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Abstract: A two-stage model is developed to explain the phenomena of chain expansion, released
from a confining cavity. In the first stage, the chain is assumed to expand as a sphere, while in the
second stage it expands like a coil. The kinetic equations for the variation of chain size are derived in
the two stages by balancing the rate of the free energy change with the rate of the energy dissipation.
Langevin dynamics simulations are then performed to examine the theory. We find that the expansion
process is dominated by the second stage and the evolution of chain size follows, mainly, the predicted
curve for coil expansion, which depends on the chain length and is not sensitive to the confining
volume fraction. It permits to define the expansion time for the process. Further study reveals that
the chain does undergo a spherical expansion in the first stage with the characteristic time much
shorter than the one for the second stage. As a consequence, the first-stage variation of chain size can
be regarded as an add-on to the principal curve of expansion designated by the second stage. The
scaling behaviors and the associated scaling exponents are analyzed in details. The simulation results
well support the theory.

Keywords: polymer expansion; scaling theory; molecular dynamics simulations

1. Introduction

Packing and unpacking biomolecules are very important processes in cells and mi-
crobiology [1,2]. Understanding the mechanisms and dynamics of these processes help
researchers in the development of novel nanotechnologies [3,4]. For example, genetic
materials, such as DNA or RNA molecules, can be packaged into small particles for ap-
plications [5,6]. The particles are delivered to target cells by some ways. After reaching
the cells, the packaged substances can be then released for therapeutic repair. This kind of
platform mimics the function of a virus, formulating a promising delivery vector for gene
therapy [7–9].

In nature, a viral genome is protected by a protein shell, called capsid [10,11]. The
capsid possesses a predominated structure of icosahedron, such as in herpesvirus [12] and
adenovirus [13], or helix, such as in the influenza virus [14] and coronavirus [15,16]. It
can be further enveloped or wrapped in a lipid membrane to form a nanoparticle. The
entry of virus to a cell is effectuated by membrane fusion or endocytosis [10,11]. Uncoating
of the capsid is triggered later in the cell interior by low endosomal pH and promoted
by proteasome activity [17,18]. The DNA or RNA chains are then released to proceed
replication. Recent studies revealed that icosahedral viruses expel few pieces of pentamers
on the capsid to enable genome release [19,20]. Further study showed that the release
pathways can be classified into two main categories: in a rapid release pathway, the capsid
ruptures and opens a big hole to allow quick release of the genome in a microsecond order;
while in a slow release pathway, the genome escapes through a crack on an edge or at a
vertex of the capsid and milliseconds are needed to complete the process [21]. In addition to
lowering the pH, capsid uncoating and genome release can be also triggered by increasing
temperature [22,23].
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Theoretical investigation of the release process mainly focuses on the ejection of a
DNA/RNA chain from an enclosed cavity through a narrow tube [24–30]. It aims to
explain the infection mechanism of another type of virus, called phage [10,11]. A phage
consists of a polyhedral capsid head and a helical tail, and has its genome stored in the
head. It infects a host cell by injecting the genetic chain through the tail tube to the cell
interior. No deformation of the capsid head is required in the process. Recently, our group
developed a theory which divides an ejection process into two main stages: a confined stage
and a non-confined stage [31,32]. For a confined-stage dominated process, the ejection

time τej ∼ N
2

3ν +
1
3 φ
− 2

3ν
0 is predicted while for a non-confined-stage dominated one, τej

scales as N1+2ν. The theory unifies the polymer ejection with the problem of polymer
translocation [30,33,34], and is able to explain the two phenomena under one theoretical
framework. In addition, non-negligible time is spent for the heading monomer to traverse
the tube, in order for a real start of the ejection [31,32]. This new stage is independent of the
two main stages and can be regarded as a nucleation process. The whole theory has been
generalized from a three dimensional space to a two-dimensional one, and validated [35].

