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Abstract: Lactoferrin (LF) is an iron-binding glycoprotein with various biological activities that has
been extensively used in food and medical applications. Several methods for detecting LF have been
reported, but they still face challenges in terms of sensitivity and simplicity of detection. To achieve
an accurate and efficient detection of LF, we developed a method for the determination of LF in
lactoferrin supplements using carbon dots (CDs) fluorescent probes. The N, S-doped PPI carbon dots
(N, S-PPI-CDs) were prepared using a protein (peanut protein isolate) and cysteamine as precursors.
The prepared N, S-PPI-CDs exhibited intense blue fluorescence and good biocompatibility, while the
fluorescence intensity of the N, S-PPI-CDs showed a good linear relationship with Fe2+/Fe3+ con-
centration (0–2 µM). The N, S-PPI-CDs exhibited a high potential ability to rapidly detect Fe2+/Fe3+

within 30 s, with a limit of detection (LoD) of 0.21 µM/0.17 µM. Due to the reversible binding of LF
to Fe, the N, S-PPI-CDs showed a high sensitivity and selectivity for LF, with a limit of detection
(LoD) of 1.92 µg/mL. In addition, LF was quantified in real sample LF supplements and showed a
fluctuation in recovery of less than 2.48%, further demonstrating the effectiveness of the fluorescent
N, S-PPI-CDs sensor.

Keywords: N, S-PPI-CDs; fluorescence probe; biocompatibility; Fe2+/Fe3+ detection; lactoferrin
supplement detection

1. Introduction

Lactoferrin (LF) is an iron-binding functional glycoprotein in the transferrin family
with a molecular weight of 80 kDa [1], which is widely distributed in human and mam-
malian milk, other tissues and their secretions [1,2]. LF is generally considered as the first
natural immune barrier to protect the body from microbial infection [3]. In addition, it
exhibits various biological activity, including antibacterial activities, antiviral activities, anti-
inflammatory activities, anticancer activities, antioxidant activities and enzyme catalytic
activities [4–7]. To date, LF has been widely used in cosmetics, food, animal production,
medical treatment and other fields [8]. However, the structure of LF is easily disrupted
during the production process, which may result in the LF content of a final product not
reaching the added level or the initial level [9]. Therefore, a reliable LF detection method
urgently needs to be established to ensure the quality of products. A variety of determi-
nation methods for LF have been developed, including reversed-phase high-performance
liquid chromatography (RP-HPLC) [10], liquid chromatography–tandem mass spectrome-
try (LC−MS/MS) [11], the enzyme-linked immunosorbent assay (ELISA) [12], the surface
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plasmon resonance (SPR)-based immunosensor [13], radial immunodiffusion (RID) [14]
and capillary electrophoresis (CE) [15]. However, each of these analytical methods has its
disadvantages. For instance, RP-HPLC is regarded as a time-saving and high-accuracy
detection method, but it has poor selectivity for low LF content [1]. In contrast, LC−MS/MS
can achieve the highly sensitive and selective detection of LF, but its sample pretreatment
is time-consuming [16]. Similarly, ELISA also has high sensitivity and selectivity for LF,
while it has the disadvantages of low efficiency and high cost [3]. The surface plasmon
resonance (SPR)-based immunosensor is considered as a real-time and automated method,
but it is easily affected by temperature and sample composition [11]. The RID method
has high specificity analysis but low accuracy [1]. CE shows the advantages of lower
sample consumption and high precision, but its poor reproducibility greatly limits the
practical application [1,3]. Hence, an efficient and accurate technique for LF quantification
is highly needed.

LF has a polypeptide chain with about 690 amino acid residues and forms a basically
symmetrical bilobal structure, while each lobe can reversibly bind to Fe2+/Fe3+ [1,17,18].
It was reported that iron binding can obviously affect the biological functions of LF. For
example, the chelation of LF with irons can competitively inhibit the growth of bacteria, thus
endowing LF with antibacterial activity [19]. Furthermore, Gibbons’ s group reported that
LF iron saturation levels can affect its anti-tumor activity, apoptosis and cytotoxicity [20].
Meanwhile, binding irons will increase the stability of LF, which makes its structure
stronger [21]. On the other hand, the combination of LF and irons can effectively promote
the iron absorption of the intestine [22]. The above results indicate that LF and iron
complement each other to a certain extent. Therefore, the bioactivity of LF can be analyzed
by the quantitative detection of iron in LF.

