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Abstract: Glass fiber reinforced plastic (GFRP) composites have great potential to replace metal
components in vehicles by maintaining their mechanical properties and improving fire resistance.
Ease of form, anti-corrosion, lightweight, fast production cycle, durability and high strength-to-
weight ratio are the advantages of GFRP compared to conventional materials. The transition to the
use of plastic materials can be performed by increasing their mechanical, thermal and fire resistance
properties. This research aims to improve the fire resistance of GFRP composite and maintain its
strength by a combination of pumice-based active nano filler and commercial active filler. The nano
active filler of pumice particle (nAFPP) was obtained by the sol–gel method. Aluminum trihydroxide
(ATH), sodium silicate (SS) and boric acid (BA) were commercial active fillers that were used in this
study. The GFRP composite was prepared by a combination of woven roving (WR) and chopped
strand mat (CSM) glass fibers with an unsaturated polyester matrix. The composite specimens were
produced using a press mold method for controlling the thickness of specimens. Composites were
tested with a burning test apparatus, flexural bending machine and Izod impact tester. Composites
were also analyzed by SEM, TGA, DSC, FT-IR spectroscopy and macro photographs. The addition
of nAFPP and reducing the amount of ATH increased ignition time significantly and decreased the
burning rate of specimens. The higher content of nAFPP significantly increased the flexural and
impact strength. TGA analysis shows that higher ATH content had a good contribution to reducing
specimen weight loss. It is also strengthened by the lower exothermic of the specimen with higher
ATH content. The use of SS and BA inhibited combustion by forming charcoal or protective film;
however, excessive use of them produced porosity and lowered mechanical properties.

Keywords: composite; glass fiber reinforced plastic; nano filler; pumice

1. Introduction

Recently, transportation industries have replaced metals with plastic materials. Plastics
have a faster production cycle than that metal processing, so they save costs and increase
product quality [1]. The limitation of weight is the main consideration in this material
due to its high efficiency and economic value. The use of plastics in various modes of
transportation is much better [2]. Plastics are commonly used in industry in the form
of composites.

In producing composite material, it is necessary to add fiber as reinforcement. Glass
fibers improve the mechanical properties and fire resistance of composites [3,4]. They
have good insulation properties, high melting point, resistance to chemical and water
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environments, and fire resistance up to 1050 ◦C. It cannot be ignited if the heat flux is below
100 to 125 kW/m2 [5,6]. Glass fiber reinforced plastic (GFRP) composite with unsaturated
polyester resins (UPRs) matrix has a big trend in the transportation industry.

UPRs are widely used as matrix composite materials in construction, transportation
and other industries. This matrix has many advantages, such as good mechanical properties,
corrosion resistance, good processability, low viscosity and density, high strength-to-weight
ratio and fast production cycle [7–9]. However, the polymer matrix has low flame retardant
properties and reaction to fire [10]. The flammability of polymers can be reduced by adding
flame retardants [11]. The development of halogen-free flame retardants must be fabricated
to meet the regulations and safety standards [12,13] of the government’s program towards
green products [14].

An active inorganic flame retardant, aluminum trihydroxide (ATH), is the most popu-
lar flame retardant that is used in polyester composites [15]. ATH is relatively cheap, easy
to apply in polymers and environmentally friendly in smoke density and low toxicity [16].
The presence of ATH produces good flame retardant properties and thermal stability of
composite [17,18]. At a temperature of 80–220 ◦C, ATH decomposes into alumina and
water vapor and forms thermal insulating charcoal [19]. Alumina forms a protective layer
and moisture to lower the temperature of the system and acts as a diluent agent in the gas
phase [15]. The addition of sodium silicate (SS) contributes to the formation of polysilicate
during composite manufacturing [20]. Char forms larger because the polysilicate forms
a protective layer and insulates the composite surface after exposure to heat, resulting
in good product and fire-retardant features in the composite [21,22]. Boric acid (BA) has
a good flame retardant and active insulating effect on polyester composites. During the
combustion process, BA reduces heat because it produces wet B2O3 and volatile H2O. B2O3
forms charcoal between the combustion process and oxygen [23,24]. Smoke density also
decreased with the addition of BA into the UPRs [25].

