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Abstract: Reversible adsorption of a single stiff wormlike macromolecule to flat membranes with
various permeabilities is considered theoretically. It is shown that the adsorbed layer microstructure
is significantly different from either a flexible chain or a stiff chain adsorption at a solid surface. Close
to the critical point, the adsorbing wormlike chain forms a strongly anisotropic proximal layer near
the membrane in addition to a nearly isotropic distal layer. The proximal layer is characterized by
the algebraic monomer concentration profile, c(x) ∝ |x|−β, due to the self-similar distribution of
aligned polymer loops. For a perfectly penetrable membrane, β = 1 which is different from β = 4/3
obtained for semiflexible chain adsorption at a solid surface. Moreover, we establish that the critical
exponent for a partially permeable membrane depends on its properties (porosity w) and propose an
asymptotically exact theory (based on the generalized Edwards equation) predicting this dependence,
β = β(w). We also develop a scaling theory elucidating, in particular, an intricate competition of
loops and tails in both proximal and distal sublayers.
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1. Introduction

Polymer adsorption is a remarkable phenomenon relevant to many applications [1–4].
It is routinely used to modify surface properties by coating with adsorbed polymer layers
for protection, lubrication and adhesion, and to tune the physical properties of interfa-
cial functional layers. Adsorption from a solution can efficiently impart the stabilization
of colloidal and nano-particles (including protein complexes), preventing their aggrega-
tion [1,2,5–7]. Single-chain adsorption is involved in many biological processes [8–11].

Both equilibrium properties and kinetics of flexible polymer adsorption have been
studied theoretically since long ago [3,4]. Typically, polymer adsorption is caused by
short-range monomer–surface interactions (of strength u). For flexible polymers, it was
established that single-chain adsorption is akin to a critical phenomenon (a second-order
phase transition), where the order parameter p (the fraction of monomers in contact with
the attractive surface) changes in a continuous way, becoming nonzero beyond the critical
threshold u∗ (at u > u∗) in the limit N → ∞, where N is the number of monomers in the
chain [4,12]. Exactly at u = u∗, the number of surface contacts nc = Np scales as

nc ∝ Nφ (1)

where φ is the crossover exponent [4,12,13]. The polymer concentration profile c(x) at
u = u∗ near the surface follows the critical scaling law, c(x) ∝ x−β, where x is the distance
to the surface. For φ < 1, the exponent β is also smaller than 1 and is related to φ:
β = 1− 1−φ

ν , where ν is the exponent defining the size (gyration radius RG) of an isolated
coil, RG ∝ Nν. In a good solvent, φ ≈ 0.485 [14–16] and ν ≈ 0.588 [17], so β ≈ 0.124, while
in Θ-solvent (or marginal solvent) polymer coils follow the ideal-chain statistics (apart
from logarithmic corrections) [4], so ν = 0.5, φ = 0.5 and β = 0.
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One of the most important characteristics of macromolecules is their backbone stiffness,
which is related to the correlation length lp of the chain orientation along its contour. Stiff
polymers have large persistence length lp, which is much longer than their thickness d:
lp/d � 1. Many physical and, in particular, adsorption properties of such semirigid (or
semiflexible) macromolecules are significantly different [18–23] from those of flexible chains
(whose lp is comparable to d). The family of stiff polymers is wide: it includes synthetic
helical polymers (such as poly-γ-benzyl-L-glutamate), polyelectrolytes, and important
biological polymers, such as double-strand DNA, polypeptides and proteins, microtubules,
F-actin and other protein polymers (biofilaments). By far, the most used statistical model of
semirigid polymers is the wormlike chain (Kratky–Porod) model [8,18,21,24]. The model
is also applicable to biopolymers [25]. For example, as pointed out in ref. [10], on length
scales smaller than the Kuhn segment length, accessible by scanning force microscopy,
conformations of a single DNA molecule were shown [26] to be appropriately described
by the wormlike chain model. (Some recently reported deviations [23] from the wormlike
chain behavior for some biopolymers only confirm the central role of the Kratky–Porod
model). This model is adopted here; it implies that the orientational correlations along the
chain contour decay exponentially with the curvilinear (contour) distance s:〈

n(s + s′) · n(s′)
〉
= e−s/lp (2)

where n(s′) and n(s + s′) are unit vectors tangential to the backbone at points s′ and s + s′,
respectively. The mean-square end-to-end distance of a long persistent (wormlike) chain is

R2 ' lL (3)

where l = 2lp is Kuhn segment of the chain, and L� l is its contour length. In the opposite
regime, L� l, we trivially have R ' L.

Back in 2002, we considered the adsorption of a semiflexible wormlike chain at a solid
surface [21]. It was shown that while the adsorption transition is continuous, it becomes
progressively sharper as the chain rigidity increases. In particular, the fraction of adsorbed
monomers (in a thin layer of thickness ∼∆ within the surface attractive potential range)
jumps from nearly 0 to almost 1 in a narrow temperature range (around the critical point)
whose relative width is proportional to (∆/l)4/3, where l is the Kuhn segment of the chain.
In this respect, the adsorption transition becomes similar to a first-order phase transition. It
was also shown [21] that at the critical point, the polymer concentration follows the specific
scaling law, c(x) ∝ x−4/3 for ∆ . x . l.

In the present paper, we analyze the adsorption of wormlike macromolecules to a thin
free-standing film, such as a membrane or a giant surfactant vesicle, or a lipid bilayer. It
may seem that adsorption onto a film is similar to the solid surface case. However, the
main difference from the previously considered case is that now, we take into account that
the film can be (at least, partially) penetrable for the adsorbing chain.

In the next section, we consider the adsorption of a short polymer chain (with L . l)
to a perfectly penetrable membrane. First, we present a scaling argument predicting
the critical strength u∗ of polymer/membrane attraction required for adsorption. Next
we develop a scaling theory for polymer statistics at the adsorption threshold (u = u∗)
and slightly below (u < u∗) or above it. The u-dependencies of the energy E (which is
proportional to the fraction p of adsorbed polymer segments located within the membrane
attraction range) and the adsorption free energy F are considered there as well. In Section 3,
we develop a quantitative approach to analyze the adsorption microstructure, using the
generalized Edwards equation. The theory is focused on the proximal layer (of thickness
. l) formed by long chains at u = u∗. A more general case, u 6= u∗, is considered in
Section 4 based on scaling arguments. The relevant experimental systems are discussed
in Section 5. The adsorption of a semiflexible wormlike polymer to partially penetrable
porous membranes (solid films with holes) is then studied in detail in Section 6. The mains
results are discussed and summarized in Sections 7 and 8, respectively.
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2. Perfectly Penetrable Free-Standing Film
2.1. Adsorption Threshold

We start with the simplest model, ignoring any internal structure of the film (mem-
brane), which is represented just by a potential near the film (located at the plane x = 0):

U(x) = −Tuϕ(|x|/∆) (4)

where U(x) is the potential energy per unit length of the chain, T is the temperature in
energy units (T = kBTabs with Tabs, the absolute temperature), u is the energy parameter,
∆ is microscopic length defining the potential range, and ϕ is a non-dimensional function
specifying a fast decay of the potential with the distance |x| from the film. In the simplest
case, the potential shape is rectangular: ϕ = 1 for |x| < ∆, and ϕ = 0 otherwise.

It is always assumed that the chain is sufficiently rigid, l � ∆, and that its contour
length L is large, L � λ, where the microscopic length-scale λ is defined below (cf.
Equation (7)). In this case, the wormlike chain gets strongly trapped near the film for
u > u∗, where u∗ is the adsorption threshold, which is defined mainly by l and ∆ (and,
strictly speaking, also by the function ϕ(x)). It can be estimated as

u∗ ∼ 1/
(

∆2l
)1/3

(5)

A similar estimate was obtained for the case of adsorption to an impenetrable sur-
face [18,21,27]. The result, Equation (5), can be deduced from two statements: If u � u∗

the chain must be localized near the adsorbing plane. By contrast, for u � u∗ the chain
statistics are just weakly affected by the adsorbing potential (provided that the chain is
not too long). Both statements are justified below: Let us consider a chain fragment with
one end located at x = 0 and oriented parallel to the plane. By virtue of the wormlike
flexibility implied by the Kratky–Porod chain model [24] adopted here (note that most
of semirigid polymers are well-described by this model), the tangential vector n = n(s)
gradually changes along the chain contour (here s is the curvilinear coordinate). The typical
angle between n(s) and the adsorbing plane is θ(s) ∼ (s/l)1/2 for s� l [18,21,22]. (Note
that θ is also the typical angle between n(0) and n(s) as follows from Equation (2)). The
corresponding typical deviation along the x-axis is

x(s) ∼ sθ(s) ∼ s3/2/l1/2 (6)

Once x(s) exceeds the attraction length ∆, a correction to the chain trajectory is required
in order to keep the chain in the ∆-layer, which costs about the thermal energy T. The
corresponding fragment length is s ∼ λ, where

λ ∼ l1/3∆2/3 (7)

is the relevant microscopic length-scale along the chain. The whole chain confinement
free energy (entropic cost) is, therefore, Fcon f ∼ TL/λ, while its attraction (potential)
energy is E ∼ −TLu. Therefore, the total adsorption free energy F = Fcon f + E is negative
for u � u∗ ∼ 1/λ, and hence the chain confinement in the ∆-layer (i.e., in the region
−∆ < x < ∆ where polymer/membrane attraction is significant) is favorable in this case.

To justify the second statement, it is sufficient to estimate the upper bound for the total
interaction energy, assuming that one chain end is pinned in the ∆-layer being oriented
tangentially to it. The probability that a point s of the chain (s & λ) is inside the ∆-layer is
p(s) ∼ ∆/x(s). On using Equations (6) and (7) for λ . s . l we therefore obtain

p(s) ∼ l1/2∆/s3/2 ∼ (λ/s)3/2 (8)
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Obviously p(s) ∼ 1 for s . λ. For s & l the chain is nearly Gaussian, so x(s) ∼
l(s/l)1/2 and p(s) ∼ ∆/(sl)1/2. The total interaction energy is therefore

E ∼ −uT
∫ L

0
p(s)ds ∼ −uT

(
λ +
√

L/l∆
)

The chain interactions with the adsorbing membrane can be neglected if E/T � 1;
this condition is valid (in the regime u� u∗) provided that

L . l(l/∆)2/3 ≡ Lm (9)

Note that Lm � l. In the next subsections, we consider the adsorption of relatively
short, stiff, wormlike polymers with L . l; both Equations (5) and (9) are valid in this case.
Moreover, as discussed in Section 4, Equation (5) is generally valid, provided that u∗ is
properly interpreted as the critical point for strongly anisotropic adsorption.