As a new kind of carbon-based fluorescent nanomaterial, carbon dots have already
been widely used in chemical sensing and biosensing due to their good biocompatibility,
excellent optical properties and chemical stability and are emerging in the detection of
active substances [23]. Han et al. reported nitrogen-doped carbon dots with high selectivity
toward apoferritin in aqueous medium, which was also successfully applied in fluorescence
imaging of living cells [24]. Wang et al. obtained a “turn-on-off-on” fluorescence switch
based on quantum dots and gold nanoparticles, which was utilized in ovotransferrin
detection of egg powder [25]. Zhang et al. reported a new dual-excitation and dual-
emission fluorescent probe based on carbon quantum dots for the detection of cysteine,
homocysteine, glutathione and hydrogen sulfide in living cells [26]. However, fluorescent
detection on LF with carbon dots has been rarely reported so far.

It has been reported that N, S co-doped carbon dots have good luminescence per-
formance and stability. Moreover, the introduction of N and S can effectively improve
the sensitivity and selectivity of carbon dots as fluorescent probes [27,28]. Peanut protein
isolates (PPI) are rich in hydroxyl, amino and carboxyl groups, while cysteamine is rich
in amino and sulfhydryl groups. Herein, we used PPI and cysteamine as precursors to
prepare the N, S co-doped carbon dots by the hydrothermal method (Scheme 1). This
process was conducive to improving the N content of carbon dots and introducing S. Thus,
the superiority of carbon dots as fluorescent sensors is further enhanced. The structure,
composition and morphology of the N, S-PPI-CDs were studied by Fourier-transform in-
frared (FTIR) spectra, X-ray photoelectron spectra, atomic force microscopy (AFM) images
and transmission electron microscope (TEM) images. The spectral characteristics of the N,
S-PPI-CDs were characterized by ultraviolet (UV) absorption spectra and photolumines-
cence (PL) spectra. Furthermore, the biocompatibility of the N, S-PPI-CDs was assessed
by a toxicity test. A detailed study was conducted on the FL interactions between the N,
S-PPI-CDs and Fe2+/Fe3+ and LF. Moreover, the application of this proposed method to
real LF samples was verified.
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2. Materials and Methods
2.1. Materials

Cysteamine and inorganic salts (including FeCl2·4H2O, FeCl3·6H2O, CaCl2·2H2O,
CoCl2·6H2O, CrCl3·6H2O, CuCl2·2H2O, HgCl2, MgCl2·6H2O, MnCl2·4H2O, PbCl2 and
ZnCl2) were obtained from Aladdin Bio-Chem Technology Co., Ltd. (Shanghai, China).
Lactoferrin (iron content≤ 0.209 g/g) derived from bovine milk was acquired from Macklin
Biochemical Co., Ltd. (Shanghai, China). Peanut protein isolates (PPI) were obtained from
low-temperature defatted peanut meal by an alkali extraction and acid precipitation method.
Lactobacillus plantarum strain was cultivated by our laboratory. Lactoferrin supplement
drops were purchased from local market.

2.2. Characterization

The FTIR spectra were measured by utilizing an FTIR spectrometer (Thermo Scientific
Nicolet iS10, Thermo Fisher Scientific, Shanghai, China). UV absorption spectra were
collected from UV-9 000 spectrophotometer (Metash, Shanghai, China). PL spectra were
obtained from F2700 Fluorescence spectrophotometer (Hitachi, Tokyo, Japan). Multimode8
Atomic force scanning probe microscope (Bruker, Beijing, China) was used to obtain AFM
images. A transmission electron microscope (FEI Tecnai G2 F20, FEI, Shanghai, China) was
applied to obtain TEM images. X-ray photoelectron spectroscopy (XPS) was acquired by
using an X-ray photoelectron spectrometer (Thermo Fisher ESCALAB Xi+, Thermo Fisher
Scientific, Shanghai, China).

2.3. Synthesis of PPI-CDs and N, S-PPI-CDs

PPI-CDs and N, S-PPI-CDs were prepared by hydrothermal method. Firstly, PPI (0.3 g)
was dissolved in 10 mL distilled water and transferred into a Teflon reactor that was heated
at 180 ◦C for 8 h. The obtained carbon dot solution was filtered through 0.22 µm membrane
filters and then freeze-dried to acquire PPI-CDs. Similarly, by the above procedure, N,
S-PPI-CDs were prepared from PPI (0.3 g) and cysteamine (0.3 g). The prepared PPI-CDs
and N, S-PPI-CDs were stored in dryer until further testing.

