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Abstract: Polyurethane (PU) is a widely used polymer with a highly complex recycling process
due to its chemical structure. Eliminating polyurethane is limited to incineration or accumulation
in landfills. Biodegradation by enzymes and microorganisms has been studied for decades as an
effective method of biological decomposition. In this study, Tenebrio molitor larvae (T. molitor) were
fed polyurethane foam. They degraded the polymer by 35% in 17 days, resulting in a 14% weight loss
in the mealworms. Changes in the T. molitor gut bacterial community and diversity were observed,
which may be due to the colonization of the species associated with PU degradation. The physical
and structural biodegradation of the PU, as achieved by T. molitor, was observed and compared to the
characteristics of the original PU (PU-virgin) using Fourier Transform InfraRed spectroscopy (FTIR),
Thermal Gravimetric Analysis (TGA), and Scanning Electron Microphotography (SEM).

Keywords: plastic; mealworms; insect; bacteria; gut microbiome

1. Introduction

Worldwide plastic polymer production and consumption are increasing every year,
reaching around 350–400 million tons in 2019. Its reduction and elimination are a huge
challenge [1] since an estimated 2.1 to 3.6 million tons are generated per year in Europe [2].
Polyurethanes (PU) are a type of plastic polymer used as foam in automobile seats, coatings,
sealants, the textile industry and other areas [3], with around 4 million tons produced world-
wide in 2019 [1]. PU foam is synthesized by the reaction of Diisocyanate (R–N=C=O) and
Polyol (R’–OH), producing organic units called urethane [4]. Numerous groups of urethane
joined together form a polyurethane molecule [5,6]. Polyurethanes are characterized as
resistant to physical and biological degradation due to their chemical composition, which
is highly resistant to temperatures and hydrophobicity, resulting in their long lifespans [7].

Recycling polyurethane foam (PU foam) is complicated [8], although mechanical
transformation processes, such as crushing and compression molding or pulverizing, can be
employed [9]. PU foam waste can also be used as a filler load in lower-value products [10].
However, not enough PU foam is used this way, and the large amount of accumulated PU
waste is a big environmental problem. This PU waste is usually incinerated, and the gas
emitted in this process contributes to the greenhouse effect. Potentially toxic gases are also
emitted from polyurethane combustion, and that not burned accumulates in landfills or
aquatic systems [8,11].

New approaches to PU biodegradation using enzymes, e.g., cholesterol esterases,
proteases, lipases [12,13], or microorganisms, e.g., Cladosporium pseudocladosporioides or

Polymers 2023, 15, 204. https://doi.org/10.3390/polym15010204 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15010204
https://doi.org/10.3390/polym15010204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0002-1462-408X
https://orcid.org/0000-0001-7485-1092
https://orcid.org/0000-0002-5378-5310
https://orcid.org/0000-0003-0944-4946
https://orcid.org/0000-0002-0375-7004
https://doi.org/10.3390/polym15010204
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15010204?type=check_update&version=2


Polymers 2023, 15, 204 2 of 13

Paracoccus sp. [7,14] that attack the PU bonds are being investigated, with interesting degra-
dation results. The use of insects to biodegrade plastic is a new natural approach [15,16].
During the last ten years, Tenebrio molitor larvae (T. molitor; yellow mealworms), commer-
cially used as animal feed and potential alternative protein for human consumption [17,18],
have been reported to ingest and degrade different types of plastics, i.e., polyethylene
(PE), polystyrene (PS), or the less-studied polyurethane (PU) [15,16,19]. Studies have
shown that T. molitor’s ability to biodegrade plastics is mainly dependent on its intestinal
microorganisms and adaptation to different foods [20,21].

The purpose of this study was to examine: (i) the feasibility of biodegradation, the
chemical and physical changes in PU foam using the mealworm larvae of T. molitor; and
(ii) the gut enzyme activity and microbiota changes associated with feeding polyurethane
to T. molitor.

2. Materials and Methods
2.1. Plastics and Mealworms

The polyurethane foam (PU) used in this experiment was obtained from Interplasp
S.L. (total Carbon 540.8 ± 15.6 g kg −1; total Nitrogen 43.6 ± 1.09 g kg−1; total Phosphorous
0.0037 ± 0.0016 g kg−1; total Potassium 0.1 ± 0.02 g kg−1). An Inductively Coupled Plasma
(ICP) analysis was carried out to check for the presence of heavy metals in the polyurethane
composition that could be toxic to T. molitor larvae, such as Cd, Hg, or Pb [22].