2.2. Adsorbed Layer Structure and Concentration Profile

Below, we build a scaling picture of a polymer layer critically adsorbed to a penetrable
film for the case λ � L . l. Longer chains (L � l) are considered in Sections 3, 4 and 6.
Generally, exactly at the adsorption threshold u = u∗, the chain is not yet trapped by the
adsorbing surface (since the net free energy gain per segment is close to zero at u = u∗, see
discussion in Section 7), so it is useful to demand that both ends of the chain are located
in the attraction ∆-layer and are oriented parallel to it (to avoid their escape into the bulk
of the solution). In this case, the layer can be viewed as a system of trains and loops: the
trains are fragments of length strain & λ located entirely in the ∆-layer, and the loops are
the fragments between the trains (see Figure 1a). Note that the typical angle between any
train segment and the membrane plane is

θ∆ = (λ/l)1/2 ∼ (∆/l)1/3 (10)

It is important that loops can intersect the ∆-layer, but each intersecting fragment
(labeled as ‘int’ in Figure 1a) is short: its length sint � λ (otherwise, this fragment would
be considered as a train), so the energy of each intersection Eint is small, |Eint| � T. It
is, therefore, plausible to assume that interactions with the ∆-layer just weakly perturb
the statistics of a loop, which remains (nearly) ideal. To prove that this assumption is
self-consistent, let us estimate the total interaction energy Etot

int of a single loop of length s.
Reiterating the argument given at the end of Section 2.1, we obtain (cf. Equation (8))

Etot
int(s) ∼ −2uT

∫ s/2

0
p(s)ds ∼ T

The partition function of a loop, Zl(s), s � λ, must be therefore of the same order
as that of an ideal loop whose segments do not interact with the film. The latter can be
estimated as just the probability P(s) that an s-fragment starting in ∆-layer with initial
orientation θ(0) ∼ θ∆ has its end-point in the same layer with a similar orientation: x ∼ ∆,
θ ∼ θ∆ at the end point. Recalling that the typical unconstrained values are much larger,
x(s)� ∆, θ(s)� θ∆, for s� λ (cf. Equation (6)), we obtain P(s) ∼ θ∆∆/[x(s)θ(s)].

Therefore,

Zl(s) ∼ P(s) ∼ l1/2∆
s3/2

λ1/2

s1/2 ∼
λ2

s2 (11)
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Figure 1. (a) A wormlike chain with two ends located in the membrane (at −∆ < x < ∆). The chain
segments are oriented at small angles θ to the membrane plane (x = 0). Typically, |θ| . θ∆ in the
‘train’ sections, and |θ| � θ∆ in the ‘loops’ (see Equation (10)). (b) A wormlike chain of contour length
L with free ends; the chain is aligned by attraction to a penetrable membrane. The right-hand end
is located at distance x from the membrane mid-plane; its orientation is defined by the unit vector
n. The chain involves ‘train’ sections trapped in the short-range attraction layer representing the
membrane, ‘loops’ of different sizes away from it, and two ‘tails’.

The above scaling law is applicable to loops with s� λ, while shorter loops with s ∼ λ
are similar to trains. We therefore arrive at a self-similar distribution of loops: the number
density of loops of size s is proportional to Zl(s). The concentration profile can be obtained
using Equation (11) and the following argument was already employed in refs. [21,23]: The
polymer concentration at the distance x � ∆ from the membrane is defined by loops of
such length s that x(s) ∼ x, i.e., s ∼ λ(x/∆)2/3. The number of monomers in such loops
is ∼

∫ s
s/2 s′Zl(s′)ds′ ∼ s2Zl(s) which must be proportional to

∫ x
x/2 c(x′)dx′ ∼ xc(x). As

s2Zl(s) = const, we obtain
c(x) ∝ 1/|x| (12)

so that the relevant critical exponent is β = 1; it is different from the result for an impenetra-
ble film, β = 4/3 [21]. (Note that the polymer actually forms two equivalent and connected
adsorbed layers on both sides of the film). Equation (12) is valid for ∆� |x| � xmax, where

xmax = x(L) ∼ L3/2/l1/2 (13)

Equation (12) implies that most of polymer segments are far from the film (i.e., they
belong to loops). The fraction p of segments in the ∆-layer is

p ∼ c(∆)∆/
∫ xmax

0
c(x)dx (14)

leading to p ∼ 1/ ln(N), where N ≡ L/λ. The total potential energy of critically adsorbed
chain (at u = u∗) is

E = −uTLp ∼ −TN/ ln N (15)

and the number of polymer contacts with the film is nc ∝ Ñ ≡ N/ ln(N) which formally
corresponds to φ = 1 (cf. Equation (1)).

2.3. Dependencies of Energy, Free Energy and Concentration Profiles on the Attraction Strength u

In this section, we continue to consider the regime λ � L . l for a chain with
ends located in the ∆-layer. At u = 0, there is no polymer/film interactions, and the
chain behaves as a single loop. In this case, the monomer concentration at x ∼ x(s) is
c0(x) ∼ s/x(s) leading to the power law: c0(x) ∝ x−1/3 for |x| . xmax at u = 0 (non-
adsorbed state). By contrast, c1(x) ∝ x−β for u = u∗ (critically adsorbed state). In the
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general case, for u < u∗, the concentration profile can be represented (with the scaling
accuracy) by c1(x) for short x, x < Λ, and c0(x) for x > Λ (cf. ref. [21]), leading to the
following interpolation:

c(x) ∝ (x/Λ)−1/3 + (x/Λ)−β, u < u∗ (16)

where Λ depends on the deviation τ from the critical point, τ ≡ u/u∗ − 1. At τ = 0, the
profile is self-similar (cf. Equation (12)), so the first term in Equation (16) can be neglected.
It is important, however, that the critically adsorbed state (corresponding to the second
term in Equation (16)) is highly sensitive to a variation of τ. Indeed,

∂F
∂τ

= −u∗TLp ∼ −TÑ at τ = 0 (17)

where F is the free energy of the adsorbed chain, EΓ is the potential energy of a configuration
Γ, EΓ = −uTLpΓ (cf. Equation (15)), Ñ = N/ ln N, and we used the theorem on small
variations [28]:

∂F
∂τ

=

〈
∂EΓ

∂τ

〉
= −u∗TL〈pΓ〉 (18)

Here 〈�〉 meaning the ensemble average of � over all configurations and 〈pΓ〉 = p.
Therefore,

∆F ≡ F(τ)− F(0) ' −TÑτ

for a small |τ|, so that a small negative τ can significantly destabilize the self-similar state (cf.
Equation (12)): for τ < 0, |τ| � 1/Ñ, its free energy increases by ∆F � T, and its statistical
weight decreases by a large factor e∆F/T � 1, leading to Λ� xmax (cf. Equation (16)). On
the other hand, at |τ| ∼ 1/Ñ, the destabilization is marginal and Λ ∼ xmax, i.e.,

Λ ∼ xmax ∼ N3/2∆ for τ = τ∗ = − ln N/N

Assuming that Λ is a function of τ only (i.e., it is nearly independent of N) as long as
|τ| & 1/Ñ (which is equivalent to xmax & Λ) and neglecting the ln N factor, we find

Λ ∼ τ−3/2∆, |τ| � 1/N, τ < 0 (19)

The τ-dependence of the total energy is defined by equation E = −u∗TL(1 + τ)p.
Using Equations (16), (19) and (14), we thus obtain for τ < 0, 1/N � |τ| � 1:

p ∼ (|τ|N)−1 (20)

E ∼ −T/|τ| (21)

The dependence of the chain free energy F on τ can be deduced from Equation (18):

∂F
∂τ

= −u∗TLp (22)

(cf. Equation (17)). Using also Equation (20) we get for τ < 0:

F(τ)− F(0) ∼ T ln(|τ|N), 1/N � |τ| � 1 (23)

Note that for u = 0 (τ = −1), the chain partition function is Zl(L) ∝ 1
x(L)θ(L) ∝

1/N2, so
F(−1) ' 2T ln N (24)

suggesting (by virtue of Equation (23)) that F(0) ∼ T ln N. (Note that by virtue of
Equations (14) and (16), the assumption adopted above Equation (19) is equivalent to as-
suming that the number of polymer/membrane contacts nc(τ) ∝ pN depends on τ but not
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on the chain length at τ < 0, |τ|nc(0) � 1. This is a standard assumption of the scaling
theory of polymer adsorption [4]).

Let us turn to the regime of adsorbed chain, u > u∗, i.e., τ > 0. The reduced adsorption
energy per unit length,

ε ' −F/(TL)

gets positive and significant in this regime (in contrast to the pre-adsorption regime, τ < 0,
where Equations (23) and (24) lead to |ε| ∼ 1/L). The dependence of ε on τ for τ > 0 can
be obtained using the general Equation (22):

∂ε

∂τ
= u∗p (25)

To obtain p using Equation (14), we need to know the concentration profile for τ > 0.
To this end, we can use the same argument as that proposed in Section 2.2 to obtain the
self-similar profile at τ = 0. The only difference is that for τ > 0 (and hence, as verified
below, ε > 0) the partition function Zl(s) of a loop (with s � λ) must be replaced by a
modified one:

Zlε(s) = Zl(s)e−εs ∝ s−2e−εs (26)

where Zl(s) is defined in Equation (11). Here the statistical factor e−εs = e−∆F/T accounts
for the free energy penalty ∆F = Tsε for the desorption of a large s-loop we consider. For
s < s∗ = 1/ε, the new factor is not important, so the critical law, Equation (12), stays valid
for x � h:

c(x) ∝ x−1, x � h (27)

where
h ≡ x(s∗) = l−1/2ε−3/2 (28)

(here we also assume that h � xmax, that is εL � 1). Obviously, for x > h (s > s∗), the
loops are suppressed, so the concentration c(x) decays exponentially. The decay law for
x � h was established in ref. [21]:

c(x) ∝ exp

(
−4

3

(
12x

h

)1/2
)

, x � h (29)

It is clear that the region x � h can be neglected in the integral of Equation (14),
which gives

p ∼ 1/ ln(h/∆) = −k1/ ln(ελ) (30)

where k1 is a numerical factor. Equations (25) and (30) then give

λ
dε

dτ
= −k2/ ln(ελ)

where k2 = k1u∗λ is another numerical factor (cf. Equations (5) and (7)). The above
equation leads to

ε ' (k2/λ)τ/ ln(1/τ), 1� τ � 1/N (31)

The obtained critical behavior of the free energy per unit length points to a second-
order phase transition at τ = 0. According to Equation (28), the thickness of the adsorbed
layer, h, rapidly decreases with τ roughly as h ∝ τ−3/2. By contrast, the fraction p of
monomers in contact with the film (in the ∆-layer) increases logarithmically, p ∝ 1/ ln(1/τ)
for 1� τ � 1/N.