2.4. Biocompatibility of PPI-CDs and N, S-PPI-CDs

To evaluate the biocompatibilities of PPI-CDs and N, S-PPI-CDs, toxicity experiments
were carried out. Given its application in LF assay, Lactobacillus plantarum was chosen
as a model, and its survival rate was used as a toxicity indicator. The control group was
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obtained by inoculating Lactobacillus plantarum into MRS liquid medium at 1% inoculum
and incubating continuously at 37 ◦C for 24 h. Meanwhile, 1 g/L of PPI-CDs or N, S-PPI-
CDs solution was used to partially replace H2O (50%, 70% and 90%) or Glucose (GLU)
(10%, 20% and 30%). Then, the bacterial solution was diluted according to the gradient and
inoculated on the MRS solid medium to prepare reference sample and testing sample. The
toxicity of PPI-CDs or N, S-PPI-CDs was investigated by the viable count.

2.5. Fluorescence Selectivity and Interference of N, S-PPI-CDs for the Detection of Fe2+ and Fe3+

First, the solutions with different kinds of metal ions (Fe2+, Fe3+, Ca2+, Co2+, Cr3+,
Cu2+, Hg2+, Mg2+, Mn2+, Pb2+ and Zn2+) were utilized to analyze the selectivity and
interference of N, S-PPI-CDs for the detection of Fe2+ and Fe3+.

2.6. Fluorescence Sensitivity of N, S-PPI-CDs toward Fe2+, Fe3+ and LF

The changes in N, S-PPI-CDs’ fluorescence intensity were measured at 330 nm with
increase in Fe2+ and Fe3+ concentration to investigate the behaviors of the fluorescence
response. The changes in PPI-CDs’ fluorescence intensity were used as controls. Then,
the fluorescence response behavior of N, S-PPI-CDs toward LF was studied by the
similar approach.

3. Results and Discussion
3.1. FTIR of PPI-CDs and N, S-PPI-CDs

The PPI-CDs were prepared for comparison, to study the N, S-PPI-CDs. As shown
in Figure 1a, the FT-IR spectra of the prepared PPI-CDs and N, S-PPI-CDs were studied
to characterize the compositions. The FTIR spectra of the PPI-CDs and N, S-PPI-CDs
showed similar peaks. The peaks at 3401 and 1668 cm−1 were confirmed to correspond
to the stretching of O-H and C=O in COOH and CONH, respectively [29,30]. The peak at
3224 cm−1 was recognized as corresponding to the stretching vibration absorption of the
N-H band [30]. Absorption bands peaking at 1589 and 1295 cm−1 originated from the other
nitrogen-containing groups C=N and C-N, respectively [31]. In addition, sulfur-rich func-
tional groups including C=S and C-S were located at 1109 and 615 cm−1, respectively [28].
Some characteristic absorption bands such as N-H (3224 cm−1), C=N (1589 cm−1), C-N
(1295 cm−1), C=S (1109 cm−1) and C-S (615 cm−1) were stronger than those of the pure
PPI-CDs, clearly indicating the groups of cysteamine has been bound to the surface of the
N, S-PPI-CDs during the hydrothermal process.

3.2. Spectral Characteristics of N, S-PPI-CDs

The UV–vis absorption, excitation and emission spectra were measured to investigate
the optical properties of the N, S-PPI-CDs. As shown in Figure 1b, the UV–vis absorption
spectra of the as-prepared CDs showed an absorption peak centered at 296 nm, corre-
sponding to the π–π* transition of carbon atoms [32]. The N, S-PPI-CDs illuminated blue
fluorescence at 365 nm (UV excitation), while the maximum emission of the N, S-PPI-CDs
was located at 404 nm with an excitation wavelength at 330 nm. To further study the
fluorescence properties of the N, S-PPI-CDs, their emission strengths were measured at
different excitation wavelengths. As shown in Figure 1c, when the excited wavelength
increased from 290 nm to 470 nm, the emission peak redshifted gradually, and the fluo-
rescence intensity decreased after reaching the maximum at 330 nm. The phenomenon
was attributed to the excitation-dependent luminescent behavior of CDs. The fluorescence
behavior has been widely described in other fluorescent carbon nanoparticles, which is
attributed to the different sizes and surface emission sites of carbon dots [31,33,34].
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3.3. XPS of PPI-CDs and N, S-PPI-CDs