Theoretical study concerning the dynamics of a genetic chain release via capsid un-
coating is relatively few in literature [36,37]. To tackle the problem for the first step, we
can simply consider the process as a free release of a chain from an encapsulation. This
kind of study may look basic. However, it provides the necessary foundations for a further
development of more complicated and realistic theories, such as restricted release of chain
from a big open hole, hindered release impeded by uncoated pieces of capsid pentamers,
and so on, in the future. Pitard and Orland [38] have investigated the swelling/collapsing
behavior of a Gaussian chain being quenched into a good/bad solvent condition. The
swelling kinetics were predicted: R2(t) ' R2

0

(
1 + ( t

τc
)

3
4

)
for time t smaller than the Rouse

time and R(t) ' Req(1− exp(− t
τ1
)) in the larger t regime, where R0 and Req are the initial

and the equilibrated chain size in the bulk solution, respectively, and τc and τ1 are the char-
acteristic time. Yoshinaga [39] studied the unfolding kinetics of a collapsed semi-flexible
chain and suggested a three-step process: swelling, disentanglement, and relaxation. The
evolution of chain size was predicted to scale as (1 + t

τi
)αi with τi being the characteristic

time, and the kinetic exponent αi was found to be 1
5 , 1

8 , and 1
4 , respectively, in the three

steps. Later, in collaboration with Sakaue [28], they extended the work by assuming that
the chain keeps a spherical shape in the expansion and balanced the free energy change
with the energy dissipation via Stokes frictions around the blobs; the size variation for
a flexible chain was thus given by R(t) ' R0(1 + t

τ0
)α with α = 3ν−1

9ν . Using a similar
approach of uniform spherical expansion, Mitra and Kundagrami [40] studied swelling of
single polyelectrolyte. Accounting for charge regularization around chains, they predicted
fast swelling kinetics for polyelectrolyte at high temperature, low dielectric mismatch, and
low salt concentrations. Lee et al. [41,42] have investigated the swelling of a long-collapsed
polymer released in a good solvent condition and found that the dynamics depends on the
degree of self-entanglement inside of the globule. For an entanglement-free wet globule,
the predicted chain size swells similarly to R(t) ∼ t

1
5 and the characteristic time is about

N
3
2 . For a strongly-entangled globule, the chain stays long time in an arrested state, ex-

hibiting some specific correlations, and the time to escape the arrested state is about N2.
Tang et al. [43] have applied uniform electric fields to collapse DNA molecules and studied
their expansion by switching-off the fields. They suggested two expansion pathways:
for unentangled DNA, the chains expand continuously as R2

eq − R2(t) ∼ exp(− t
τ ), while

for self-entangled DNA, the chains expand in distinguishable steps and the chain grows
similarly to Ra − R(t) ∼ exp(− t

τa
) in an arrested state. Collapse of single polymers and its

counterpart action, expansion, have also been investigated by changing the solvent quality
via quenching and sudden rising of temperature in experiments [44–47]. Researchers have
found that expansion of an aged globule takes much longer time than a non-aged globule,
owing to the formation of tight knots in the aged one [46,47]. A stretched exponential
growth R2(t) = R2

eq − (R2
eq − R2

0) exp[−( t
τ )

β] has been used to analyze the experimental
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data [45,46]. Because knots have great influences on the behaviors of chain [48–51], many
efforts have been devoted to the study of the formation of knots [52,53] and the dynamics
and interaction of knots on a chain in free solutions [54–56], in flows [57,58], and in confined
spaces [59–64].