3. Quantitative Approach

The scaling results described above can be also justified with a quantitative theory
accounting for both spatial and orientational distributions of polymer segments. Following
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ref. [21], let us consider a semirigid chain of length L with one free end and the second end
having position x and orientation n (cf. Figure 1b).

The partition function of such an ideal chain in the presence of the membrane potential
(U(x) at |x| < ∆) is ψ(x, n, L). Its change as L grows can be described by the transfer-matrix
approach, leading to the master equation (the generalized Edwards equation) [18,21,29,30]:

∂ψ

∂L
=

1
l
∇2

nψ− nx
∂ψ

∂x
− U(x)

T
ψ (32)

(note that ψ does not depend on the y, z coordinates in the membrane plane). At large L,
the function ψ must tend to the ground state with

ψ(x, n, L)→ eεLψ(x, n),

where ψ(x, n) is the ground eigenfunction (corresponding to the largest ε) of the operator
on the rhs of Equation (32):

1
l
∇2

nψ− nx
∂ψ

∂x
− U(x)

T
ψ = εψ (33)

A similar equation was derived in ref. [21]. Here

ε ≡ lim
L→∞

(−F/(TL)) (34)

where F is the chain free energy increment due to interactions with the membrane. Below,
we focus on the layer structure at distances |x| � l in the limit of long chains L� l. Taking
into account that n-dependence of ψ reduces to its dependence on the angle θ ' nx between
n and the plane, and that |θ| � 1 for |x| � l (the condition |θ| � 1 is suggested by the
scaling analysis in Section 2.2), we rewrite Equation (33) as (in analogy with ref. [21])

1
l

∂2ψ

∂θ2 − θ
∂ψ

∂x
− U(x)

T
ψ = εψ (35)

where ψ = ψ(x, θ). This equation is obviously invariant with respect to substitutions
x → −x, θ → −θ, implying an obvious symmetry

ψ(−x,−θ) = ψ(x, θ) (36)

Furthermore, as the film is penetrable, we should demand that

ψ(−∆, θ) = ψ(∆, θ) for θ � θ∆ ≡ (∆/l)1/3 (37)

The above equation simply states that partition functions of chains with ends at
A− and A+ (cf. Figure 2) are nearly equal. The condition θ � θ∆ provides that (i) the
potential energy due to the end segment (of length sint ' 2∆/θ) of chain A+ penetrating
the membrane is low (as compared to T), so that the potential energies of the two chains
are nearly equal, and (ii) the bending of the sint-segment is negligible compared to θ so that
the end angles of both chains are nearly equal to θ (cf. Figure 2).
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x=

s int

θθ

θθ

�$����

θθ

�$��B�
∆∆

x= ∆∆

Figure 2. Two chains with the same orientation at x = −∆ defined by the angle θ > 0. One chain
ends at point A− just below the membrane. The second chain ends at point A+ slightly above the
membrane intersecting it with the end segment of length sint.

Our primary goal is to find ψ(x, θ) at the critical point u = u∗. As discussed in
Section 2.3 at this point ε vanishes (actually, it nearly vanishes and can be neglected, see
Section 4 below). It was also shown in Section 2.2 that the concentration profile at u = u∗

follows an algebraic law, Equation (12), for

l � |x| � ∆ (38)

It is therefore reasonable to assume (again following ref. [21]) a self-similar x-dependence
of ψ (in the regime of Equation (38)):

ψ(x, θ) = xα f (θ/θx), x > 0 (39)

where α is a constant to be determined, and θx is a function of x. To obtain ψ(x, θ) for
x < 0, one should use the symmetry relation, Equation (36). The dependence θx = (x/l)1/3

simply follows from the structure of Equations (35) and (39) with ε = 0 and U(x) = 0 for
x > ∆; it was obtained in ref. [21]. As a result, we arrive at the following equation for f (η)
with η ≡ θ/θx (cf. ref. [21]):

∂2 f
∂η2 +

1
3

η2 ∂ f
∂η
− αη f = 0 (40)

(Note that η here has the opposite sign compared to ref. [21]). The boundary condition for
f (η) stemming from Equation (37) is:

f (−η) ' f (η) for η → ∞ (41)

It is crucially different from that adopted in ref. [21]. Following the approach of
ref. [21], the differential Equation (40) can be reduced to the Kummer equation, and f (η)
can be expressed in terms of degenerate hypergeometric functions:

f (η) = Ψ(−α, 2/3,−η3/9) (42)

which is selected by the condition that f (η) must not increase exponentially at |η| →
∞. Here

Ψ(a, b, z) = Γ
[

1− b
a− b + 1

]
F(a, b, z) + Γ

[
b− 1

a

]
z1−bF(a + 1− b, 2− b, z) (43)
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is the Tricomi function, and F(a, b, z) is the standard degenerate hypergeometric function
(1F1). For −η � 1 the function, Equation (42), shows a power law behavior:

f (η) ' 32α(−η)−3α (44)

The parameter α can be obtained based on the physical boundary condition, Equa-
tion (41), which leads to the following equation:

sin(
2π

3
) + sin(πα) = sin(

2π

3
+ πα) (45)

It has two series of roots:

α = 2n, α = 2n− 2/3

with integer n. As we look for ground states, f (η) must not have any knots at finite η. This
condition selects just two values: α = α0 = 0 and α = α1 = −2/3. The corresponding
eigenfunctions are

ψ0(x, θ) = 1, ψ1(x, θ) = x−2/3Ψ(2/3, 2/3,−θ3l/(9x)) (46)

For |θ| � (x/l)1/3, we obtain (cf. Equation (44)) ψ1(x, θ) ' const θ−2. Obviously, ψ0
reflects an isotropic state at u = 0, while ψ1 describes the strongly anisotropic critically
adsorbed state at u = u∗. In other words, ψ0 corresponds to the trivial isotropic adsorption
point (u = 0) which is characteristic for both ideal flexible and long semiflexible chains (see
the next section for a further discussion).

The monomer density distribution in the (x, θ) space is [21,30,31]

c(x, θ) = const ψ(x, θ)ψ(x,−θ) (47)

Therefore, c0(x, θ) = const , i.e., the chain stays free in the pre-adsorbed state (u = 0),
its monomers are distributed uniformly and isotropically. By contrast, the distribution
c1(x, θ) in the critical state for strong adsorption (corresponding to u = u∗, α = α1) is
highly anisotropic and x-dependent:

c1(x, θ) = C1 (x/l)−4/3ρ(θ/θx) (48)

where C1 = const and

ρ(η) = CNΨ(2/3, 2/3,−η3/9)Ψ(2/3, 2/3, η3/9) (49)

Here, CN ≈ 0.044175 is the normalization constant defined by the condition∫
ρ(η)dη = 1 (50)

The universal function ρ(η) defines the orientational distribution of all polymer seg-
ments at a distance x (∆� x � l) from a penetrable membrane. This function is plotted
in Figure 3.
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Figure 3. The normalized distribution (see Equation (49)) of the reduced angle η = θ(l/x)1/3 in the
proximal aligned layer, where θ is the angle of a chain segment and x is its distance to the membrane.
Inset: The same function in the log-log scale. The dashed line indicates the asymptotic law, ρ ∝ η−4

for |η| � 1 (cf. Equation (51)).

Note that ρ(η) shows a power-law decay, ρ ∝ η−4, at large η (|η| � 1) as demonstrated
in the inset of Figure 3. This is in contrast to a very strong compressed exponential decay
predicted in ref. [21] for the case of adsorption to an impenetrable solid surface. Interestingly,
for |θ| � θx, the c1(x, θ) distribution depends on the angle θ, but is almost independent
of x

c1(x, θ) = const θ−4, |θ| � θx (51)

The reason for this behavior is simple: the relevant chain segments of length x/θ can
be considered straight.

The monomer density as a function of distance only is c(x) =
∫

c(x, θ)dθ (here the
integration limits are −π/2 and π/2, but note that for x � l the integral mainly comes
from |θ| ∼ θx � 1). At the adsorption threshold, we obtain c1(x) ∝ x−1 for x � l in
agreement with the scaling result, Equation (12).

4. Dependence of the Adsorbed Layer Structure on the Attraction Strength

In the previous section, we rederived the critical exponent for the self-similar con-
centration profile at u = u∗ using the transfer-matrix theory. We are now in a position to
consider the dependence of the adsorption profile on τ = u/u∗ − 1. At this point, it is
important to note that, strictly speaking, u = u∗ does not correspond to the chain-trapping
transition: a purely attractive potential U(x) we consider always traps a long (L → ∞)
chain for whichever low attraction strength u. This statement is well-known for flexible
chains [4], and it is also valid for wormlike chains, which behave as flexibly at length
scales� l [21]. To show this, let us consider a long ideal wormlike chain (L� l) near an
attractive penetrable membrane with 0 < u < u∗. Assuming that the chain conformation
is unperturbed by the potential, one can easily estimate the total potential energy of such
a chain:

E ∼ −uTL∆/R ∼ −uT∆
√

L/l

where R is the chain size defined in Equation (3). The chain is trapped by the membrane if
|E| � T, i.e., for

u� ∆−1
√

l/L

Hence, for L → ∞, the chain is indeed trapped for any u > 0. This conclusion stays
valid also if a perturbation of the chain conformation by the membrane potential is taken
into account since such a perturbation must always increase |E|.