The mealworm larvae of Tenebrio molitor (T. molitor) were purchased from Proteinsecta
(Albacete, Murcia). Before starting the experiment, the mealworms were fed wheat bran
except for the last 24 h, when all food was withdrawn. They were fed PU or wheat bran
(bran) for 17 days, with the food incorporated at the beginning of the experiment and not
re-established. Three replicate containers with 100 g of randomly selected mealworms
were fed 15 g of PU foam, as the PU diet (PU), and three replicate containers of 100 g of
randomly selected mealworms were fed 100 g of wheat bran, as the control diet (bran). The
containers were incubated in the dark at 27 ± 1 ◦C and with 80 ± 3% relative humidity.
This made it possible to determine the behavior of the microbiota and metabolism of the
mealworms when they did not obtain any additional nutrients.

2.2. Analysis of PU Foam Biodegradation
2.2.1. Polyurethane Consumption

To evaluate the PU foam biodegradation, the PU and mealworms were sampled at 3,
10, and 17 days after feeding the mealworms with PU and wheat bran. At each sampling,
the mealworms, PU, and frass (feces) were separated and stored. The equivalent of 5 g of
mealworms was taken out and frozen for further analysis. The PU foam and the mealworms
were weighed to calculate the mealworms’ weight loss (%) and PU consumption (%).

2.2.2. Analysis of the PU Foam with Fourier Transform InfraRed Spectroscopy (FTIR)

Fourier Transform InfraRed spectroscopy with attenuated Total Reflectance Analysis
(FTIR-ATR) (Bruker Hyperion 1000, Billerica, Massachusetts, USA) in the wave range of
3100–400 cm−1 was used to analyze the changes in the bonds of the PU foam (PU) at the
end of the experiment (17 days) compared to the original polyurethane foam (PU-virgin).
The foam was previously washed with distilled water (×3) and dried in an oven for 24 h
at 80 ◦C.

2.2.3. Analysis of the PU Foam with Thermogravimetric Analysis (TGA)

This analysis was performed using an SDT Q600 Thermogravimetric analyzer, Waters,
TA instruments, Milford Massachusetts (USA) to characterize the changes in the thermal
properties of the PU foam (PU) at the end of the experiment (17 days) compared to the
original polyurethane foam (PU-virgin). The TGA was performed at 10 ◦C min−1 from 30 ◦C
to 700 ◦C in a nitrogen atmosphere (flow rate 25 mL min−1) in 2–3 mg of polyurethane foam.
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2.2.4. Analysis of the PU Foam with Scanning Electron Microphotography (SEM)

The PU foam (PU) and original PU foam (PU-virgin) were analyzed after 10 and
17 days as feed for the mealworms by Scanning Electron Microscopy (SEM) using FEI
TENEO New York (USA). The analysis was developed following [14]. Previously, the PU
foam was washed by immersion in 0.88% (w/v) sodium hypochlorite for 2 h to eliminate
any possible remains of microorganisms in the foam. Later, it was washed in triplicate
in 100 mL of distilled water, stirred for 2 min at 150 rpm, and dried for 24 h at 80 ◦C and
coated in platinum.