Comparing to the ejection, an expansion phenomenon shall be much faster and stochas-
tic because a collapsed chain swells in all directions, not just along the particular (tube)
direction like in ejection. It renders the expansion process less predictable. Only through a
large number of sampling of the data, expansion behaviors can be investigated in a reliable
way by ensemble analysis. Moreover, experiments of single chain swelling are quite diffi-
cult and elaborated, requiring many efforts and techniques for controlling and observation.
Computer simulations, on the other hand, provide an alternative approach to investigate
chain expansion in a simple and repeatable way under well-controlled conditions. In this
work, we aim to understand the kinetic details of single chain expansion released from a
confining cavity. A two-stage theory is developed in Section 2, which assumes a spherical
expansion first, followed by a coil-like expansion in the second stage. We then perform
extensive Langevin dynamics simulations to verify our theory by varying the chain length
and the confining volume fraction. The model, setting, and procedure of simulation are
described in Section 3. For each studied case, 1000 independent runs are performed to
ensure sufficient acquisition of data for accurate analysis. The results are presented in
Section 4. We first study the mean evolution of chain size during an expansion process in
Section 4.1. The scaling behaviors of chain size in the second stage (the dominant stage) is
then analyzed in Section 4.2. Section 4.3 studies the change of chain conformation from a
sphere-like state to a coil state. The first-stage expansion is then analyzed in Section 4.4.
The speed of expansion is calculated in Section 4.5 and compared with the theory. Finally,
we give our conclusions in Section 5. The variations of chain size are scaled by using the
two characteristic times for the two stages. A picture of chain expansion is proposed and
the scaling behaviors are discussed.

2. Theory of Polymer Expansion Released from a Confining Cavity

We study the kinetics of a polymer freely released from a confining spherical cavity.
The chain is modeled by a bead-spring chain with both the bead diameter and the bond
length equal to σ. We assume that the number of monomers on the chain is N and the
cavity diameter is D. The volume fraction of the chain in the confining cavity is, thus,
φ0 = Nσ3/D3. To study free expansion, the confining wall is suddenly removed at
the starting point and no external impedance intervenes to affect the dynamics of chain
relaxation. This model can serve as a primary model to understand genome release of DNA
or RNA chain from a ruptured virus capsid [19–21,65].

When a releasing process begins, the compressed chain expands very quickly. The
expanding conformation of chain is assumed to be spherical as proposed by Sakaue and
Yoshinaga [28]. With advance of the time, the chain has to transform its conformation
to a coil in order to attain its final structure in a bulk solution. We, therefore, develop a
two-stage theory to describe the process. In the first stage, the relaxation undergoes with a
spherical expansion. The kinetic equation can be derived by balancing the rate of the free
energy change of the system with the rate of the energy dissipation occurred during the
process, and reads as

dF
dt

= −ηN
(

dR
dt

)2
(1)

where F is the free energy, η is the friction coefficient, and R is the size of the chain. We
have assumed the Rouse dynamics because the fluid can flow through the chain. The free
energy for such a spherical polymer of size R can be estimated from the blob theory [66–68]
and reads as

F ∼ kBTN
3νb

3νb−1

(
R
σ

)− 3
3νb−1

(2)
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where νb is an exponent, describing the scaling relation ξb ∼ σgνb
b in a blob which has size

ξb and contains gb monomers. Plugging the free energy expression into Equation (1), we
are able to solve the differential equation, and the evolution of chain size is predicted:

R(t) = R0

(
1 +

t
τs

)α

, (3)

where R0 is the initial chain size, α = 3νb−1
6νb+1 is the exponent, and τs = as

(
ησ2

kBT

)(
R0
σ

) 1
α N

−1
3νb−1

is the characteristic time with as being a prefactor. Because the chain is initially confined
in a small cavity, the chain segments in blobs should be in a melt state in the beginning.
Therefore, νb ' 0.5 is expected [67].

In the second stage, the chain continues to expand but the conformation turns to be
coil-like. The Flory free energy should be used now and reads as [66,67]

F ∼ kBT
[

R2

Nσ2 +
vexN2

R3

]
(4)

where vex is the excluded volume of a monomer. Using the free energy, the kinetic equation
is deduced from Equation (1). It is a non-linear, Bernoulli-type, ordinary differential
equation [69]. The variation of chain size can be solved exactly and the result is

R(t) = RF

(
1− bc exp

(
− t

τc

)) 1
5
. (5)

Here, RF is the size of a relaxed chain in the bulk solution and τc = ac

(
ησ2

kBT

)
N2

describes the characteristic time for the chain expansion in the second stage with ac being a
prefactor. The parameter bc should be 1 according to the scaling analysis shown later from
our simulations.