Then the natural question arises: what is the meaning of u∗ if the adsorption occurs
already at u = 0+? The answer is that u∗ defines the second transition to a strongly
anisotropic adsorbed state accompanied by the formation of a self-similar layer. This point
and the features of both transitions are further discussed below.
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The argument given above shows that the reduced adsorption energy per unit length,
ε, is always positive for u > 0. Let us consider the distal region, x � l, of the adsorbed
layer. Here we can apply the classical equation (cf. ref. [32] and Equation (25) of ref. [21])
for an ideal flexible chain:

l
6

∂2ψ

∂x2 = εψ (52)

where ψ = ψ(x) is the partition function of the chain with one end at x, and ε > 0 is
considered as known parameter. The solution to the above equation for the concentration
profile c(x) ∝ ψ(x)2 is

c(x) ' c0 exp(−|x|/h) (53)

where
h =

1
2
√

6

√
l/ε (54)

is the distal layer thickness. To find h, we eventually need to establish the dependence of
ε = ε(τ) on the attraction strength. To this end, we have to obtain the whole concentration
profile c(x), and, in particular, its proximal part near the membrane, at x . l. At u� u∗,
nothing special happens with c(x) in this proximal region: Equation (53) remains valid
there, and the same is true for u ∼ u∗/2. To see this, recall that the interaction energy of an
l-segment intersecting the membrane at an angle θ is Eint ' −2uT∆/ sin θ = −E1/ sin θ (cf.
Figure 2), where E1/T = 2u∆ . u∗∆ ∼ (∆/l)1/3 � 1. Therefore, for most θ, the interaction
energy is small (|Eint| � T); hence, the segment positional and orientational distribution
is only slightly perturbed by the membrane potential. It remains nearly uniform and
isotropic at x . l in accordance with Equation (53). It is only at the lowest possible angles,
θ ∼ θ∆ � 1 (cf. Equation (37)), that the perturbation is moderate (|Eint| ∼ T), so that
tangential orientations (with low θ) are somewhat preferred. Still the overall orientational
order parameter Sor = 0.5

〈
3 sin2 θ − 1

〉
remains small: |Sor| ∼ θ∆ ∼ (∆/l)1/3 � 1 (a

logarithmic factor is neglected here).
The situation changes only at u ≈ u∗ (|τ| � 1), where ‘trains’ (sequences of tan-

gentially oriented segments) and loops start to form near the membrane. At u = u∗

(τ = 0), they result in a self-similar concentration profile, c(x) ∝ 1/|x|, and strong
‘disklike’ orientation of polymer segments, Sor ' −0.5, in the proximal layer at |x| � l
(cf. Sections 2.2 and 3). This structure is due to a fractal distribution of polymer loops. At a
weaker attraction, u < u∗ (τ < 0), the self-similar region becomes thinner. To quantify this
effect, let us firstly recall that the fractal structure of loops emerges at u = u∗ because in
this case, a detachment of a ‘train’ (its conversion into a loop) never costs any significant
free energy: the entropic free energy due to the ‘train’ confinement in the ∆-layer is exactly
compensated by the negative energy gain due to the membrane potential. This balance
is broken at τ < 0 when the potential energy gain is decreased. As a result, a conversion
of a ‘train’ of length s = gλ into a loop now leads to an additional negative free energy
∆F = (u− u∗)sT ∼ τgT, τ < 0 (cf. Equations (5) and (7)). Its effect can be neglected for
g . g∗ ∼ 1/|τ| (i.e., s � s∗ ∼ λ/|τ|), but it destroys the self-similar structure at larger
s. The thickness Λ of the fractal layer at τ < 0 is, therefore, defined by the x-size of the
crossover loops of length ∼ s∗:

Λ ∼ ∆/|τ|3/2, τ < 0, |τ| & λ/l (55)

Note that the above equation agrees with Equation (19). The condition |τ| & λ/l
reflects the fact that the maximal thickness of the self-similar layer is ∼ l; hence Λ ∼ l
for |τ| . λ/l ∼ (∆/l)2/3. The whole adsorbed layer (at x > 0) is shown schematically in
Figure 4.
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Figure 4. The structure of loops formed by a wormlike chain near a penetrable membrane at a
near-critical adsorption strength, u ≈ u∗, u < u∗. There are long semiflexible isotropic loops (shown
in cyan) everywhere, while shorter aligned loops (shown in black) are present only close enough to
the membrane. Aligned loops show a fractal distribution for |x| . Λ, and they dominate by mass in
the proximal layer at |x| . x̃, where x̃ < Λ. The aligned loops virtually merge with long isotropic
loops at the crossover distance |x| ∼ Λ (see green and pink fragments as examples).

Thus, the self-similar structure of loops is predicted in the proximal sublayer,
∆ < x < Λ. At the crossover, x ∼ Λ, the proximal loops (of length s . s∗) readily
conjugate with nearly isotropic larger loops of size & l, which dominate further away
from the membrane. The conjugation means that concentration cll(x, θ) of due to large
loops and css(x, θ) due to self-similar loops (of size s ∼ s∗) must be comparable at x = Λ
and θ ∼ θΛ ∼ (Λ/l)1/3 (recall that proximal loops are mostly oriented tangentially to the
surface, cf. Equation (39)). Obviously cll(x, θ) ∼ c0 (cf. Equation (53)). As for css(x, θ), it
is given in Equation (48): css(x, θ) ∼ C1 (x/l)−4/3 for θ . θx. The conjugation condition
therefore gives C1 ∼ c0(Λ/l)4/3 so that the total concentration c ' cll + css is

c(x, θ) ∼ c0

[
1 + (x/Λ)−4/3ρ(θ/θx)

]
, ∆ < x . l (56)

The total concentration profile obtained by integration over θ therefore is (note that
css(x) =

∫
css(x, θ)dθ ∼ C1l/x)

c(x) ' c0

[
1 +

x̃
x

]
, ∆ < x . l (57)

where

x̃ ∼ Λ4/3

l1/3 (58)

(Note that by continuity c(x) ∼ c0(1 + x̃/∆) for |x| < ∆). The whole concentration profile
at x > ∆ is defined by Equations (53) and (57). The whole adsorbed layer can be viewed as
a superposition of ‘trains’ at |x| ∼ ∆, aligned self-similar loops and nearly isotropic longer
fragments of size & l. The aligned loops disappear for τ < 0, |τ| ∼ 1: in this case Λ ∼ ∆, so
the loops are short and can be considered as parts of ‘trains’. Furthermore, the contribution
of both aligned loops and trapped ‘trains’ can be neglected in the total concentration c(x) if
|τ| & (∆/l)1/6 (corresponding to x̃ . ∆, cf. Equations (58) and (55)).

We are now in a position to obtain the dependence of ε and h on τ. To this end, we use
the general Equation (25): ∂ε

∂τ = u∗p ∼ p/λ, where p is the fraction of trapped monomers
(cf. Equation (14))

p =
∫ ∆

0
c(x)dx/

∫ ∞

0
c(x)dx (59)
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Using c(x) defined above and Equations (55) and (58), we obtain (generally neglecting
log-factors)

p ∼ ∆ + x̃
h

,

x̃ ∼
{

∆4/3

l1/3 |τ|
−2, (∆/l)1/6 & |τ| & (∆/l)2/3

l, |τ| . (∆/l)2/3

Solving Equation (25) with initial condition, ε = 0 for u/u∗ = 1 + τ = 0, we obtain
for τ < 0:

εl ∼


δ2(1 + τ)2 , |τ| & δ

|τ|−2δ4 , δ & |τ| & δ2

1 , |τ| . δ2
(60)

where δ ≡ (∆/l)1/3. Note that εL & 1 is required for adsorption and that for u � u∗

Equation (60) gives εL ∼ (L/l)δ2(u/u∗)2. The latter equation shows that εL � 1 and,
hence, the chain in not adsorbed (and not really affected by attraction to the membrane)
for L . l/δ2 = Lm in agreement with Equation (9). By contrast, for L� Lm and u ∼ u∗/2,
the chain must be well-adsorbed (trapped by the membrane), but the proximal anisotropic
layer is not yet formed since for τ ≡ u/u∗ − 1 ∼ −1/2 the crossover distance Λ ∼ ∆ and
c(x) is always dominated by the isotropic contribution of long semiflexible loops.

The terminal thickness h of the adsorbed layer (cf. Equation (54)) for τ < 0 therefore is

h ∼


lδ−1(1 + τ)−1 = l4/3∆−1/3u∗/u , |τ| & δ

l|τ|/δ2 , δ & |τ| & δ2

l , |τ| . δ2
(61)

Thus all the 3 length-scales, h, Λ and x̃ becomes similar to the Kuhn segment l near
the critical point u = u∗ (|τ| . δ2) for the second (anisotropic) adsorption transition. At
this point ε ∼ 1/l, so the effect of ε can be neglected in the proximal anisotropic layer of
relatively short aligned loops (whose length s� l).

Above u∗ (at τ > 0), the adsorbed layer structure is characterized by a single length-
scale h (apart from the ‘nano-scale’ ∆). The concentration profile, ε and h can be obtained
in exactly the same way as discussed in Section 2.3 (cf. Equations (27), (29) and (31)):

c(x) ∼ const x−1 exp

(
−4

3

(
12x

h

)1/2
)

, x � ∆

εl ∼
{

1 , 0 < τ . δ2

δ−2τ/ ln(1/τ) , 1 & τ � δ2 (62)

h ' l/(εl)3/2 ∼
{

l , 0 < τ . δ2

∆[ln(1/τ)/τ]3/2 , 1 & τ � δ2 (63)

The layer thickness h therefore decreases with τ; it changes from h ∼ l at τ = 0 to
h ∼ ∆ at τ ∼ 1.

5. Preliminary Discussion

In the previous sections, we considered the adsorption of wormlike polymers to a
flat penetrable membrane. Modeling a membrane (a free-standing film) as just a potential
energy profile, which is uniform along the membrane plane (cf. Equation (4)), may seem to
be far from reality. However, in the spirit of a mean-field approach, it is really plausible to
represent a film by an effective potential of its interaction with the adsorbed macromolecule.
The mean molecular potential can reflect the film structure in the normal direction (across
the film). On the other hand, the heterogeneous film structure in the lateral direction can be
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neglected if the corresponding correlation length is smaller than the characteristic lateral
size λ associated with the wormlike polymer (cf. Equation (7)).

Nevertheless, it would be useful to consider some specific physical realizations of
penetrable membranes. It is well-known that many polymers tend to adsorb to surfactant
layers, including free-standing double-layer surfactant vesicles and lipid bilayers [33].
Interfaces between surfactant layers and polymers are known to be highly relevant to
biophysical membrane problems [34]. In particular, the adsorption of semiflexible poly-
mers at the exterior side of a membrane can induce changes of a vesicle or a biological cell
shape [8]. Interactions of macromolecules with cell membranes are important for many
processes in cell biology [8,10,11,35,36] including DNA uptake by cells. Biopolymers such
as DNA normally use appropriate pores to penetrate cell membranes [37,38]. Importantly,
it was recently established that a direct penetration across the cell membrane is possible for
amphipathic phospholipid polymers mimicking the chemical structure of phospholipids
in the membrane [9]. It is therefore reasonable to expect that a surfactant (lipid) bilayer
in a disordered liquid state can be penetrable by a locally stiff macromolecule if it has
some affinity to non-polar hydrophobic molecular fragments (tails) inside the bilayer. The
macromolecule must be therefore amphiphilic with alternating polar/charged groups (to
ensure aqueous solubility) and hydrophobic fragments. On the other hand, the macro-
molecular adsorption can be due to electrostatic attraction of ionic groups to oppositely
charged ‘heads’ of surfactants in the bilayer membrane. A high salinity of the solution
can be used to keep the electrostatic interactions sufficiently short-range so that the simple
model of Equation (4) may be applicable in this case.