In addition to being influenced by the glass transition temperature (Tg) and decompo-
sition temperature (Td) [7], composite properties are also influenced by the shape and size
of the particles [26]. Nano-sized materials are very promising in improving the properties of
polymer composites [10]. The addition of nanosilica can form hydrogen bonds between the
silanol group on the nano surface and the carbonyl ester group on the soft segment, thereby
improving the thermal properties and adhesion of polyester [27]. Certain compositions
improve the mechanical properties of composites [28]. Nanosilica or silicon dioxide (SiO2)
is commonly found in the pumice [29,30], kaolin [31] and clay [32]. Pumice is formed as
a result of the rapid cooling of gases and volcanic material from volcanic eruptions [33].
Indonesia has active volcanoes, which are about 30% of the world’s active volcanoes in
the world [34]. The pumice contains major elements of 58.3% SiO2, 12.4% Fe2O3 and 12%
Al2O3 [35]. The characteristics of silica are influenced by the method and parameters of the
synthesis process, which can be performed by acid or alkaline treatment [29].

The flame retardant properties of composites increased with the addition of ATH into
polyester, which was marked by a decrease in the burning rate [36]. There is an increase
in flame retardant, thermal stability and decomposition temperature of the composite
by adding BA to the composite [37]. The addition of SS in the composite can result in
better flame retardant properties and thermal stability [38]. Likewise, the incorporation of
ATH, BA and SS into the polyester is able to overcome the flammability of the composite.
However, the mechanical properties of the composites decreased along with the increase
in the filler content of ATH, BA and SS [39]. Mechanical properties increased with the
addition of polyester nanosilica composites [40]. The data of both properties can also be
used to design some components or products according to the operating conditions.

In previous studies, many researchers synthesized pumice [29,30,35] and combined
it with other flame retardants, such as phosphorus-based flame retardant, ammonium
polyphosphate, zinc hydroxystannate, magnesium hydrate, ATH, nanosilica, nanoalumina
and nanoclay [41]. However, at present, there are still few, and no one has even discussed
the combination of four flame retardants at the same time. A combination of nano active
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filler particle pumice (nAFPP), ATH, SS and BA is researched to meet the fire resistance
and mechanical properties of GFRP composites. The physical properties (TGA, DSC, SEM,
FTIR, macro photo) were observed to give analysis contribution of both properties. All
flame retardants (nAFPP, ATH, SS and BA) are analyzed and discussed to explore their
contribution to fire resistance and mechanical properties. The purpose of this study was to
expand knowledge about the synthesis of pumice by developing the sol–gel method and
the performance of GFRP composites on fire resistance and mechanical properties. For this
purpose, SEM morphological analysis was to determine the particle size of the synthesis
results and fuel resistance test to determine the ignition time and the rate of combustion of
the composite. Then, the analysis of flexural strength and impact strength to determine the
mechanical properties of the composite.

2. Materials and Methods
2.1. Materials

Pumice was obtained from Rinjani Mountain, Lombok Island, West Nusa Tenggara,
Indonesia. Chemicals were supplied by e-Merck. Unsaturated polyester resin 268 BQTN and
methyl ethyl ketone peroxide catalyst were supplied by Singapore Highpolymer Chemical
Products (SHCP). The chopped strand mat (EMC200) and woven rowing of E-glass fibers
were supplied by PT. Makmur Fantawijaya Chemical Industries, Jakarta, Indonesia.

