL/SPCE. The cyclic voltammetric current response of the nanocomposite-modified elec-
trode was found to decrease with the incorporation of non-conducting polymer material
as a modification, but the porous nature of the MIP produced due to the leaching of Hcy
made it more responsive than the NIP. The current response further decreased after 10 min
of MIP/CNT/CS/IL/SPCE exposure to 1 mM Hcy because the Hcy molecules formed
hydrogen bonds with the MIP on the electrode surface, decreasing the surface area available
for electron transfer. The unavailability of the pores in NIP resulted in a very poor current
response for the corresponding electrode.
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Figure 4. The CV analysis of modified electrodes with nanocomposite-modified SPCE
(CNT/CS/IL/SPCE) (dotted line), Hcy-MIP/CNT/CS/IL/SPCE (dashed line), Hcy-
MIP/CNT/CS/IL/SPCE after interaction with 1 mM Hcy for 10 min (solid line), and
NIP/CNT/CS/IL/SPCE (dashed-dotted line). The electrochemical measurement was con-
ducted in 10 mM K3[Fe(CN)6] in 0.1 M phosphate buffer containing 1 M KCl.

CVs of MIP/CNT/CS/IL/SPCE were also recorded at various scan rates of 10, 20, 30,
40, 50, 60, 70, 80, 90, and 100 mV/s in the same potential range and are shown in Figure 5a–j
(inset: Ip against scan rate). A surface-controlled electrochemical reaction system was
found since the peak current (Ip) was seen to grow linearly with the scan rate. Thus, the
ferro–ferri conversion redox reaction for the MIP-modified electrode appeared to be an
absorption-controlled process; initially, it was absorbed onto the electrode surface and
subsequently underwent a redox reaction.
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3.3. Optimization of Hcy-MIP Biosensor
3.3.1. Concentration of MIP in Hcy-MIP Biosensor

Different MIP-modified SPCEs were prepared with MIP at the concentrations of 0.1,
0.2, 0.5, 0.7, and 1.0 mg/mL. The current response from DPV was observed after interaction
with 0.1 mM Hcy for 10 min. The electrode response in Figure 6 demonstrates the positive
relationship between the current signal and MIP at a concentration up to 0.5 mg/mL. Using
MIP greater than 0.5 mg/mL did not significantly increase the current signal. As a result,
0.5 mg/mL MIP is appropriate for the preparation of the Hcy-MIP biosensor.
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3.3.2. Effect of pH

The DPV response of the Hcy-MIP biosensor was recorded after 0.1 mM Hcy was
applied for 10 min, followed by 10 mM ferro–ferricyanide solution in 0.1 M PBS at various
pHs of 7.0, 7.2, 7.4, 7.8, and 8.0. The DPV was used to monitor the pH while the biosensor
function was at its peak, as shown in Figure 7. The electrode response was seen to increase
initially when the solution’s pH rose to a maximum, and then it decreased. Since this
biosensor responded most strongly to Hcy at pH 7.0, it was decided that this was the
optimal pH for Hcy determination.
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Figure 7. The effect of pH on the DPV peak current response of MIP/CNT/CS/IL/SPCE (Hcy-
MIP biosensor), after interaction with 0.1 mM Hcy for 10 min. The electrochemical measurement
was performed in 10 mM ferro–ferricyanide in 0.1 M PBS at different pHs of 7.0, 7.2, 7.4, 7.8, and
8.0 solution containing 1 M KCl.