One should bear in mind, however, that the very penetration of a polymer end into
the bilayer may imply a transient increase in the total free energy due to a disruption of the
layer structure in a correlation volume near the penetration location. The penetration would
then require to overcome an activation energy barrier. This feature is totally irrelevant for
the equilibrium microstructure of the adsorbed polymer layers considered in this paper,
but it may significantly slow down the layer formation and equilibration.

Instead of a free-standing surfactant layer, one can consider adsorption onto a simple
interface between two immiscible solvents, such as water and a hydrophobic oily liquid.
Here, the role of an adsorbing macromolecule can be taken by a weakly charged polyelec-
trolyte with a stiff (semiflexible) backbone. (Recall that most semiflexible biopolymers,
such as double-strand DNA or F-actin, are charged). Such polyelectrolyte molecules can be
soluble in both phases (in water, due to charged groups, and in oil, due to a hydrophobic
backbone). The driving force for adsorption of such wormlike polymers at the interface can
be provided by their amphiphilic nature: both types of polymer groups can benefit from a
favorable environment near the interface, for example, if the charged groups are grafted
to the hydrophobic backbone with flexible spacers. The general problem here is that the
polymer, being soluble in both phases, may still prefer one of them. It can be possible,
however, to restore the symmetry (to render the solvation free energies in both solvents
equal) by tuning the ion strength (or pH) in the water phase.

Yet another possibility is to consider an ultra-thin solid film with nano-holes in it.
For the theoretical approach developed in this paper to be applicable, the nano-holes (of
diameter D) must be much larger than the film attraction range ∆, but much smaller than
the polymer rigidity segment l: ∆� D � l (in addition, Dθ∆ must be larger than the chain
thickness d). A polymer adsorption layer can be then naturally formed due to polymer/film
attraction, while, in addition, the semiflexible polymer fragments can easily penetrate the
layer through the holes. Modern technologies offer a number of techniques to create such
porous ultra-thin membranes [39–44]. In particular, 1 nm thick carbon nano-membranes
with pores of diameter 3–30 nm were produced [45].

In the next section, we show that complexes of wormlike polymers with such porous
membranes show some universal features, which require a special analysis provided there.
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6. Partially Penetrable Membranes

Let us consider an ultra-thin solid nanolayer (for example, a free-standing carbon,
metal or polymer nanosheet) of effective thickness 2∆ (including its attraction zone, see
Figure 5) perforated with nano-holes of diameter∼ D. The regime of interest is ∆� D � l.
We keep considering a very long semiflexible chain, L � l. The polymer fragments can
penetrate the layer through the holes. Otherwise, the adsorbed fragments can stay near the
solid surface, while polymer penetration inside the solid film is not allowed (cf. Figure 5).
The membrane attraction potential is defined, as before, in Equation (4), where x should be
now replaced by the distance to the solid surface (so, of course, the potential is virtually
absent in the hole regions). The important parameter is the area fraction w of holes. The
mean total area per hole is ∼ D2/w. The mean distance between the centers of neighboring
holes is therefore ∼ D/

√
w. To simply the argument, we also assume that this distance

exceeds the microscopic length λ along the membrane, D/
√

w & λ.

D

0

∆∆

∆∆

x

Figure 5. A wormlike chain near a porous solid nanofilm of effective thickness 2∆. The chain can
freely pass from one side of the film to the other through the holes of diameter ∼ D.

At the adsorption threshold, u = u∗, the polymer creates a structure of loops. By a
loop, here we mean a chain fragment whose both ends are located near the membrane
surface (in the ∆-layer next to it) and are oriented nearly parallel to it. Such a loop can
intersect the x = 0 plane. Let us focus on the loops with length s in the range D/

√
w�

s � l. It corresponds to the following range of x-coordinates: xmin � |x| � l, where
xmin = x(D/

√
w) = D3/2/

(
l1/2w3/4

)
(cf. Equation (6)). It must be expected that a self-

similar structure of loops is formed in this regime since the heterogeneous structure of the
film becomes effectively coarse-grained at |x| � x(D/

√
w). As a result, each intersection

of the nanolayer by the chain now brings an additional statistical weight factor w in the
partition function (note that w is just the probability that the chain ‘finds’ a hole). Thus,
the only difference with the reference model (Section 2) is related to the free energy cost of
an intersection. Before (in Sections 2–4), it was equal to Eint = −2uT∆/ sin θcross, now it is
−T ln w independent of the crossing angle θcross.

Let us turn to the structure of loops for the membrane with holes. To start with, we
switch off any interactions with the membrane (located around the x = 0 plane). Let Zl(s|n)
denote the partition function of a loop of contour length s involving n intersections with
the plane, x = 0. The function Zl(s|0) for n = 0 was considered in ref. [21] (and denoted as
Zl(s) there):

Zl(s|0) ∼ (s/λ)−5/2, s . l

On the other hand, the total partition function of a loop (with arbitrary number of
intersections) for a perfectly permeable adsorbing film is

Zl(s) = ∑
n

Zl(s|n) (64)

As was established in Section 2.2 (Equation (11))

Zl(s) ∼ (s/λ)−2 (65)

Therefore, the probability p(s|0) that a loop has no crossings is

p(s|0) ≡ Zl(s|0)/Zl(s) ∼ (s/λ)−0.5 (66)
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It is not difficult to estimate the mean number of intersections of a loop of length S,
n̄(S). With the same scaling accuracy (i.e., omitting the numerical prefactor), the result is

n̄(S) ' const ln(S/λ) (67)

The prefactor in the above equation can be obtained directly using the obvious relation
n̄(S) ' 2

∫ S/2
λ P(s)ds, where P(s)ds is the probability that a chain element (s, s + ds)

intersects the x = 0 plane (s is the contour length from the nearest end of the loop).
Obviously P(s)ds ' 〈|θ(s)|δ(x(s))〉ds ∼ 〈|θ(s)|〉ds/〈|x(s)|〉, where θ(s) is the tilt angle
and x(s) is the x-coordinate of the point s of the loop (recall that the typical θ(s) ∼ (s/λ)0.5

and x(s) ∼ sθ, cf. Equation (6)). Taking into account the nearly Gaussian statistics of x and
θ (at a given s� l), we obtain P(s) '

√
3

2π
1
s , so

n̄(S) '
√

3
π

ln(S/λ) (68)

Equations (66) and (68) show that p(s|0) ∼ exp(−const n̄) hinting at a Poisson-like
distribution of n:

p(s|n) ≡ Zl(s|n)/Zl(s) ' (s/λ)−0.5 An/n! (69)

with A ∼ n̄(s). Below, we derive the above heuristic Equation (69) in a rigorous way,
clarifying its approximate nature and its region of validity (n � A2/3). A more precise
value of A is also obtained (cf. Equations (79) and (80)).

Let us turn to a more general case with penalized intersections (defined by the factor
w) corresponding to the adsorption on a semi-permeable plane (i.e., a membrane with
holes). In the general case (arbitrary w), the definition of Zl(s), Equation (64), must be
amended to take into account that n crossings bring the statistical weight wn:

Zl(s, w) = ∑
n

Zl(s|n)wn (70)

where we explicitly show for clarity that Zl(s, w) depends also on the penetration parameter
w. (Note that defining Zl(s|n) in this section, we do not apply any restriction on the angle
θcross between the membrane plane and a polymer fragment intersecting it: the reason is
that intersections only occur in the hole regions where the surface potential is absent).

The problem to find Zl(s, w) can be treated alternatively using the master Equation (35)
(see Section 3). Using the same substitution as before (ψ(x, θ) = xα f (η), η = (l/x)1/3θ
for x > 0; note that ψ for x < 0 comes from the general relation (36) due to the obvi-
ous symmetry of the problem) we obtain 1

η f ′′ + 1
3 η f ′ − α f = 0, which is equivalent to

Equation (40).
Recalling that ψ(x, θ) is the partition function of a chain with the second end oriented

at an angle θ to the plane and located at a distance |x| from it, and comparing ψ(0+, θ)
and ψ(0−, θ) for θ > 0, we see that the only difference between ψ(0+, θ) and ψ(0−, θ) =
ψ(0+,−θ) is that ψ(0+, θ) involves one extra intersection near the end (cf. Figure 6). Hence

ψ(0+, θ) = wψ(0−, θ) = wψ(0+,−θ), θ > 0 (71)

where we also used Equation (36). (Note that physically 0+ corresponds to x = +∆, 0−

to x = −∆, and the condition θ > 0 should be replaced with x � θ∆. Equation (71) is
applicable as a boundary condition since we are interested in ψ(x, θ) at relatively large
length-scales, |x| � ∆). Obviously, for w = 0, we return to the impenetrable wall problem
considered in ref. [21], while w = 1 corresponds to the case of a perfectly permeable surface
(cf. Section 3). In the general case, the condition (71) can be rewritten in terms of the
function f (η) as (cf. Equation (41)):

lim
η→+∞

f (η)
f (−η)

= w (72)
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The solution of Equation (40) is

f (η) = Ψ(−α, 2/3,−η3/9)

where ψ(a, b, z) is the Tricomi function (cf. Equation (42)) defined in Section 3. Using
Equation (43) and other general properties of Ψ, we obtain the following equation defining
α based on Equation (72):

sin(π(2/3 + α))− sin(πα) = w sin(2π/3)

It has two physically acceptable solutions (corresponding to a ground-state f (η)
without knots at finite η):

α0 =
1
6
− 1

π
arcsin

w
2

, α1 = −5
6
+

1
π

arcsin
w
2

(73)

It is α = α1 that corresponds to the critically adsorbed state (while α0 describes the
non-adsorbed case corresponding to u = 0, i.e., a sterically repulsive membrane with
no attraction).

s int
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Figure 6. Clarification on Equation (71): The chain ending at point A+ above the membrane intersects
it through a hole. Otherwise, the conformation of this chain is similar to that of the chain A− which
ends below the membrane thus avoiding the last intersection. In analogy with Figure 2 the partition
functions (ψ) of the chains A− and A+ are nearly equal, and the same is true, of course, for the
chains A− and B−. By contrast, the partition function of the chain B+ is zero since intersections of a
solid part of the membrane are not allowed. On averaging over the film area, these relations lead to
Equation (71).