The elemental composition and surface chemical states of the PPI-CDs and N, S-PPI-
CDs were further compared by XPS. Figure 2a shows the full-scan XPS spectra of the PPI-
CDs and N, S-PPI-CDs, with four peaks at 532.1, 400.2, 285.3 and 163.7 eV corresponding
to O1s, N1s, C1s and S2p, respectively. The high-resolution spectra of C1s, N1s, O1s and
S2p for the PPI-CDs and N, S-PPI-CDs are shown in Figure 2b–e, respectively, further
analyzing their chemical composition and bonding [35]. As represented in Figure 2b,
the C1s spectra of the PPI-CDs could be split into four peaks: C-C/C=C (284.8 eV), C-N
(285.7 eV), C-O (286.4 eV) and C=O (288.1 eV). In addition, the N, S-PPI-CDs showed five
peaks: C-C/C=C (284.8 eV), C-N/C-S (285.5 eV), C-O (286.2 eV), C=N (287.5 eV) and C=O
(288.1 eV) [34,36,37]. The high-resolution N1s and O1s XPS spectra of the PPI-CDs or N,
S-PPI-CDs clearly showed two peaks, respectively, which represent oxygen bonds (C=O,
C-OH/C-O-C) and nitrogen bonds (C-N-C, N-H) [34,38]. The percentage of chemical bonds
N-H and C=N in the N, S-PPI-CDs were 3.09% and 2.01%, respectively, while those in
the PPI-CDs were 2.49% and 0%, respectively. This indicates that the content of chemical
bonds N-H and C=N in the N, S-PPI-CDs evidently increased, in comparison to that of
PPI-CDs, which was consistent with the FTIR results. As observed in Figure 2e, the S2p
spectra of the N, S-PPI-CDs contained distinct peaks of C-S (163.2 eV) and -SH (164.5 eV)
compared with those of the PPI-CDs [39]. This further manifested that S atoms have been
resoundingly doped into the N, S-PPI-CDs. Therefore, the surface of the N, S-PPI-CDs is
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enriched with −COOH, −OH, −NH2 and −SH compared to the N, S-CDs and PPI-CDs,
which may make it have a more outstanding advantage in providing active sites.
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3.4. Biocompatibility of PPI-CDs and N, S-PPI-CDs

The non-toxic nature of carbon dots makes them a great potential in the field of
biological sample detection. To determine the nontoxicity of the as-synthesized CDs, we
studied the influence of the PPI-CDs and N, S-PPI-CDs’ partial substitution for H2O or
GLU upon the growth of Lactobacillus plantarum. As illustrated in Figure 3, the number
of viable bacteria evidently increased with the partial replacement of the PPI-CDs and N,
S-PPI-CDs for H2O or GLU and showed an upward trend with the raise of substitution
rate. This indicates that the two as-synthesized CDs are good bacterial carbon sources.
Interestingly, N, S-PPI-CDs substitution is more beneficial to the growth of Lactobacillus
plantarum compared with PPI-CDs substitution, which can be attributed to the successful
doping of groups from cysteamine in the carbon dots that further promotes the growth of
Lactobacillus plantarum. These results demonstrated the N, S-PPI-CDs are nontoxic, and this
kind of new carbon dots has great potential application as a new culture medium.
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(GLU) (the dilution ratio of bacterial solution is 1→109).

3.5. Morphology Characterization of CDs

The morphology characteristics of the N, S-PPI-CDs were studied by TEM and AFM.
As shown in Figure 4a, the as-prepared CDs were well-dispersed and had a monodispersed
spherical shape. The statistical chart with a uniform size distribution of the N, S-PPI-CDs
was measured according to a TEM picture (Figure 4b). The sizes of the N, S-PPI-CDs varied
from 1.6 to 4.0 nm, with a diameter of 2.66± 0.43 nm. The AFM picture of the N, S-PPI-CDs
in Figure 4c further clarifies the morphology of the CDs. The height profile curve (inset in
Figure 4c) indicates that the average height of the N, S-PPI-CDs was 2.7 ± 0.1 nm, which is
consistent with the TEM measurement results. In addition, the three-dimensional height
distribution of the N, S-PPI-CDs is depicted in Figure 4d. This reveals that the height of the
N, S-PPI-CDs was well-distributed. Combining the above morphology characterizations,
we can confirm that the N, S-PPI-CDs were homogeneous spheres with an average range
of 2–3 nm.
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3.6. Fluorescent Selectivity and Interference of N, S-PPI-CDs for the Detection of Fe2+ and Fe3+