3.4. Determination of Hcy

The DPV response after allowing the interaction between the Hcy-MIP biosensor and
Hcy for 10 min served to exhibit the performance of the Hcy-MIP biosensor at various Hcy
concentrations of 0, 25, 50, 75, 100, and 150 µM, as shown in Figure 8. The corresponding
calibration curve in Figure 8 was obtained, with an R2 correlation coefficient of 0.9753.
The limit of detection (LOD) of the Hcy-MIP biosensor was 1.2 µM (S/N = 3). The DPV
response of MIP/CPE for the K4[Fe(CN)6]3−/4− redox couple was found to decrease with
an increase in the Hcy concentration. The decrease in the availability of the pores at the
electrode surface was caused by a rise in the Hcy concentration because the interconversion
of the Fe(II)–Fe(III) redox reaction unfolds as a surface-controlled process. Additionally,
the response current decreased as a result of the imprinted sites being blocked by the
hydrogen-bonded Hcy, which also reduced the effective surface area.
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3.5. Evaluation of Hcy-MIP Biosensor Performance
3.5.1. Dose Response of Hcy-MIP Biosensor

The dose response curve for the determination of the Hcy-MIP biosensor is represented
in Figure 9. This curve was plotted between the current signal obtained from the DPV of
potassium ferrocyanide and the Hcy concentration in the range of 5.0 to 150 µM. The DPV
peak current inversely correlated to the Hcy concentration was 19.40 ± 0.145, 19.07 ± 0.231,
17.81 ± 0.172, 17.56 ± 0.211, 16.91 ± 0.218, and 15.78 ± 0.371 µA, respectively. The
sensitivity for Hcy of this Hcy-MIP biosensor was 25.2 nA/µM. This Hcy-MIP biosensor
had a linear detection range between 5.0 and 150 µM and a high correlation coefficient
(R2 = 0.9753).

Additionally, the limit of detection (LOD) of the Hcy-MIP biosensor was defined
as three times the standard deviation of the assay results of 1 µM Hcy in PBS, pH 7.0,
under optimal conditions in 10 replicates. It was 1.2 µM, which is comparable to those
calculated from other reported methods, such as an enzyme-based biosensor platform [20],
an aptamer-modified gold nanoparticle/graphene sponge electrode platform [39], and
a rapid liquid chromatography–tandem mass spectrometry platform [12], as shown in
Table 1. However, some methods have LODs that are significantly lower than this Hcy-MIP
biosensor method—for instance, the quantum dot platform method with an LOD and
detection range in the nM range [15,32,33] or HPLC with a post-column reaction platform,
where the LOD and detection range are 10 times better [5,8,9]. It is possible to modify the
Hcy-MIP to obtain a fluorescent signal [45] and apply it to the fluorescent sensor platform
to obtain a better LOD [49]. During the polymerization process, the Hcy-MIP can be
coated on a polymeric photonic platform for the real-time sensing of Hcy [50]. The normal
range of serum Hcy is typically 5–16 µM. The range of hyperhomocysteinemia can also
be classified as mild (16–30 µM), moderate (30–100 µM), and severe (>100 µM). The linear
response range of this biosensor is 5.0 to 150 µM with an LOD at 1.2 µM, which covers
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both pathological and normal plasma levels of homocysteine without the requirement for
sample dilution.
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Table 1. Comparison of limit of detection (LOD) of other previously reported homocysteine
detection methods.

Platform Methods LOD Linearity Ref.

Chromatographic Platform

Simultaneous liquid chromatography–mass spectrometry HPLC-MS 0.75 µM 1.5–740 µM [11]

Rapid liquid chromatography–tandem mass spectrometry HPLC-
MS/MS 1.0 µM 0.0–61.6 µM [12]

HPLC with electrochemical coulometric array detection HPLC-ED 0.14 µM - [6]

HPLC with platinum/poly(methyl violet)
(Pt/MV)-modified electrode HPLC-ED 0.1 µM 0.2–100 µM [7]

Thiocarbonyldiimidazole (TCDI) post-column reaction HPLC-UV 0.1 µM 2.5–10 µM [8]

2-chloro-1-methylpyridinium iodide (CMPI) post-column reaction HPLC-UV 0.1 µM 0.5–50 µM [9]
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Table 1. Cont.

Platform Methods LOD Linearity Ref.