The adsorbed layer can be considered as a system of loops. The number of loops of
size s (per unit area) is proportional to Zl(s, w) so that the total length of monomers in all
loops of size s, S/2 < s < S is

L(S) ∝
∫ S

S/2
Zl(s, w)sds ∼ S2Zl(S, w)

Most of these monomers are located at a distance ∼ x(S) ∼ S3/2/l1/2 leading to
concentration

c(x) ∼ L(S)/x(S) ∝ S1/2Zl(S, w) at x ∼ x(S) (74)

Alternatively, the concentration profile can be obtained using the partition function
ψ(x, θ) (cf. Equation (47)):

c(x) = const
∫

ψ(x, θ)ψ(x,−θ)dθ = const |x|2α+1/3
∫

f (η) f (−η)dη

The second integral in the above equation converges to a numerical factor if α < −1/6.
The latter condition is always valid for α = α1. Thus

c(x) ∝ |x|2α1+1/3 (75)
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at the adsorption threshold. Thus, once again we arrive at a self-similar concentration
profile, c(x) ∝ |x|−β in the proximal layer ∆ . |x| . l (cf. Equation (12) and ref. [21]), but
now the critical exponent β depends on the membrane parameter w.

Comparing Equations (74) and (75) we finally obtain

Zl(s, w) ∼ (s/λ)3α1 (76)

Obviously, for w = 1, the above equation agrees with Equation (65), while for w = 0,
it agrees with the results of ref. [21] (Zl ∝ s−5/2). Using Equations (76), (73) and (70)
we obtain

∑
n

Zl(s|n)wn = const (s/λ)−5/2(s/λ)(3/π) arcsin(w/2) (77)

Therefore, the statistical weights of loops with n intersections, Zl(s|n) can be ob-
tained by just performing Taylor expansion in w of the rhs of the above equation. More-
over, this equation allows to easily obtain all the moments of the distribution p(s|n) =
Zl(s|n)/Zl(s, 1). For example, the mean number of intersections is

n̄ = ∂ ln Zl(s, w)/∂ ln w =
3
π

ln(s/λ)
∂

∂w
(arcsin(w/2))

For w = 1, we thus obtain n̄ =
√

3
π ln(s/λ) in agreement with Equation (68). Using

Equation (77), we find

∑
n

p(s|n)wn ' (s/λ)−0.5e2A arcsin(w/2) (78)

with
A =

3
2π

ln(s/λ)� 1 (79)

For a small w . 1/A the sum in the lhs of Equation (78) (which defines the generating
function of the probability distribution) is dominated by a few terms with n ∼ 1. Therefore,
to obtain p(s|n) for not too large n, we can assume w ∼ 1/A � 1 and approximate
arcsin(w/2) as w/2 yielding

∑
n

p(s|n)wn ' (s/λ)−0.5eAw (80)

The above equation leads to the p(s|n) distribution announced in Equation (69). A sim-
ple analysis shows that higher-order terms in the expansion of the arcsin in Equation (78)
can be indeed neglected if n � A2/3. Note that the Poissonian character of the n-
distribution is not self-evident since crossings of chain fragments with the plane are strongly
correlated.

7. Discussion
7.1. Discussion on Two Models of Polymer/Membrane Interactions

In this paper, we consider the reversible adsorption of a wormlike polymer to an
ultra-thin penetrable free-standing membrane focusing on the equilibrium structure of
the adsorbed polymer layer. The adsorption is driven by a short-range attraction between
the membrane surface and polymer segments. Two basic models of the membrane are
considered: (i) a perfectly penetrable amphiphilic fluid layer (a surfactant bilayer) whose
effect can be accounted for by a short-range membrane potential, Equation (4); and (ii) a
partially permeable porous nanofilm (solid membrane with nano-holes), cf. Sections 5 and 6.
We found that in both cases, a strongly adsorbed anisotropic polymer layer (whose thickness
is smaller than the Kuhn segment length l) is formed near the membrane slightly above
the critical attraction strength u∗. In this regime, the number nc of polymer/membrane
contacts is roughly proportional to the polymerization degree (see Equation (15) and the
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text below it). The parameter u∗ always scales with the attraction range ∆ according to
Equation (5). It shows that u∗ decreases both with ∆ and with the chain stiffness defined by
the Kuhn segment l. Equation (5) agrees with numerous theoretical and simulation results
for polymer adsorption to an impenetrable surface [18,21,27,46,47]. Thus, although u∗ must
be lower for a penetrable film, the scaling relation, Equation (5), seems to be universal.

For both models, the adsorbed layer is symmetric: it is formed on both sides of the film.
Generally, an adsorbed layer involves trains, loops and tails (Figure 1b). Trains are chain
fragments (of length strain & λ) located mostly within the attraction layer (of thickness
∼ ∆). Loops are fragments between two trains located mostly outside the ∆-layer. Since
the loop ends are connected to trains, they must be oriented almost tangentially to the
attracting surface (with a small tilt angle θ, θ . θ∆ ∼ (∆/l)1/3, cf. Equation (37)). A tail
is a terminal chain part with a free end (which is typically located outside the ∆-layer)
whose starting point is adjacent to a train. Tails are not important for long chains above
the critical point (u > u∗), where the adsorbed layer consists mostly of trains and loops.
There are two types of loops: large semiflexible isotropic loops (of length s� l) and shorter
aligned loops (s . l) forming two sublayers, distal (|x| � l) and proximal (∆ . |x| . l),
respectively. At u ≈ u∗, aligned loops in the proximal layer show a fractal size distribution
leading to an algebraic decay of polymer concentration c(x) ∝ |x|−β. For model ‘i’, the
number density of aligned loops of length s is ρ(s) ∝ Zl(s) ∝ s−2 (Equation (11)) and β = 1
(Equation (12)). For model ‘ii’, the critical exponents depend on the area fraction w of the
holes. We found that in the proximal layer, ρ(s) ∝ Zl(s, w) ∝ s3α1 (Equation (76)), where
α1 = − 5

6 + 1
π arcsin w

2 (Equation (73)), and that

β = −1
3
− 2α1 (81)

(Equation (75)). Thus, for model ‘ii’ with 0 ≤ w < 1 we get 4/3 > β > 1. For w = 0,
the critical exponents coincide with the results for impenetrable surface [21]: β = 4/3,
3α1 = −5/2. The opposite limit, w → 1, corresponds to a perfectly permeable film. It
is, therefore, not surprising that model ‘ii’ reproduces the exponents of model ‘i’ in the
w→ 1 regime.

There is, however, a qualitative difference between the two models: Model ‘i’ is
characterized by two adsorption transitions: at u = 0 (weak isotropic adsorption) and at
u = u∗ (strong anisotropic adsorption). The first transition results in formation of a thick
layer of long semiflexible isotropic loops. Its thickness at 0 < u� u∗ is (cf. Section 4)

h ∼ l(l/∆)1/3u∗/u� l

However, this layer rapidly thins as u increases tending to u∗ (see the first two regimes
in Equation (61)). At the same time, the self-similar proximal layer of aligned loops rapidly
grows so that near u∗ the proximal layer (with concentration profile c(x) ∝ 1/|x| for
|x| . l) becomes well-developed and dominant, marking the second transition occurring
in a narrow region |τ| = |u/u∗ − 1| . (∆/l)2/3. Adsorption at a symmetric interface
(for a model analogous to our model ‘i’) was considered theoretically in ref. [48]. In
the weak adsorption regime (apparently corresponding to u well below u∗), two length-
scales characterizing the concentration profile (one ∼ l and another much longer) were
identified [48], in qualitative agreement with our results.

By contrast, model ‘ii’ shows only one adsorption transition at u = u∗, leading to the
formation of a self-similar proximal layer of aligned loops at 0 < τ . (∆/l)2/3 � 1. As
τ is further increased, the proximal layer thins in a similar way for both models (as was
established following the approach of Section 4); the thinning law for model ‘ii’ reads

h ∼ ∆/τ3/2, 1 & τ & (∆/l)2/3 (82)
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(cf. Equation (63)). The adsorbed layer thickness becomes comparable to the membrane
attraction range, h ∼ ∆, at τ ∼ 1. Note that Equation (82) just slightly differs from the
prediction, Equation (63), for model ‘i’: an additional log-factor, [ln(1/τ)]3/2, is present in
the latter case.

7.2. Notes Related to the Model of Solid Film with Holes

In Section 6, we neglected both the chain thickness d and the thickness dm of solid parts
of the membrane (shown in black in Figure 5). With finite d and dm the chain penetration
through a hole becomes slightly restricted: For geometric reasons, a penetration is possible
if the tilt angle |θ| of the relevant chain segment exceeds θmin = (d + dm)/D. Obviously,
this condition is virtually always satisfied if the typical tilt angle |θ| ∼ (s/l)1/2 (for a loop
of length s) is much larger than θmin, that is, if

s/l � (d + dm)
2/D2 (83)

The latter condition defines the lower bound for the range of loop sizes where the
theory of Section 6 (including the scaling relations) is applicable. Recalling that s� l, the
condition (83) demands that D � d + dm, which is always satisfied if d + dm . ∆ and
D � ∆ as assumed at the beginning of Section 6. Note also that for D & λ (which is
equivalent to the condition D/

√
w & λ assumed in Section 6, provided that w is not small)

and d + dm . ∆ the basic condition (83) simply follows from the condition s� λ, which is
always required for the loops to follow a self-similar distribution in the proximal layer.

Let us turn to the size (length s) distribution of trains. For an impermeable membrane
(w → 0), the probability density of the train length s is nearly exponential for s & λ.
It follows from the fact that train sections of size ∆s ∼ λ are essentially decorrelated,
and hence the probability pl that the next segment ∆s escapes the attraction zone (the
∆-layer), and thus creating a (short) loop is independent of the train length. Note that by
the definition of the length-scale λ, the probability pl ∼ 1/2, and hence the mean train
length is strain ∼ 2λ.

For w > 0, the holes do not perturb the train distribution provided that the typical size
of solid parts of the membrane Ds = D/

√
w− D is much larger than strain, Ds � strain,

which is equivalent to
D(1− w)� λ (84)

Thus, the train length distribution remains exponential also for a porous membrane
with sufficiently large holes (obviously, this condition becomes stronger as w increases,
w→ 1). Note, however, that the condition (84) is irrelevant to the self-similar distribution of
loops considered in Section 6, which remains intact as long as D(1−w) & λ. It is the critical
adsorption strength u∗ that becomes affected by D and w in the regime D(1− w) . λ: u∗

increases as D is decreased or w is increased because the train size must be reduced here
for geometric reasons.