2.3. Gut Microbiome Analysis
2.3.1. Enzyme Activities

The enzymatic activity of the esterases, lipases, proteases, and laccases able to break
some of the specific bonds that form polyurethane molecules was measured in the gut
of the mealworm larvae fed with PU foam and bran after 3, 10, and 17 days. The gut
was obtained by dissecting three larvae previously washed with 2 mL of distilled water
and air-dried. Once dissected, the gut was immersed in 1 mL of 0.1 M phosphate buffer
(pH 7) and shaken. Subsequently, the homogenate was centrifuged (Eppendorf, MiniSpin,
Hamburg, Germany) at 14,100× g for 10 min. The supernatant was diluted 1:10, and an
enzyme activity analysis was carried out (sample). All the enzyme activity was analyzed
on a GeneQuant 1300 spectrophotometer, VWR, Radnor, PA, USA. Protease activity was
determined spectrophotometrically by hydrolysis of p-nitroaniline following the modified
method of Preiser et al. [23]. A sample of 100 µL was mixed with 700 µL of reaction mixture
and incubated for 90 min at 37 ◦C. The reaction was stopped with 800 µL of 30% (v/v) acetic
acid, and the color change was measured at λ = 410 nm. The reaction mixture contained
0.05 M glycine Na–OH buffer (pH 10) and 0.001 M BAPNA dissolved in 1000 µL of DMSO.
The control samples were analyzed in the same way, but the sample was replaced with
a glycine Na–OH buffer. Esterase activity was determined spectrophotometrically by
hydrolysis of p-nitrophenyl acetate (p-NPA) following the modified method of Oceguera-
Cervantes et al. [24]. In a final volume of 1 mL, 100 µL of sample was mixed with 800 µL
of sodium phosphate buffer (0.05 M; pH 6.5) and 100 µL of p-NPA solution in acetonitrile
(0.01 M). The samples were incubated at 37 ◦C for 20 min. The reaction was stopped by
placing them in an ice bath for 5 min. Subsequently, the samples were centrifuged at
10,000× g for 5 min and measured at λ = 410 nm. The control samples were analyzed in the
same way, but the sample was replaced with a sodium phosphate buffer. Lipase activity
was determined spectrophotometrically with the hydrolysis of p-nitrophenyl laurate (p-
NPL) using a modification of the Kilcawley et al. [13] method. In a final volume of 2 mL,
100 µL of sample was mixed with 1.9 mL of sodium phosphate buffer (0.1 M; pH 7). The
samples were incubated at 37 ◦C for 30 min. The reaction was stopped by placing them
in an ice bath for 5 min and adding 0.85 mL of NaOH (0.5 M). Subsequently, the samples
were centrifuged at 10,000× g for 5 min and measured at λ = 400 nm. The control samples
were analyzed in the same way, but the sample was replaced with a sodium phosphate
buffer. Laccase activity was measured using spectrophotometry following the modified
method of Dhakar and Pandey [25]. The following were mixed and incubated for 1 min:
1 mL of final volume, 100 µL of sample, 800 µL of sodium acetate buffer (0.2 M/0.1 M; pH
4.5), and 100 µL of ABTS (0.01 M) dissolved in a sodium acetate buffer (0.2 M/0.1 M; pH
4.5). Subsequently, the samples were centrifuged at 10,000× g for 5 min and measured at
λ = 420 nm. The control samples were analyzed in the same way, but the samples were
replaced with a sodium acetate buffer.

ε The calculations of each activity were carried out using the molar extinction coeffi-
cients. Protease activity was calculated using the molar extinction coefficient at λ = 410 nm
by
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2.3.2. Gut DNA Extraction and Amplicon Sequencing

The DNA from the gut of mealworms fed with PU foam (PU) and wheat bran (bran)
for 3, 10, and 17 days was extracted from the gut of four mealworms from the same feed
container pooled to eliminate individual variability. The gut was harvested and added
to a tube with 100 µL of phosphate buffer (0.1 M). The DNA was extracted using the
Dneasy PowerSoil kit (Qiagen, Hilden, Germany). The quantity and quality of the DNA
extracts were evaluated using a Qubit 3.0 Fluorometer (Invitrogen, Thermo Fisher Scientific,
Waltham, MA, USA). The samples for sequencing were analyzed with the Illumina Nextera
barcoded two-step PCR libraries (V4, ITS2) and sequenced on an Illumina MiSeq, v3,
2 × 300 bp. Demultiplexing and trimming the Illumina adaptor residuals and trimming
the locus specific primer sequences were removed (Microsynth AG, Balgach, Switzerland).

2.3.3. Bioinformatic Analysis

The analysis of the sequences was carried out as follows: the samples were received
in fastq, entered into QIIME2 [28], and denoised using the dada2 algorithm [29], taking
into account the replicates of each treatment to avoid their slight variations. Once the ASV
(Amplicon Sequence Variant) was obtained, the taxonomic classification was performed
using consensus-vsearch with the Silva 132 database (released in 2020) as a reference. The
eukaryotes, archeas, mitochondria, chloroplasts, and non-assignments were eliminated
before the statistical analysis. Finally, normalization was conducted through rarefaction,
bringing all the samples to the same value using the value of the last sample that conserved
a minimum of 3000 readings. The sequences were deposited in the DNA database with the
accession code PRJEB54959.