Methanolic monobromobimane for thiol derivatization HPLC-FL 0.12 µM 3.9–62 µM [5]

Iodoacetylaminobenzanthrone (IAB) post-column reaction HPLC-FL 2.3 nM 0.05–25 µM [10]

Electrophoresis Platform

Capillary electrophoresis/electrochemistry Amperometry 0.5 µM 1–100 µM [13]

Capillary electrophoresis with pyrroloquinoline
quinone-modified electrode Amperometry 0.03 µM 0.1–5 µM [14]

Immunoassay Platform

Lateral flow immunofluorescent Optical 0.27 µM 1.0–50 µM [16]

Enzyme-Based Biosensor Platform

Amino acid oxidase immobilized on screen-printed carbon electrode Amperometry NA 6.4–100 µM [22]

Amino acid oxidase immobilized on oxygen electrode Potentiometry 2.0 µM 0.05–1.5 µM [20]

Homocysteine desulfhydrase enzyme electrode Potentiometry NA 0.15–1.8 µM [21]

Nanomaterial-Based Biosensor Platform

Cytochrome c-anchored gold nanoparticles on
screen-printed electrode Amperometry 0.3 µM 0.4–700 µM [23]

Gold nanoparticle-incorporated reduced graphene oxide electrode Amperometry 6.9 µM 2–14 µM [24]

Reduced graphene oxide–TiO2 (RGO-TiO2) nanocomposite on glassy
carbon electrodes Amperometry 24 nM 0.1–80 µM [29]

Carbon nanotube-based electrode Amperometry 0.06 µM 0.1–60 µM [26]

Carbon nanotube-based electrode Amperometry 4.6 µM 5.0–200 µM [27]

Multiwall carbon nanotube paste electrode Voltammetry 0.8 µM 0.1–210 µM [28]

Graphene nanosheet-supported platinum nanoparticle electrode Voltammetry 0.2 nM 0.2–2.4 nM [30]

CuO/ZnO nanocomposite Optical 40 µM 40–96 µM [31]

Aptamer-Based Biosensor Platform

Aptamer-modified Au NP/graphene sponge electrode Voltammetry 1.0 µM 1–100 µM [39]

Aptamer-modified gold nanoparticle/carbon electrode Voltammetry 0.009
µM 0.05–20 µM [40]

Aptamer-modified gold electrode Voltammetry 10 nM 0.2–10 µM [41]

Aptamer–gold nanoparticle Optical 0.3 µM 0.5–3.0 µM [42]

Quantum Dot Platform

Nitrogen-doped graphene quantum dots Optical 0.05 nM 0.05–50 nM [15]

Cysteamine-stabilized CdTe quantum dots Optical 3.3 nM 6.7–400 nM [32]

Graphene quantum dots Optical 5 nM 0–50 nM [33]

Molecularly Imprinted Polymer-Based Biosensor Platform

MIP-based optical sensor Optical NA NA [45]

MIP-modified nanocomposite screen-printed carbon electrode Voltammetry 1.2 µM 5.0–150 µM This Work

3.5.2. Analytical Accuracy

A recovery assay was employed to assess the analytical accuracy of the Hcy-MIP
biosensor. Four Hcy concentration levels of 50, 75, 100, and 150 µM were added and
examined for the recovery of Hcy. According to Table 2, the recovered spike Hcy samples
had concentrations of 46.1, 72.6, 94.4, and 144.3 µM or 91.10%, 96.07%, 93.85%, and 95.83%
recovery, respectively, with an average recovery percentage of 94.21.
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Table 2. The accuracy of the Hcy-MIP biosensor for homocysteine detection at concentration of 50,
75, 100, and 150 µM.

Homocysteine Added (µM) Homocysteine Obtained (µM) Recovery (%)

50 46.10 91.10

75 72.60 96.07

100 94.40 93.85

150 144.30 95.83

Average % recovery (n = 8) 94.21
Spiked serum samples at Hcy concentrations of 50, 75, 100, and 150 µM were assayed for Hcy by the Hcy-MIP
biosensor using the previously described method. The % recovery was calculated as an indicator of accuracy of
the assay method (n = 8).