It has been reported that functional groups on the surface of CDs can interact with
metal ions in coordination, resulting in changes in fluorescence intensity [40]. To investigate
the selectivity of the N, S-PPI-CDs to metal ions, fluorescence quenching was examined
using 11 different metal ions (Fe2+, Fe3+, Ca2+, Co2+, Cr3+, Cu2+, Hg2+, Mg2+, Mn2+, Pb2+

and Zn2+) with 0–10 µM (Figure 5a–k). It was observed that the fluorescence intensity
decreased with an increase in metal ions. In addition, the fluorescence intensity for Fe2+,
Fe3+ and Hg2+ decreased most significantly. Moreover, the I/I0 was analyzed to characterize
the fluorescent selectivity and sensitivity of CDs to metal ions. The fluorescent intensity of
CDs without the addition of metal ions is expressed as I0, and the fluorescence intensity of
the CDs solution after the addition of metal ions is expressed as I. As displayed in Figure 6a,
Fe2+, Fe3+ and Hg2+ evoked prominent decreases in the fluorescence of the N, S-PPI-CDs
solution compared with other metal ions, which indicates that the N, S-PPI-CDs have an
excellent selectivity toward Fe2+, Fe3+ and Hg2+. As depicted in Figure 6b,c, the coexistence
of the Hg2+ ion induced a marked decrease in the fluorescence intensity. Other competitive
ions would not cause obvious interference to the selective sensing of Fe2+ or Fe3+.

According to the CODEX STAN 193-1995 Codex General Standard For Contaminants
And Toxins In Food And Feed issued by the Codex Alimentarius Commission (CAC),
mercury content in natural mineral water and food grade salt is limited to 0.001 and
0.1 mg/kg, respectively. In addition, the GB 2762-2017 National Food Safety Standard Limit
of Pollutants in Food established maximum limits for mercury in other food categories,
none of which exceed 0.1 mg/kg. As shown in Figure 5g, when the Hg2+ concentration
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was 0–1 µM (> 0.1 mg/kg), the fluorescence intensity of the N, S-PPI-CDs was basically
unchanged, indicating that the N, S-PPI-CDs have no selectivity to Hg2+. Therefore, the
N, S-PPI-CDs can avoid the interference of Hg2+ in the selective detection of Fe2+ and Fe3+

in food.
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Fe2+ or Fe3+ was 10 µM, and other cations’ concentrations were the same as Fe2+ or Fe3+.

3.7. Fluorescent Sensitivity of N, S-PPI-CDs toward Fe2+ or Fe3+

To further assess the sensitivity of the as-prepared CDs toward Fe2+ and Fe3+, we
measured the fluorescent intensity of the PPI-CDs and N, S-PPI-CDs as the concentration
of Fe2+ and Fe3+ increased, respectively. As shown in Figure 7c,d, with the continuous
addition of Fe2+ or Fe3+, a more obvious decrease in the fluorescence intensity of the N,
S-PPI-CDs was observed without wavelength changes, compared to that of the PPI-CDs
(Figure 7a,b). When the added concentration of Fe2+ reaches 10 µM, the quenching rate of
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N, S-PPI-CDs can reach 92%. Meanwhile, the quenching rate of N, S-PPI-CDs can reach
94% when the added concentration of Fe3+ reaches 10 µM. In addition, we analyzed the
Stern–Volmer plots with quenching efficiency as the Y-axis and Fe2+ and Fe3+ concentration
as the X-axis. As depicted in Figure 7e,f, the plots of the PPI-CDs and N, S-PPI-CDs exhibit
a rising trend with an increase in the Fe2+ or Fe3+ concentration in the range of 0–10 µM and
presented a good linear relationship under a low concentration (0–2 µM). In addition, the
slope of the N, S-PPI-CDs plot was obviously higher than that of the PPI-CDs plot, which
means the N, S-PPI-CDs have great potential in Fe2+ or Fe3+ fluorescent-sensing detection
with a low concentration. This correlation can be formulated with Equation (1) [41]:

1− I
I0

= Ksv[M] (1)

The fluorescent intensity of CDs with and without the addition of Fe2+ or Fe3+ are
expressed as I or I0, respectively; The calculated slope of the Stern–Volmer plot is expressed
as Ksv (quenching constant); The concentration of Fe2+ or Fe3+ is expressed as [M].