7.3. Loop and Tail Distributions

Let us turn to the effect of the chain contour length L. Incidentally, we assumed
that L . l in Sections 2.2 and 2.3 where the monomer distribution in the adsorbed lay-
ers is considered using scaling arguments, while long chains, L � l, are assumed in
Sections 3, 4 and 6, presenting the quantitative theory. It is noteworthy that short chains
(L . l) cannot be trapped by a membrane at u < u∗: they would escape into the solution
bulk. That is why we had to assume (in Sections 2.2 and 2.3) that the chain ends are forced
to be located in the film. The only significant implication of this condition is that the
terminal layer thickness for a moderate u is defined by the chain length, xmax ∼ L3/2/l1/2

(cf. Equation (13)), rather than by the attraction strength u, as it happens in the case of
very long chains, L → ∞ (cf. Equations (61) and (63)). As a result, the distal layer is
totally absent for short chains, L . l. However, the self-similar structure of loops in the
proximal layer is virtually independent of L above u∗: it is nearly the same for L� l and
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L ∼ l. In the general case, a finite chain length L means a finite contribution of tails to
the polymer concentration profile c(x). Noteworthily, the tail effect was avoided so far by
either ‘pinning’ both chain ends or considering long chains, L→ ∞. Below, we analyze the
tail effect for short chain L . l pinned at only one end, thus allowing for one tail. (Instead
of pinning, one can also demand a sufficiently high adsorption strength to trap the chain
near the membrane; both methods give similar results).

Let Z1(L) be the total partition function of a chain (of length λ � L . l) with one
end free and another end pinned to the membrane (with tangential orientation of the end
segment), and Z2(L) be a similar partition function with the condition that both ends are
located in the membrane attraction layer (allowing one end to freely glide along the surface
to anneal the end-to-end distance fluctuations). Let us focus on the model ‘ii’ (solid film
with holes) at the critical point u = u∗. The concentration due to loops at this point follows
the power law, c(x) ∝ x−β with β > 1. Therefore

∫
c(x)dx is dominated by short x ∼ ∆, so

that a finite fraction of polymer segments is inside the ∆-layers near the membrane. In this
case, Z2(2s) ' const Z2(s)2 since the probability to find a train (a segment of length & λ in
contact with the membrane) near the middle of the 2s-chain is close to 100%. The above
relation leads to Z2(s) ' const eεs, where ε is the adsorption energy per unit length, which
must be equal to 0 by definition of the adsorption threshold u∗. Therefore, Z2(s) ' const .
Turning to Z1(L) we note that any configuration of wormlike chain (with one end pinned
and another free end) can be uniquely divided in two fragments: the first one, of length
L− s with ends in tangential contact with the membrane, and the second, a tail of length s
(with no trains in it). This decomposition leads to the following equation

Z1(L) ' const
∫ L

0
Z2(L− s)Zt(s)ds (85)

where Zt(s) is the tail partition function. Since a loop of length 2s can be considered as a
combination of two tails, there is a general relation between Zt(s) and Zl(2s) (cf. ref. [21]):

Zl(2s) ∼ Zt(s)2/(x(s)θ(s)) (86)

where x(s) ∝ s3/2 (cf. Equation (6)) and θ(s) ∝ s1/2 for s� l. Recalling that Zl(s) ∝ s3α1 (cf.
Equation (76) and note that Zl(s) = Zl(s, w) in this section, i.e., the parameter w is omitted
for brevity) we obtain

Zt(s) ∝ s1+3α1/2, s . l (87)

where (cf. Equation (81))
γ = 1 + 3α1/2 = (3/4)(1− β) (88)

Equation (85) implies that at u = u∗ the statistical weight of all conformations with
tail of length s is proportional to Z2(L − s)Zt(s), and hence the tail length distribution
density is

ρt(s) ' Z2(L− s)Zt(s)/
∫ L

0
Z2(L− s)Zt(s)ds (89)

Finally, using Equation (87), we obtain (for L� l)

ρt(s) ' sγ(γ + 1)/Lγ+1

The mean tails length Lt = 〈s〉 is then given by

Lt/L ' γ + 1
γ + 2

=
4 + 3α1

6 + 3α1
, L� l

Recalling that −2/3 > α1 ≥ −5/6 (cf. Equation (73)), we conclude that in critical
conditions (u = u∗) the mass fraction of tails (Lt/L) is around 50%, and therefore it is
always comparable to the mass fraction (=(L − Lt)/L) of loops and trains (in addition,
contributions of loops and trains are obviously comparable as well). A similar argument
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also shows that mass fractions of trains in the case of one pinned end (wtrain1) and for two
ends trapped near the membrane (wtrain2) are related

wtrain1 '
1

γ + 2
wtrain2 (90)

Thus, in effect, the above results based on Equation (85) show that the tail length
is typically ∼ L/2 at u = u∗. The monomer distribution due to such a tail is therefore
comparable with that for a single tail of length L. The latter distribution follows from
Equation (6) (for x > 0):

ct(x) ∼ (l/x)1/3, x . xmax, xmax ∼ L3/2/l1/2, L . l (91)

(Note that here and below we define ct(x) in such a way that ct(x)dx is the mean length
of tail segments in the layer (x, x + dx); a similar definition applies to cl(x) for loops and
trains). At u = u∗, the concentration contribution of loops/trains is

cl(x) ∼ L
∆

(
∆
x

)β

, ∆ . x . xmax (92)

where β is defined in Equation (81) (cf. also Equation (75)). The prefactor in Equation (92)
can be obtained from the condition of nearly equal masses of loops/trains and tails,∫

cl(x)dx ∼
∫

ct(x)dx ∼ L/2, as discussed above. Note also that both ct and cl van-
ish exponentially at x > xmax.

Obviously, loops dominate at short distances, while tails are more important at the
periphery:

c(x) ∼
{

cl(x), ∆ < x < x∗

ct(x), xmax & x > x∗
(93)

where c(x) = cl(x) + ct(x) is the total concentration, and

x∗ ∼ ∆(L/λ)1/(β−1/3) ∼ ∆(xmax/∆)2/(3β−1) (94)

is the crossover distance; ∆ � x∗ < xmax since 3β− 1 > 2 and L � λ. (Note that we do
not consider trains any more focusing on the regime x > ∆; it must be always kept in mind
that an equivalent adsorbed layer at x < −∆ is also present). Equation (94) is applicable
for short chains, L . l. For L ∼ l, it gives

x∗ ∼ l(∆/l)
β−1

β−1/3 & l2/3∆1/3 (95)

Qualitatively the same picture stays valid also for longer chains, L� l. In this case,
the chain behaves flexibly at length scales x � l, so xmax ∼ (Ll)1/2 (i.e., xmax is defined by
the coil size R, Equation (3)). At the critical adsorption point (u = u∗), the concentration
contribution of semiflexible isotropic loops is nearly constant in the regime x � l (following
the classical results on the ideal flexible chain adsorption [4]):

cl(x) ∼
{

c0, xmax ∼ (Ll)1/2 > x > l
c0(l/x)β, ∆ < x < l

(96)

where c0 ∼ L/
(√

Ll + lβ∆1−β
)

is found from the basic principle that total masses of loops
and tails are always comparable at u = u∗.

As for the tails, their monomer concentration profile is defined in Equation (91) for
x . l, while ct(x) ∝ x for x & l (note that the membrane acts as a repulsive surface
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for long semiflexible tails since by definition the tail monomers never enter the surface
attraction zone):

ct(x) ∼
{

x/l, xmax > x > l
(l/x)1/3, ∆ < x < l

(97)

Note that the scaling law, ct(x) ∝ x at x � l (valid for a tail emanating from a repulsive
surface) comes from a simple argument already used to derive Equation (91): ct(x) ∼ s/2

x/2 ,
where s/2 is the length of tail fragment between points s/2 and s along its contour, and
x/2 is the thickness of the layer where this fragment is typically located spanning distances
between x/2 and x, with x ∼

√
sl being its typical size, cf. Equation (3).

Using Equations (96) and (97), we find that monomers in the loops dominate at x < x∗,
and tail monomers - at x > x∗ (cf. Equation (93)), where

x∗ ∼

 l
[
L/
(
lβ∆1−β

)]1/(β−1/3) , L < lβ∆1−β

lL/
(√

Ll + lβ∆1−β
)

, L > lβ∆1−β
(98)

Thus, the tail contribution in the proximal layer can be totally neglected if L� L∗ ∼
lβ∆1−β. Note that L∗ � l since β > 1. The obtained results can be applied to the case of an
impenetrable surface as well by setting β = 4/3 (α1 = −5/6). The crossover distance x∗

always increases with L (cf. Equations (94) and (98)).
The energy E of the polymer/membrane complex is proportional to the number of

polymer/surface contacts (nc) or, in other words, to the total polymer length Lc in the
attractive layers of thickness ∆,

Lc = 2
∫ ∆

0
c(x)dx ∼ c(∆)∆

Taking into account that c(∆) ∼ cl(∆) and using Equations (92) and (96), we obtain Lc
at the critical point u = u∗:

Lc ∼
{

L/2 , L < L̃√
LL̃ , L > L̃

(99)

where the crossover length L̃ is

L̃ ∼ l(l/∆)2(β−1) � L∗ � l (100)

The fraction p = Lc/L of trapped monomers, therefore, is (cf. Equation (59)):

p ∼
{

0.5 , L < L̃√
L̃/L , L > L̃

(101)

Equation (99) shows that the contact exponent φ (cf. Equation (1)) changes from
φ = 1 for relatively short chains (L � L̃) to φ = 1/2 for longer chains (L � L̃). It is
remarkable that φ = 1 is thus predicted also for semiflexible chains (L̃� L� l) forming a
complicated structure of competing long loops, aligned loops and tails. The result, φ = 1/2,
for very long chains (L→ ∞) trivially corresponds to the well-known critical behavior of
ideal flexible polymers [4]. However, even in this long-chain limit, the amount of contacts
rapidly increases from Lc ∝ L1/2 to the maximum Lc ∼ L as the membrane attraction
strength increases above u∗. Indeed, at u > u∗, the adsorption free energy ε is positive (cf.
Equation (34)), so the loops and tails of length s� 1/ε are exponentially suppressed (cf.
Equation (26)). Therefore, the concentration profile for L→ ∞ at a given τ = u/u∗ − 1 > 0
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becomes roughly equivalent to the profile of loops at the critical point for L ∼ 1/ε, where
ε = ε(τ). Using Equation (101) we thus obtain:

p ∼
{

0.5 , εL̃ > 1√
εL̃ , εL̃ < 1

(102)

It remains to find out how ε depends on the deviation τ = u/u∗ − 1 > 0 from the
critical point. Using Equations (25) and (102) we obtain the following as a result:

ε ∼
{

τ2 L̃(u∗)2 , τ . τ∗

τu∗ , τ & τ∗
(103)

p ∼
{

τ/τ∗ , τ . τ∗

0.5 , τ & τ∗
(104)

where τ∗ ∼ 1/
(
u∗ L̃

)
∼ λ/L̃ ∼ (∆/l)2β−4/3. Note that τ∗ � 1 since 2/3 < 2β− 4/3 ≤ 4/3.