2.4. Statistical Analysis

The results were analyzed using Statgraphics 18 and plotted through Sigmaplot v12.0.
The correlations were performed using Spearman’s correlation test, and the statistical
significance was determined using a two-way analysis of variance (ANOVA) with a post-
hoc Least Significant Difference (LSD) Fisher Test. To study the microbial community, an
NMDS was performed using the Bray–Curtis distance with the vegan package and the
graphs were made using the ggplot2 package.

3. Results and Discussion
3.1. PU Foam Consumption and Its Effect on Mealworms

To the best of our knowledge, there are only a few reports about the efficiency of
PU consumption by mealworms. The PU consumption by mealworm larvae was linear,
showing a lower slope (y1 = 2.995 + 1.893x) than the bran consumption (y2 = 16.424 + 8.049x)
(Figure S1 Supplementary Materials). This reflected a lower PU consumption (35%) than
the bran (100%), and a higher mealworm weight loss (86%) than the bran (97%) (Table 1).

Table 1. The mealworm larvae’s weight loss and feed consumption.

Days Mealworm Weight
Loss PU Diet (%)

Mealworm Weight
Loss Bran Diet (%)

PU Consumption
(%)

Bran Consumption
(%)

0 100 100 0 0
3 97.95 ± 0.2 102.82 ± 1.35 8.27 ± 0.5 41.13 ± 1.04
6 95.32 ± 0.63 106.4 ± 1.12 14.35 ± 0.57 63.75 ± 5.35
10 93.53 ± 0.78 105.73 ± 4.36 22.73 ± 2.44 97.33 ± 0.79
17 85.84 ± 1.61 97.18 ± 7.82 34.78 ± 2.48 99.95 ± 0.05

This could be because the bran contains enough nutrients for the T. molitor mealworms’
metabolism [15], while PU, as the only source of carbon, does not provide sufficient
nutrients to support growth. This was observed by Lou et al. [30] with polyethylene (PE)
and polystyrene (PS). It could also be due to the high energy cost of eliminating the toxic
compounds derived from the PU foam degradation [21]. Bulak et al. [22] observed 45% of
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PU consumption and 26–28% of mealworm weight loss after 58 days. If our experiment had
lasted as long as Bulak et al.’s [22], we would have found similar data although mealworm
death or metabolic exhaustion could occur [21]. Yang et al. [31] showed that mealworms
fed with polystyrene were still capable of successful pupation, which indirectly proves that
digestion and assimilation occurred after 32 days, although they had a lower fat content
than those who ingested a conventional diet.

The results showed that PU is not as palatable for mealworms as bran, although they
have been shown to decompose it [32]. However, according to Peng et al. [15], a higher
degradation of polystyrene was observed with a mix of bran or corn flour and polystyrene.

3.2. Evidence of PU Foam Biodegradation by Mealworms

Evidence of changes in the functional groups of the PU used to feed the mealworms
compared to the PU-virgin was provided by FTIR analysis at the end of the incuba-
tion period (17 days) (Figure 1). The main changes observed were in the peak inten-
sity compared to the spike appearance and disappearance (functional groups). The PU
showed less intensity in the spectrum peaks, such as 1090–1099 cm−1 (C–O–C bond),
1220–1225 cm−1 (C–N bond), 1536 (N–H bond), 1630–1736 (C=O bond), 2867–2916 (CH2),
and 3288 cm−1 (–OH bond). The only signal where the PU-virgin was higher than the PU
was at 2930–2940 cm−1, corresponding to the symmetrical and asymmetrical stretching
vibrations of the CH bonds in the CH2 groups [33]. This general pattern demonstrates
that the PU molecule was occluded, and only the external parts could be degraded by
microorganisms and extracellular enzymes [32] without distinguishing the hard segments,
such as the free aromatic bond breaking [12] or urethane ester/ether, from the soft ones,
such as the plane urethane represented by C–N of N–H [32,34].

Polymers 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 1. The Fourier Transform Infrared spectroscopy (FTIR) analysis of PU foam (PU) and original 
PU foam (PU-virgin) at the end of the experiment (17 days). 