To evaluate the sensitivity of the N, S-PPI-CDs to detect Fe2+ or Fe3+, we calculated
their limit of detection (LoD) according to Equation (2). The intensity standard deviation
of the blank sample for 10 measurements is expressed as Sd [42,43]. The LoD of the N,
S-PPI-CDs toward Fe2+ and Fe3+ was determined to be 0.21 µM and 0.17 µM, respectively.
The obtained data were significantly lower than the limit of iron in drinking water (~5.537
µM) set by the US Environmental Protection Agency (EPA) [31]. This indicates that the N,
S-PPI-CDs can be used for the quantitative detection of Fe2+ or Fe3+ in an aqueous solution.

LoD =
3Sd
Ksv

(2)

In order to assess the potential of N, S-PPI-CDs as a fluorescent probe to detect Fe2+

or Fe3+, a comparison of the previous literature on CDs-based Fe2+ or Fe3+ assays is
summarized in Table 1. It turns out that the LoD obtained in this work is apparently lower
than in other relevant reports. This indicates that the N, S-PPI-CDs are a great potential
probe for Fe2+ and Fe3+ detection.

Table 1. Fluorescence sensors in the literature for Fe3+/Fe2+ detection.

Sensor System Analyte Linear Range
(µM)

Limit of
Detection

(LOD) (µM)
Reference

N-doped carbon dots Fe3+ 10–100 32 [44]
S, N, Co-doped carbon dots Fe3+ and Fe2+ 5–200 and 5–300 2.86 and 2.06 [23]

N, P-doped carbon
quantum dots Fe3+ and Fe2+ 0–250 and 0–600 0.447 and 0.298 [45]

Nitrogen-doped CDs Fe2+ 0–500 0.702 [46]
Carbon quantum dots Fe3+ 50–650 0.196 [47]
Carbon-dot-decorated

natural microcline Fe3+ 0–30 61.6 [48]

Polyurethane–nitrogen-
doped carbon dot
nanocomposites

Fe3+ 10–250 10.10 [49]

Dual-emissive fluorescent
probe synthesized using

Eu3+ and
2-hydroxyterephthalic acid

Fe2+ 0–50 0.32 [50]

Spiropyran-based
fluorescent probe Fe2+ 4–20 0.77 [51]

Eu3+-doped metal–organic
framework Fe3+ 0–6 0.897 [52]

N, S-PPI-CDs Fe3+ & Fe2+ 0–2 0.17 & 0.21 this work
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Figure 7. Fluorescence response of PPI-CDs with different concentrations of (a) Fe2+ and (b) Fe3+

(Inset: photographs of PPI-CDs solution under UV (365 nm) irradiation after adding Fe2+ or Fe3+ (0
and 10 µM), respectively); fluorescence response of N, S-PPI-CDs with different concentrations of
(c) Fe2+ and (d) Fe3+ (Inset: photographs of N, S-PPI-CDs solution under UV (365 nm) irradiation
after adding Fe2+ or Fe3+ (0, 10 µM), respectively); Stern–Volmer plots of PPI-CDs and N, S-PPI-CDs
toward (e) Fe2+ and (f) Fe3+, respectively.
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3.8. Fluorescent-Sensing Performance of LF

LF is a multifunctional protein with varying activities: promoting intestinal iron
absorption, anti-inflammation, antibacterial, etc. [17,18]. This protein is an iron-binding
glycoprotein with two lobes, which can reversibly bind to Fe2+/Fe3+ [13]. Therefore, the
content of LF can be detected by using the fluorescence-intensity changes of the fluorescent
compounds with a strong binding ability to Fe2+/Fe3+. We measured the fluorescence-
emission variation of the N, S-PPI-CDs solution with an increase in the LF concentration.
As shown in Figure 8a, with the continuous addition of LF, a gradual decrease in the
fluorescence intensity of the N, S-PPI-CDs was observed. When the LF concentration
increased from 0.5 µg/mL to 10 µg/mL, it showed a good linear relationship (Figure 8b).
The linear regression equation was y = 0.0259x + 0.05829 (R2= 0.99724). In addition, the
calculated LoD value was 1.92 µg/mL, which was lower than the values of other assays
(Table 2). This suggests the as-synthesized N, S-PPI-CDs have promising potential as
fluorescent sensors applied for LF detection.
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respectively.); (b) Stern–Volmer plot of N, S-PPI-CDs toward LF.