Equation (104) therefore shows that a small increase of u from u∗ to u∗(1 + τ∗) leads to a
strong increase of the contact fraction p from 0 to p ∼ 1 implying that Lc ∼ L as stated
above. The terminal thickness h of the adsorbed layer is nearly equal to the extension
(in the direction perpendicular to the membrane) of the terminal loops of contour length
s ∼ 1/ε. Thus, using Equation (103) we obtain

h ∼


l(∆/l)β−1/3τ−1 , 0 < τ < τ∗

l(∆/l)1/3τ−1/2 , τ∗ < τ < τ∗∗

∆/τ3/2 , τ∗∗ < τ < 1
(105)

where τ∗∗ ∼ δ2 = (∆/l)2/3. In particular, we get h ∼ l for τ ∼ τ∗∗. Therefore, the distal
layer is suppressed at τ > τ∗∗.

7.4. Non-Ideality Effects

In this study, we assumed no interactions between polymer segments. This assumption
is justified for a sufficiently small ratio of polymer chain thickness d to its Kuhn segment l,
d/l � 1, which ensures that the volume fraction occupied by a single chain is low. The
bottleneck for this assumption occurs in the contact ∆-layer near the membrane, where
the polymer concentration (volume fraction cφ) increases in the adsorbed state (u ≥ u∗).
The maximum polymer volume fraction cφ there can be estimated as cφ ∼ Ld2/(∆R2) ∼
d2/(l∆), where R is the coil size defined in Equation (3). The excluded-volume interaction
free energy per Kuhn segment is Ul ∼ Tcφl/d ∼ Td/∆ [49]. Therefore, for ∆ � d, the
interactions are rather weak, Ul � T, and can be neglected for the adsorption profile c(x)
and the contact fraction p (at least, in the most interesting regime τ � δ2d/∆). By contrast,
interactions of segments are important if the membrane potential is very short-range, ∆ . d.
In this case, the adsorbed chain size in the yz-plane must be significantly swollen compared
to the ideal size, Equation (3). This effect was observed in simulation studies [27,50,51] and
experimentally for DNA molecules electrostatically bound to cationic lipid bilayers [10].
(Note that the two-dimensional swelling effect leads to a decrease in cφ and, therefore, to a
lower free energy contribution due to interactions). In both cases, however, the interactions
between monomers either in the ∆-layer or outside it are just marginally important for
the statistics of long loops (provided that the Fixman parameter zF ∼ (d/l)(L/l)1/2 [52] is
sufficiently low, that is L� l3/d2). The main effect of the interactions for the adsorption
transition then reduces to some renormalization (an increase) of the critical adsorption
strength u∗.

7.5. Estimates of the Layer Thickness

Here, we provide some estimates on the distance range corresponding to the self-
similar structure of aligned loops (which is the most interesting part of the adsorbed layer
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at the critical point) for some hypothetical polymer/membrane systems. As examples,
let us consider two types of membranes: a typical phospholipid membrane of effective
thickness 2∆ ∼ 8 nm in water and a porous carbon nano-membrane of thickness dm ∼ 1 nm
with holes of diameter D ∼ 10 nm [45]. As polymers, we can consider a double-strand
DNA (with thickness d ∼ 2 nm and Kuhn segment l = 2lp ∼ 100 nm) and chitosan
with d ∼ 1 nm and l = 2lp ∼ 90 nm (at a low salt concentration cs = 1.25 mM [53]; lp
for chitosan decreases at higher cs) in aqueous solutions. The case of lipid membrane
roughly corresponds to the model of Sections 2.2 and 3 (here, we set aside issues related
to whether polymer penetration through the membrane is kinetically allowed or not), so
the self-similar sublayer is expected in the distance range ∆ < |x| < l which corresponds
to 4 nm < |x| < 100 nm for both polymers. For the porous carbon nano-membrane in
water, the attraction range is defined mostly by the Debye length rD, ∆ ∼ rD. This ∆ should
be compared with xmin ∼ D3/2/l1/2 for a moderate porosity w ∼ 0.5 (cf. Section 6). For
both polymers (DNA and chitosan), we thus arrive at xmin ∼ 3 nm. In the case of DNA
adsorption, we assume physiological ionic strength, cs ≈ 0.15 M, so ∆ ∼ rD ∼ 1 nm.
Therefore, for the DNA adsorption onto the carbon membrane xmin > rD, and hence a
self-similar structure of loops is predicted for xmin < |x| < l, i.e., for 3 nm < |x| < 100 nm.
By contrast, for chitosan adsorption (at cs = 1.25 mM) the screening length is much longer,
rD ∼ 9 nm, hence rD > xmin and the sublayer of aligned loops corresponds to rD < |x| < l,
i.e., to |x| between 10 and 100 nm.

8. Summary

We theoretically analyzed adsorption of a stiff wormlike polymer chain (with large
persistence length) on permeable and semi-permeable free-standing flat nano-membranes.
The membrane attraction length-range ∆ is assumed to be much shorter than the polymer
Kuhn segment l. Two membrane models are considered: In the first case, adsorption is
driven by monomer attraction to a uniform membrane (modeled as a short-range potential
field). A nanoporous solid film whose surface attracts polymer segments is studied as the
second model (its relevant example is described in ref. [45]). In both cases, we predict the
formation of a fractal proximal layer of aligned polymer loops at the critical strength u∗ of
monomer/film attraction (u∗ is approximately given by Equation (5) for both models). The
monomer concentration c strongly increases near the membrane according to a power law
c(x) ∝ x−β in the proximal layer. It is shown that the critical exponent β for the first model
(β = 1) is different from the value obtained for adsorption to an impenetrable surface
(β = 4/3). For the second model, we demonstrate that β depends on the area fraction of
holes, w; the universal asymptotically exact dependence β = β(w) is obtained analytically
(cf. Equation (81)). Moreover, we characterize both spatial and orientational distributions
of polymer segments in the proximal layer in an asymptotically exact way.

We established that generally, the adsorbed layer is characterized by a complex struc-
ture involving (on each side of the membrane) the thin contact ∆-layer of trapped segments,
the fractal proximal layer of thickness comparable with l (or smaller at u > u∗), and the
distal layer of long semiflexible loops. Moreover, polymer loops and tails can compete
in both proximal and distal layers. We found that for the first model, the distal layer is
suppressed already at u = u∗, while for the second model, this happens slightly above the
threshold u∗, at u/u∗ − 1 ∼ (∆/l)2/3 (cf. Equation (105)). At a higher attraction strength u
for both models, the adsorbed layers can be viewed as a fractal distribution of loops. It is
also shown that the fraction p of trapped chain segments in contact with the membrane
becomes significant, p ∼ 0.5, for u/u∗ − 1 & (∆/l)2β−4/3, again for both models.

Turning to the contribution of polymer tails, we established that it is not important
for very long chains. However, in the general case of finite chain length L, the tails can
dominate the adsorbed polymer concentration profile at large distances, x > x∗, while loops
dominate closer to the membrane. Near the adsorption threshold, u ≈ u∗, the crossover
distance x∗ increases with L as x∗ ∝ L1/(β−1/3) for L < L∗, x∗ ∝ L for L∗ < L < (L∗)2/l,
and x∗ ∝

√
L for L > (L∗)2/l, where L∗ ∼ l(l/∆)β−1 (cf. Equation (98)). As a side product,
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we obtained the generating function of the probability distribution of the number of
intersections between a geometric plane and a wormlike chain, whose ends are tangentially
attached to the plane (cf. Equation (78)).

We thus provide a powerful theoretical method (including both the quantitative
transfer-matrix approach and scaling concepts) to study the microstructure of adsorbed
wormlike polymer layers. The current work is therefore likely to open new perspectives
in predicting the physical properties of various polymer/membrane complexes. The
significance of the obtained results is underlined by the facts that semiflexible polymers are
often used in applications to modify the properties of membranes and films and to tune
the interfacial properties of functional layers [1–7,33,34], that the adsorption of semiflexible
macromolecules on substrates is involved in many biological processes [8,9], that important
biopolymers, such as double-strand DNA, polypeptides and protein biofilaments, can be
roughly described by the wormlike chain model [10,25,26,54,55], and that their interactions
with cell membranes are of key interest in understanding various biological functions of
living systems [8–11,34–38].
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Nomenclature

c Polymer concentration
c(x) Monomer concentration profile
cl(x) Concentration profile of monomers belonging to loops
ct(x) Concentration profile of monomers belonging to tails
D Mean hole diameter
E Chain potential energy
Fcon f Chain confinement free energy
f (η) Angle-dependent factor of the partition function, Equation (39)
h The terminal thickness of adsorbed layer
L Chain contour length
Lc The total polymer length in the attractive layer
Lt The mean tail length
lp Persistence length
l Kuhn segment
N Number of monomer units (or λ-segments) per chain
nc Number of polymer/membrane contacts
p Fraction of polymer segments in the attraction layer, Equation (59)
R Coil size
T Temperature in energy units
U Attraction potential (per unit length), Equation (4)
u Membrane attraction strength
u∗ Critical adsorption threshold
w Porosity of nano-membrane
|x| Distance to the membrane
x̃, x∗, L̃ Crossover length-scales
Zl(s) Partition function of a loop of length s
Zt(s) Partition function of a tail of length s
Zl(s, w) Partition function of a loop s for porosity w, Equation (70)
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α Critical exponent, Equation (39)
α0 The value of α corresponding to a repulsive membrane
α1 The exponent corresponding to critically adsorbing membrane
β Critical exponent for proximal concentration profile, Equation (81)
∆ Membrane attraction range
ε Reduced adsorption energy per unit length, Equation (34)
η Reduced tilt angle, η = θ/θx
θx Typical bending angle of a loop at distance x from the film
Λ Crossover length-scale
λ Characteristic segment length in the contact layer, Equation (7)
ρ(η) Distribution of the reduced tilt angle, Equation (48)
τ Relative deviation from the critical point, τ = u/u∗ − 1
φ The crossover critical exponent, Equation (1)
ψ The chain partition function
Ψ The Tricomi function, Equation (43)
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