The TGA analysis also provided evidence of modifications in the structure of the PU 
used to feed the mealworms compared to the PU-virgin after 17 days (Figure 2). The PU 
weight loss was higher (97.5%) than the PU-virgin (94%). This could be attributed to the 
lower amount of soft and hard segments found in the PU with higher thermic degradation 
resistance [7]. The weight loss occurred in three phases: the first stage was from 220 to 280 
°C, where about 30% of the weight loss occurred. This could be due to the release of vol-
atile organic compounds [35,36]. The second stage was from 300 to 400 °C, with a weight 
loss of 60%, corresponding to hard and soft urethane segment dissociation [37]. The third 
stage was above 400 °C, where a lower fraction of PU (around 10%) was degraded, corre-
sponding to the organic residue decomposition [36] (Figure 2). 

 
Figure 2. The Thermogravimetric analysis (TGA) of the PU foam (PU) and original PU foam (PU-
virgin) at the end of the experiment (17 days). 

The SEM also demonstrated the physical degradation of the PU after 10 and 17 days 
compared to the PU-virgin (Figure 3). The surface of the PU-virgin showed smooth edges 
with no apparent breaks (Figure 3A), while the PU used to feed the mealworms showed 

Figure 1. The Fourier Transform Infrared spectroscopy (FTIR) analysis of PU foam (PU) and original
PU foam (PU-virgin) at the end of the experiment (17 days).

The TGA analysis also provided evidence of modifications in the structure of the PU
used to feed the mealworms compared to the PU-virgin after 17 days (Figure 2). The PU
weight loss was higher (97.5%) than the PU-virgin (94%). This could be attributed to the
lower amount of soft and hard segments found in the PU with higher thermic degradation
resistance [7]. The weight loss occurred in three phases: the first stage was from 220 to
280 ◦C, where about 30% of the weight loss occurred. This could be due to the release
of volatile organic compounds [35,36]. The second stage was from 300 to 400 ◦C, with a
weight loss of 60%, corresponding to hard and soft urethane segment dissociation [37]. The
third stage was above 400 ◦C, where a lower fraction of PU (around 10%) was degraded,
corresponding to the organic residue decomposition [36] (Figure 2).
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Figure 2. The Thermogravimetric analysis (TGA) of the PU foam (PU) and original PU foam (PU-
virgin) at the end of the experiment (17 days).

The SEM also demonstrated the physical degradation of the PU after 10 and 17 days
compared to the PU-virgin (Figure 3). The surface of the PU-virgin showed smooth edges
with no apparent breaks (Figure 3A), while the PU used to feed the mealworms showed
wrinkled edges and pits, cracking and erosion that could be attributed to mealworm
chewing [32] (Figure 3B–D). Similar results were observed by Bulak et al. [22] and Khan
et al. [38] on PU films exposed to Aspergillus tubingensis.
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3.3. The Mealworm Gut with PU Consumption: The Enzyme Activity and Microbial
Community Effect
3.3.1. Enzyme Activity in the Mealworm Gut

The different enzymatic activity, such as lipases, esterases, proteases, and laccases
associated with the polyurethane hydrolysis [39] was measured in the gut of mealworm
larvae for both diets, the PU and the bran (Figure 4). These enzymes showed a significant
(p ≤ 0.001) interaction between the type of diet and the sampling time. Enzyme activity in
the bran diet was significantly higher than that in the PU diet throughout the experiment,
with two apparent phases (Figure 4). Phase one was from 1 to 6 days, with almost constant
values, and phase two was from 6 to 17 days, when the enzymatic activity tended to
increase. This could be due to the bran depletion from the mealworm consumption. The
mealworms thus had fewer available nutrients and a greater need for enzyme synthesis to
obtain nutrients from the scarce food available. However, for the PU diet, the behavior was
different. The values of the enzyme activity were lower and mostly constant throughout
the experiment (Figure 4). This could be explained by the scarce availability of nutrients
since the first sampling time, not permitting the synthesis of the required digestive en-
zymes to degrade the polyurethane [40]. The enzymes esterase and lipase showed higher
values (Figure 4A,B) than protease and laccase (Figure 4C,D), probably because the former
degraded any PU bond [11]. This low enzyme activity on PU could also be due to the
synthesis of the corona protein, which inhibits the absorption of nanoparticles by intestinal
cells, such as nanoplastics [41], or the synthesis of enzymes and molecules related to the
immune system [42,43].
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Figure 4. Polyurethane activity throughout the experiment for both PU and bran diets (A) lipase
activity; (B) esterase activity; (C) protease activity; (D) laccase activity. For all the enzyme activity, a
Two-Way ANOVA (Pdiet < 0.001); (Ptime < 0.001) was performed.