2.2. Methods
2.2.1. Synthesis of Nano Active Filler Particle Pumice (nAFPP)

Pumice contains major elements of 58.3% SiO2, 12.4% Fe2O3, 12% Al2O3 [42]. The
nAFPP was successfully synthesized using the sol–gel precipitation method. The pumice
was washed with water and dried at 100 ◦C for 12 h. Pumice particles were produced by
crushing and sieving with a size of 200 mesh (≤74 µm). They were washed and thermally
activated at 680 ◦C for 1 h. Activated particles (100 g) were dissolved in 1000 mL of 2.5 M
HCl and stirred at 300 rpm and 95 ◦C for 2 h. The mixture was filtered to obtain silica-rich
pumice particles. Particles were washed with distilled water to reach pH 7. Sodium silicate
solution was prepared by dissolving 10% wt of silica-rich pumice particles in 2 M NaOH
at 95 ◦C for 2 h and stirrer at 300 rpm. The solution was filtered to separate residues and
impurities [32]. The filtered solution was precipitated using 10 mL ethanol dispersant and
5 M HNO3 at 65 ◦C and pH 7. The solution was further filtered to obtain silica gel and
washed with hot distilled water to remove impurities. Finally, the silica gel was dried at
80 ◦C for 4 h (Figure 1) [43].
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2.2.2. Preparation of Composites

Glass fiber reinforced plastic (GFRP) composites were made by a combination of hand
layup press mold methods. Firstly, UPRs were mixed with fillers according to Table 1, and
the mixture was stirred at 3000 rpm for 5 min, then it was allowed to stand so that the air
bubbles disappeared [44]. The catalyst was added to the mixture at 1% by weight of the
UPRs and stirred again so that the catalyst was well mixed. The fiber was cut to the size of
the molding, and then the resin–filler mixture was poured into the molding according to
the number of layers made. After 24 h, the composite was removed from the molding and
then post-cured in an oven at 100 ◦C for 60 min [41]. The composites were cut to produce
the test samples according to ASTM standards, i.e., ASTM D 635 for burning testing, ASTM
D 790 for flexural testing and ASTM D 5941 for Izod impact testing [45,46].

Table 1. Composite composition of GFRP with nAFPP, ATH, SS and BA.

No Composite Code
GF UPRs

Filler

nAFPP ATH SS BA

wt% wt% wt% wt% wt% wt%

1 C 20 80 0 0 0 0
2 C81 20 70 1 4 2 3
3 C82 20 70 2 3 2 3
4 C83 20 70 3 2 2 3
5 C84 20 70 4 1 2 3

2.2.3. Testing of Composites

Testing of fire resistance refers to ASTM D635-03 with standard bar specimens of
125 ± 5 mm in length, 13.0 ± 0.5 mm in width, and 3.0 (−0.0 to +0.2) mm in thickness [47].
The specimen was clamped in a horizontal direction with 5 mm of clamping length. The
specimen was marked in lengths of 25 mm and 75 mm, as shown in Figure 2 [47].
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In this study, the flexural test was carried out with the ASTM D-790 standard using
the Universal Testing Machine JTM for a three-point bending method at a crosshead speed
of 2 mm/min with a load cell of 200 kg. The load was placed in the center of the specimen,
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which was supported by two supports. This testing resulted in the curve of load–deflection,
and then the flexural strength was obtained [46]. In the test of three-point bending, the
failure occurred when the specimen changed shape due to the loading of the specimen
at 200 kg. The impact strength of Izod was determined using an impact testing machine
following the ASTM D-256 standard.

SEM observations were performed using a scanning electron microscope JEOL JCM-
7000. Observations were made on the fracture side of the composite specimen as a result
of impact testing. Thermogravimetric analysis (TGA) was carried out on STA PT 1600
(TG-DSC) equipment. Samples were loaded in alumina pans and heated at a rate of
20 ◦C/min from 30 to 600 ◦C under a dry air atmosphere. The Fourier transform infrared
(FTIR) spectra were recorded using an IR Prestige-21 Shimadzu at 400–4000 cm−1.