Table 2. Different detect methods in the literature for LF detection.

Detect Method Analyte Limit of Detection
(LoD) Reference

Colorimetric LF 110 µg/mL [53]
Aptamer affinity column LF 3 µg/mL [2]

Reversed-phase high-performance
liquid chromatography LF 35.46 µg/mL [10]

Thin-layer chromatography LF 3.5 µg/mL [3]

HPLC-UV LF

0.6 mg/100 g
(liquid samples)

3 mg/100 g
(solid samples)

[54]

LC−MS/MS LF 0.3 mg/100 g [11]
Ultrahigh-performance liquid

chromatography–tandem mass
spectrometry

LF 3.8 mg/kg [55]

Ultrahigh-performance liquid LF 1 mg/100 g [56]
N, S-PPI-CDs LF 1.92 µg/mL this work
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Based on the above-mentioned results, Fe2+/Fe3+ can specifically quench the fluores-
cence of the as-synthesized N, S-PPI-CDs (Scheme 1). This can be attributed to the fact that
Fe2+/Fe3+ have a stronger affinity toward the functional groups on the N, S-PPI-CDs sur-
face (including hydroxyl, carboxyl and amino) than other metal ions [45,57,58]. In addition,
the potential strong coordination interaction between the doped S element and the iron
ion is of great significance to the quenching of the N, S-PPI-CDs’ fluorescence [59]. Due to
Fe2+/Fe3+ being contained in LF, we can realize the detection of LF with the specific capture
of Fe2+/Fe3+ in LF by the N, S-PPI-CDs. This shows a good linear relationship between
the quenching efficiency of the N, S-PPI-CDs and the LF concentration. Therefore, the LF
concentration could be determined according to the degree of fluorescence quenching of
the N, S-PPI-CDs solution.

3.9. Application of N, S-PPI-CDs in Lactoferrin Supplements

To verify the practical applicability of the N, S-PPI-CDs for the detection of lactoferrin
in real samples, the well-received lactoferrin supplements were selected for analysis in this
work. The lactoferrin content obtained by fluorescence detection based on the N, S-PPI-CDs
was compared with the standard content, as shown in Table 3. The recovery of LF in
lactoferrin supplementation floated in the range of 99.42–102.48%, with a relative standard
deviation (RSD) of less than 1.00%, which confirmed the feasibility of the method. Therefore,
the fluorescence sensor based on the N, S-PPI-CDs is an ideal sensor that can achieve a
simple, sensitive and rapid determination of lactoferrin in immunity supplements.

Table 3. Determination of LF in real lactoferrin samples.

Sample Standard (mg/mL) Found (mg/mL) Recovery (%) RSD (%)

Sample 1 10.00 10.24 102.48 1.00
Sample 2 25.80 25.65 99.42 0.86

4. Conclusions

In this work, we developed a simple, efficient and economical fluorescent N, S-PPI-CDs
nanosensor for LF detection, which is prepared by the hydrothermal synthesis of carbon
dots using a protein (PPI) and cysteamine as precursors. A toxicity experiment indicated
that the N, S-PPI-CDs were conducive to Lactobacillus plantarum growth, which verified
their excellent biocompatibility. Meanwhile, the CDs were uniformly dispersed spheres
with a diameter of only 2–3 nm, which would provide an abundance of active binding sites.
The PL of the N, S-PPI-CDs can be obviously quenched by Fe2+, Fe3+ and Hg2+ compared
to other metal ions. However, the maximum limit for the mercury in food set by the
CAC and GB does not exceed 0.1 mg/kg (<1 µM), which hardly caused any fluorescence
quenching of the N, S-PPI-CDs. This suggests that the N, S-PPI-CDs can be used as a
highly selective fluorescent-detection probe for Fe2+/Fe3+ in food without interference
from Hg2+. In addition, the LoD can be as low as 0.21 µM/0.17 µM. Furthermore, due
to the principle that Fe2+/Fe3+ can reversibly bind to LF, the N, S-PPI-CDs were used to
detect LF and showed a high sensitivity for LF, with an LoD of 1.92 µg/mL. Moreover, this
method was further used to assay LF in LF supplements, with recoveries ranging from
99.42–102.48%. The successful quantification of LF demonstrated the application potential
of a nanofluorescent N, S-PPI-CDs probe in real samples.
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