It has previously been demonstrated than microbiota and the secreted enzymes in the
mealworm gut could be adapted to new diets, even poor ones with low nutrient availability,
like the PU diet [44]. It has also been shown that one of the survival mechanisms of some
insects in situations of stress or nutritional deficit is to consume their lipid reserves [45]. In
addition, an increase in proteases inside insects only occurs as a last resort in extremely
stressful situations since this would lead to protein biodegradation, which is the last element
to degrade [46].
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3.3.2. The Mealworm Gut Microbial Community

The Illumina MiSeq analysis of PCR-amplified 16S rRNA fragments was used to
assess the changes in the gut microbiome community of the mealworms fed PU throughout
the experiment since the gut microbiome of insects has an important role to play in their
digestion process [47]. The mealworm gut microbiome diversity for the PU diet was
higher (average 3.23) than for the bran diet (average 2.90) (Figure 5). Similar results were
observed by Wang et al. [32] and Peng et al. [15]. The Shannon diversity for the PU diet
slightly increased throughout the experiment, probably due to changes in the proportion of
microorganisms capable of degrading PU, while for the bran diet, it slightly decreased.
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Figure 5. The Shannon diversity index of the gut microbiome of the PU and bran diets throughout
the sampling (3, 10, and 17 days).

A non-metrical multidimensional scaling (NMDs) exhibited differences in the gut
microbiome for the PU diet and the bran diet mainly after 10 and 17 days (Figure 6). The
principal phylum observed for both diets (PU and bran) were Tenericutes, Protobacteria,
and Firmicutes (Figure 7). Similar results have been found by other authors with different
types of plastics [15–17]. Tenericutes was the dominant phylum, reaching the highest
proportion for the bran diet (63%), while for the PU diet, it reached 51%. These proportions
decreased throughout the experiment. At the end of the experiment (17 days), the opposite
occurred, with Tenericutes higher for the PU diet (around 30%) than for the bran diet
(17%). Nevertheless, the relative abundance of Firmicutes increased by 18% for the PU diet
compared to 10% for the bran diet at the end of the experiment (17 days). Bacteroidetes
were lower for the PU diet [48].
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An analysis of the relative abundance at the genus level (Figure 7) indicated four
dominant genera for both diets: Spiroplasma (average 66.5%), Enterococcus (11.08%), Lacto-
coccus (9.75%), and Pediococcus (5.32%). Spiroplasma (Tenericutes) decreased throughout the
experiment for the bran diet (7%) and for the PU diet (44%). At the end of the experiment, it
was more abundant for the bran diet (69.49%) than for the PU diet (38.62%). Spiroplasma was
also observed in many studies with different types of plastics [16,20] and it is considered a
pathogen or a male-killing bacterium, but in the gut of mealworms, it is not harmful [49].
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bran diet (bran) with phylum (A) and genus (>1%) (B).

Lactococcus was the only bacteria that could be associated with the PU diet throughout
the whole experiment (Figure 8). Lactococcus and Pediococcus (Firmicutes) (associated with
the PU diet at 3–17 days) are lactic acid bacteria, which may have contributed to adjusting
and maintaining the health of the gut microbiome [50]. Lactococcus and Enterococcus (Fir-
micutes) (associated with the PU diet at 3–17 days) (Figure 8) are also common insect gut
bacteria and are known members of the T. molitor gut microbiome [20,51]. According to Lou
et al. [30], understanding the approximate locations of different bacteria (Lactococcus was
present in every part of the gut, while Enterococcus was absent in the foregut and anterior
midgut [51]) is a good way to infer possible degradation pathways in the mealworm gut
since Enterococcus is related to PU degradation [32].
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At the end of the experiment (17 days), in addition to Lactococcus, Pediococcus, and
Enterococcus, different bacteria could also be associated with the PU diet (Figure 8) such as
Paraclostridium (Firmicutes), Chryseobacterium (Bacteroidetes), Kosakonia, and Pseudomonas
(Proteobacteria). Chryseobacterium was observed in the mealworm gut with the different
PS diets [52]. Kosakonia, a member of the Enterobacteriaceae family has been observed in
PE and PS degradation [53–55]. Pseudomonas has also been associated with PS biodegra-
dation [16,56]. The digestion process in the intestine of mealworms is more complex than
it seems, and the role of whole microbiota and synergic interactions are important in PU
degradation [16].