3. Results and Discussion

Figure 3 shows the morphology and particle size of the synthesis of pumice particles.
SEM observations show that the silica particles have an average size of 30 ± 16 nm. This
indicates that the dispersant will be adsorbed onto the surface of the silica particles and
form a protective layer of macromolecules. This macromolecular protective layer will
inhibit the growth of particles to obtain a smaller particle size with better dispersibility in
the sol–gel deposition process [48–50].
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Figure 4 shows the burning test results of the composites. The ignition time and
burning rate of the C81, C82, C83 and C84 composites have similar properties. The
composites containing nAFPP (reduction in ATH) have higher fire resistance compared to
that without nAFPP, and the higher content of ATH until 4% gives a significant contribution
to the increase in ignition time and reduced burning rate. The ATH releases water vapor,
which functions as a diluent for volatile gases due to endothermic reactions when burned.
ATH also forms an alumina layer (Al2O3), which functions as a protective layer from
heat. This ATH reacts at a temperature of 180–200 ◦C into aluminum oxide through an
endothermic reaction, which causes the UPRs to cool down, thereby reducing the pyrolysis
product [39,51]. The cross-linking of UPRs also keeps the polymer chains from breaking
under the influence of heat [52,53].
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Both ignition time and burning rate show the best properties on the C81 for the
composite containing 4% ATH and 1% nAFPP. Otherwise, the composite C84 with 4%
nAFPP and 1% ATH has a higher burning rate and lower ignition time. This shows
that the ATH gives a better contribution to the increase in fire resistance. All these fire
retardants (nAFPP, ATH, SS and BA) are effective in increasing the fire resistance of the
GFRP composite.

With the addition of BA, the protective layer is also stronger because BA melts at a
temperature of 236 ◦C, and it dehydrates when heated above 300 ◦C [54]. If the heating
continues, the boron oxide forms a protective film to inhibit the flame. Similarly, the
presence of SS filler containing silicates can also increase the inhibition of flame. When SS
mixes with UPRs, the silicates produce composites that have high thermal and mechanical
properties [38,55] because SS forms an intumescent layer during the combustion process,
so the temperature drops [56].

The nAFPP, which has a high silica content, causes the formation of a barrier preventing
volatile evolution during degradation and increases the amount of char produced. In
addition, nAFPP, which has a nano size, can reduce defects occurring on the GFRP so that
it increases the mechanical strength of the composite [26].

Figure 5 shows the results of macro photos of the burnt composite sample surface.
White spots on the surface of the composite are the remnants of unburned filler. Samples
C81 and C82 show more spots compared to the other samples. The nAFPP content in this
sample reached 4% by weight. This indicates that the filler is not well dispersed, caused by
the stirring process during the manufacturing process of the composite. This could also be
caused by agglomeration in the composites [17].
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Figure 6 shows that the specimen experiences a deflection during loading. The speci-
men fractured at peak loading up to 103 N within 35 s, and the sample completely fractured
within 63 s. Thus, specimen failure occurs in less than 60 s [57].
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The flexural properties of GFRP composite specimens with various fillers nAFPP, ATH,
SS and BA were tested, and the results are shown in Figure 7. It can be seen that increasing
the nAFPP content up to 2% (wt) and reducing the ATH content up to 3% (wt) decreases the
strength of the composite compared to the composite without filler (C). A further increase
in the nAFPP filler content by up to 4% (reducing the ATH content up to 1%) could increase
the composite strength compared to the unfilled composite. Specimen of C84 specimen has
the highest flexural strength value of 58.5 MPa. It can be concluded that the addition of 4%
of nAFPP increases the load-bearing capacity of the composite [58].
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The relationship between nAFPP and commercial active fillers (ATH, BA, SS) with
the impact strength of the composite is shown in Figure 8. The GFRP composite without
filler has an impact strength of 69.22 KJ/m2. When the nAFPP content increases from 1 to
4% in weight, the impact strength of the composite also increases to 79.86, 85.99, 89.18 and
93.38 KJ/m2. The increase in impact strength was accompanied by an increase in nAFPP
content up to 4% wt. The presence of nAFPP disperses in the matrix and easy to makes
plastic deformation. Therefore, during the fracture of the composite in which nAFPP is
well dispersed, the stress must be greater to initiate microcracking in the UPRs matrix. The
impact energy will be mostly absorbed by the plastic deformation and more easily occurs
in the vicinity of the nAFPP. Good nAFPP dispersion resulted in less agglomeration leading
to better impact strength of the composite [59].
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Figure 9 shows the result of SEM observations on the fracture area of impact test speci-
mens. The control sample (C.a and C.b) shows that the composite without filler produces a
lower interfacial bond, thereby reducing the impact strength is occurred of the composite.
Meanwhile, the C84.a and C84.b samples show a strong interfacial bond between the fiber
and the matrix due to the high amount of nAFPP can reduce the occurrence of voids. The
composition produces a solid material that can support more loads [60] so that it has a high
impact strength.
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Figure 9. SEM observation on impact testing specimens on impact testing specimens: (a) GFRP
composite without filler and (b) GFRP composite with filler.