3.5.3. Analytical Precision

Three Hcy concentration levels of 5 and 150 µM were chosen for the analytical precision
of the Hcy-MIP biosensor for both the intra- and inter-assay methods. Twenty measure-
ments were taken for the intra-assay in the same batch, whereas twenty measurements
were taken for the inter-assay over the course of twenty days under optimal conditions.
Calculations were made to convert the DPV peak current signal to the Hcy concentration.
The coefficients of variation (CVs) for the intra- and inter-assay at the concentrations of
5 and 150 µM were 2.27%, 3.50%, and 3.42%, 4.22%, respectively, as shown in Table 3.
According to this finding, the Hcy-MIP biosensor might be used to determine Hcy with
satisfactory reproducibility.

Table 3. The analytical precision of the Hcy-MIP biosensor for homocysteine detection at concentra-
tion of 5 and 150 µM.

Homocysteine
Concentration (µM)

Intra-Assay (n = 20) Inter-Assay (n = 20)

Mean ± SD
(µM) %CV Mean ± SD

(µM) %CV

5 4.97 ± 0.11 2.27 4.98 ± 0.17 3.42

150 150.35 ± 5.26 3.50 150.40 ± 6.35 4.22
The standard Hcy solution at concentration of 5 and 150 µM was determined for both intra- and inter-assay with
20 measurements using the assay method previously described.

3.5.4. Analytical Specificity

The specificity of the Hcy-MIP biosensor was examined by recording the DPVs before
and after exposure to 0.5 mM of cysteine, methionine, glutathione, and ascorbic acid. The
insignificant current response observed for the interferents demonstrates the considerable
selectivity of this biosensor, which is attributed to the Hcy-specific cavities present in the
imprinted polymer matrix. This demonstrates that the selectivity of this Hcy-MIP biosensor
is suitable for diagnostic application.

3.5.5. Comparative Assay

Eighteen serum samples were selected for the comparative assay between the Hcy-
MIP biosensor and chemiluminescent microparticle immunoassay method (CMIA). The
statistical analysis of 18 measurements from the MIP sensor and CMIA was performed
using a paired t-test. The correlation value of the two measurement methods was 0.9946,
with a non-significantly different measurement result (paired t-test: p > 0.01), as shown
in Figure 10. Therefore, this proposed Hcy-MIP biosensor could be applied as a testing
method to determine serum Hcy concentrations at both normal and abnormal levels.
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Figure 10. The comparative assay of serum homocysteine between Hcy-MIP biosensor and chemilu-
minescent microparticle immunoassay method (CMIA) with a correlation value of R2 = 0.9946.

4. Conclusions

An MIP of Hcy was synthesized from MAA, characterized by FTIR, and was used
in the modification of SPCE, which was further characterized with CV and DPV. CV
and DPV analysis showed that the electrode was responsive to the target molecule. The
MIP/modified SPCE as the Hcy-MIP biosensor was optimized at 0.5 mg/mL, which pro-
vided the highest electrode DPV response. This innovative biosensor combines synthesized
MIPs with a nanocomposite made of carbon nanotubes, chitosan, and ionic liquid, which
has the advantages of a label-free electrochemical system and extreme stability of the im-
printed polymer on the electrode surface. The detection of Hcy by the Hcy-MIP biosensor
was determined by the DPV peak current in the range of 5.0 to 150 µM, with a limit of
detection of 1.2 µM and correlation coefficient, R2, of 0.9753. The developed biosensor was
only selective to Hcy as it produced no electrode response towards physiological inter-
ferences such as methionine, cysteine, and L-ascorbic acid. Thus, the proposed biosensor
exhibits benefits including ease of electrode construction, excellent electrode integrity, and
a discernible detection limit and detection range.
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