4. Conclusions

From our study, we can conclude that the larvae of T. molitor were able to consume
around 35% of the PU. Larvae chewing increased the surface PU facilitating the mealworm
gut microbiome and extracellular enzymes on the PU bond. Lactococcus was the only
bacteria that could be associated with the PU diet throughout the whole experiment,
although other microorganisms, such as Paraclostridium (Firmicutes), Chryseobacterium
(Bacteroidetes), Kosakonia, and Pseudomonas (Proteobacteria) could also be associated with
PU degradation. The above-mentioned PU biodegradation was demonstrated through
structural and physical approaches such as FTIR, TGA, and SEM analysis.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/polym15010204/s1, Figure S1: Spearman Correlation be-
tween PU and Bran consumption and days of the experiment.

Author Contributions: J.A.P. and M.R. carried out the experiments for this study. J.M.O.; M.T. and
J.P. performed the FTIR, TAG, and SEM analyses to demonstrate the PU biodegradation evidence.
J.M.O. and A.O. also carried out the enzymatic assay and M.R. and J.C. performed the microbial
community assay. J.M.O. and M.R. wrote the manuscript with contributions from J.A.P. and J.P. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by Proyectos Estratégicos Ris3mur (Biomerger Project 2i18sae00058)
and Proyectos Estratégicos Orientados a la Transición Ecológica y a la Transición Digital (BIO4Purt
project TED2021-131894B-C21).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We are enormously grateful to Emilia Sanz-Rios for her collaboration in the
development of the article, as well as for the language corrections.

https://www.mdpi.com/article/10.3390/polym15010204/s1


Polymers 2023, 15, 204 11 of 13

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Danso, D.; Chow, J.; Streita, W.R. Plastics: Environmental and Biotechnological Perspectives on Microbial Degradation. Appl.

Environ. Microbiol. 2019, 85, 1–14. [CrossRef] [PubMed]
2. Cregut, M.; Bedas, M.; Durand, M.J.; Thouand, G. New Insights into Polyurethane Biodegradation and Realistic Prospects for the

Development of a Sustainable Waste Recycling Process. Biotechnol. Adv. 2013, 31, 1634–1647. [CrossRef] [PubMed]
3. Rowe, L.; Howard, G.T. Growth of Bacillus Subtilis on Polyurethane and the Purification and Characterization of a Polyurethanase-

Lipase Enzyme. Int. Biodeterior. Biodegrad. 2002, 50, 33–40. [CrossRef]
4. Eriksen, M.K.; Pivnenko, K.; Faraca, G.; Boldrin, A.; Astrup, T.F. Dynamic material flow analysis of PET, PE, and PP flows in

Europe: Evaluation of the potential for circular economy. Environ. Sci. Technol. 2020, 54, 16166–16175. [CrossRef] [PubMed]
5. Xie, F.; Zhang, T.; Bryant, P.; Kurusingal, V.; Colwell, J.M.; Laycock, B. Degradation and Stabilization of Polyurethane Elastomers.

Prog. Polym. Sci. 2019, 90, 211–268. [CrossRef]
6. Mahajan, N.; Gupta, P. New Insights into the Microbial Degradation of Polyurethanes. RSC Adv. 2015, 5, 41839–41854. [CrossRef]
7. Gaytán, I.; Sánchez-Reyes, A.; Burelo, M.; Vargas-Suárez, M.; Liachko, I.; Press, M.; Sullivan, S.; Cruz-Gómez, M.J.; Loza-

Tavera, H. Degradation of Recalcitrant Polyurethane and Xenobiotic Additives by a Selected Landfill Microbial Community
and Its Biodegradative Potential Revealed by Proximity Ligation-Based Metagenomic Analysis. Front. Microbiol. 2020, 10, 2986.
[CrossRef]

8. Matsumiya, Y.; Murata, N.; Tanabe, E.; Kubota, K.; Kubo, M. Isolation and Characterization of an Ether-Type Polyurethane-
Degrading Micro-Organism and Analysis of Degradation Mechanism by Alternaria Sp. J. Appl. Microbiol. 2010, 108, 1946–1953.
[CrossRef]
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