The TGA result in Figure 10 shows that the oxidative thermal degradation compos-
ites take place in two main stages. The first stage of degradation is occurred at about
200–300 ◦C, and the other takes place at or above 300 ◦C. The second stage comes to
pass depolymerization, and the breakdown of the UPRs chain takes place at or above
300 ◦C [55]. Sample C81 has a lower initial temperature and a higher rate of weight loss
from thermal decomposition compared to the others. Both BA and ATH have lower dehy-
dration temperatures [61]. The results obtained in this study, the materials tested used a
constant heating rate without any variation in the heating rate.
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In Figure 11, the initial test curve shows a slow endothermic reaction depicted by a
gentle descending curve. At temperatures less than 200 ◦C, the absorbed heat is used to
evaporate water vapor and evaporation due to the initial decomposition process [62]. When
the specimen is above 200 ◦C, an endothermic peak appeared at 282 ◦C for the C81 and
C82 composites. This provides information that the composite with filler requires more
heat than the composite without filler. The results of the combustion test also show that the
C81 and C82 composites have a longer initial ignition time than the composites without
filler (C). This endothermic reaction describes the beginning of the thermal decomposition
of the composite, which produces volatiles. Substances that are volatile will be broken
down into smaller fractions so that they are more easily oxidized [63].
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Figure 11. Differential scanning calorimetry (DSC) analysis of composites.

In Figure 11, the curve starts to rise at 320 ◦C, and exothermic peaks occur at 346 ◦C
for the C composite, 352 ◦C for the C81 and C82 composite, and 350 ◦C for the C83 and
C84 composites. This exothermic reaction describes the thermal oxidation of volatiles with
oxygen that produces heat (exothermic). The exothermic peaks of the three composites
were at a higher temperature when compared to the C composite (without filler). This is
because the filler prevents oxidation and is followed by an endothermic reaction during
the decomposition of the filler. Filler decomposition produces water vapor, which plays a
role in reducing the burning rate. The water vapor escapes in the flame and dissolves the
concentration of combustible gases from the polymer matrix. This condition causes oxygen
access on the composite surface to be limited [64].

Figure 12 shows the FTIR spectra curve in the range of 400–4000 cm−1. Absorption
-H (3476 cm−1), aromatic = strain C-H (3028 cm−1), aliphatic vibration C-H (2942 cm−1),
aromatic ring (699–857 cm−1) and O = C-O (1732 cm−1) was detected for composite C
(without filler), which is a product of UPR gas decomposition [65]. In the other composites,
peaks at 1067–1063 cm−1 were detected, which defined the strain asymmetry of Si-O-Si [66].
This indicates the presence of silicate compounds derived from AFPP and SS fillers. The
intense band at 633 cm−1 for the C81 composite, 616 cm−1 for the C82 composite and
616 cm−1 for the C83 composite is the vibrational strain of Al-O. This is because the four
composites contain ATH filler containing Al, except for the C84 composite because the
ATH filler content is very low [67].

Polymers 2022, 14, x FOR PEER REVIEW 10 of 14 
 

 

without filler (C). This endothermic reaction describes the beginning of the thermal 
decomposition of the composite, which produces volatiles. Substances that are volatile 
will be broken down into smaller fractions so that they are more easily oxidized [64]. 

 
Figure 11. Differential scanning calorimetry (DSC) analysis of composites. 

In Figure 11, the curve starts to rise at 320 °C, and exothermic peaks occur at 346 °C 
for the C composite, 352 °C for the C81 and C82 composite, and 350 °C for the C83 and 
C84 composites. This exothermic reaction describes the thermal oxidation of volatiles with 
oxygen that produces heat (exothermic). The exothermic peaks of the three composites 
were at a higher temperature when compared to the C composite (without filler). This is 
because the filler prevents oxidation and is followed by an endothermic reaction during 
the decomposition of the filler. Filler decomposition produces water vapor, which plays a 
role in reducing the burning rate. The water vapor escapes in the flame and dissolves the 
concentration of combustible gases from the polymer matrix. This condition causes 
oxygen access on the composite surface to be limited [65]. 

Figure 12 shows the FTIR spectra curve in the range of 400–4000 cm−1. Absorption -H 
(3476 cm−1), aromatic = strain C-H (3028 cm−1), aliphatic vibration C-H (2942 cm−1), 
aromatic ring (699–857 cm−1) and O = C-O (1732 cm−1) was detected for composite C 
(without filler), which is a product of UPR gas decomposition [66]. In the other 
composites, peaks at 1067–1063 cm−1 were detected, which defined the strain asymmetry 
of Si-O-Si [67]. This indicates the presence of silicate compounds derived from AFPP and 
SS fillers. The intense band at 633 cm−1 for the C81 composite, 616 cm−1 for the C82 
composite and 616 cm−1 for the C83 composite is the vibrational strain of Al-O. This is 
because the four composites contain ATH filler containing Al, except for the C84 
composite because the ATH filler content is very low [68]. 

 
Figure 12. FTIR spectra of composites. 

The observed bands at 1279 and 1124 cm−1 for C81, 1280 and 1123 cm−1 for C82, 1280 
and 1121 cm−1 for C83, and 1282–1121 cm−1 for C84 were designated as vibrations of B-O-
B. In this vibration, the peak value is not much different because the composite 
composition contains the same BA filler. In the four composites that were added with 
filler, OH peaks also appeared at 3453 cm−1, 3512 cm−1, 3449 cm−1 and 3446 cm−1, which 
would dilute the volatiles so that oxidation was reduced. 

Figure 12. FTIR spectra of composites.



Polymers 2023, 15, 51 11 of 14

The observed bands at 1279 and 1124 cm−1 for C81, 1280 and 1123 cm−1 for C82,
1280 and 1121 cm−1 for C83, and 1282–1121 cm−1 for C84 were designated as vibrations
of B-O-B. In this vibration, the peak value is not much different because the composite
composition contains the same BA filler. In the four composites that were added with filler,
OH peaks also appeared at 3453 cm−1, 3512 cm−1, 3449 cm−1 and 3446 cm−1, which would
dilute the volatiles so that oxidation was reduced.

4. Conclusions

The fire resistance of the GFRP composites increases along with the addition of ATH
(reduction nAFPP), shown by the increase in ignition time and the decrease in the burning
rate. Otherwise, the composites with higher nAFPP (lower ATH) have higher bending
and impact strength. The ATH and nAFPP are more effective in inhibiting the flame
and increasing the strength, respectively. BA is a good insulator to inhibit the flame by
producing a protective layer in different temperature stages of dehydration, while SS
produces a protective layer that does not melt easily. Both BA and SS in higher content can
decrease the GFRP composite. The composite can be optimized by arranging the optimum
combination content of each filler according to its operating conditions. The fracture of
the composite shows a strong interfacial bond between fiber and matrix due to the high
amount of nAFPP that can reduce the occurrence of voids. The composite with filler needs
more heat for the decomposition process compared to those without filler.
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