3. Model and Setup

We perform molecular simulations to verify our theory. The chain is modeled by a
bead-spring chain: each bead represents a monomer and there are N beads on the chain.
The excluded volume interaction of the monomers is described by the Weeks–Chandler–
Anderson (WCA) potential [70],

Uex(r) =

{
4ε
[(

σ
r
)12 −

(
σ
r
)6

+ 1
4

]
for r ≤ 6

√
2σ

0 for r > 6
√

2σ
(6)

where r is the distance between two monomers, and σ and ε are the length parameter and
the interaction strength, respectively. It is a purely repulsive potential and can be used
to simulate polymers in good solvent. A quadratic potential is used to model bonding
between monomers, given by

Ubd(b) =
1
2

k(b− b0)
2 (7)

where b and b0 are the actual and the equilibrium bond lengths, respectively, and k is the
spring constant. The mass of a monomer is m and the thermal energy is kBT. The two
quantities, together with σ, are chosen to be the mass, the energy, and the length units of
the simulation, respectively. We set ε = 1.2 kBT, b0 = 1.0 σ, and k = 6000 kBT

σ2 .
The usage of the bead-spring chain model allows us to investigate properly how

the expansion behaviors are derived from a simple connected chain structure. The WCA
potential is chosen so that the beads have an effective hard-sphere diameter of about σ
against the thermal energy. The spring constant is chosen, corresponding to the order of
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a stretching force constant of chemical bond. We have verified that k is strong enough
to maintain the bond length around b0 with the fluctuation of bond smaller than 1%.
Therefore, crossing between chain segments is not possible in the simulations. Langevin
thermostat is used to control temperature at T and simulate thermal fluctuations. The
friction coefficient η is set to be 20.0

√
mkBT

σ , which imitates an aqueous environment. The
equations of motion are solved numerically by using LAMMPS [71] with the integration
time step ∆t = 0.005 σ

√
m

kBT .

The chain is initially confined in a spherical cavity. The beads and the cavity wall
interact via a reflection interaction by setting the bead radius to 0.5 σ. At a given volume

fraction of confinement φ0, the cavity has the diameter equal to D = σ
(

N
φ0

)1/3
. The

simulation comprises three phases. The first phase is the loading phase in which the chain
is loaded into the cavity by a pumping force set on a small pore opened on the wall. The
second is the equilibrating phase where the confined chain is equilibrated in the cavity by
running 108 time steps. The third one is the releasing phase: we switch off the reflection
interaction between the beads and the wall, and the chain is released and expands in the
solution. Several physical quantities are calculated and monitored during the process to
study the expanding kinetics. Snapshots of simulation in the three phases are presented in
Figure 1 for the case N = 256 and φ0 = 0.4.

(a) (b) (c)

Figure 1. Three phases of simulation: (a) the loading phase, in which a chain is loaded into the cavity
via a small open pore, (b) the equilibrating phase, in which the chain is equilibrated inside the cavity,
and (c) the releasing phase where the chain is released by switching off the reflection interaction of
the cavity wall. The yellow beads represent the monomers of chain. The white sphere represents the
cavity. The chain length N is 256 and φ0 is 0.4.

We vary systematically the confining volume fraction from φ0 = 0.4 down to 0.05. The
chain length is varied from N = 32 to 512. For each studied case (N, φ0), 1000 independent
runs are performed. The data are recorded for statistical analysis.

In the following text, the simulation units, m, kBT, σ, will not be shown in the reporting
results in order to reduce the notation. For example, a reported time t = 2.5 means that t
is equal to 2.5 tu where tu = σ( m

kBT )
1/2 is the simulation time unit. To map the simulation

data to a real system such as single-strand DNA or RNA chains, we can choose σ to be
3.4 Å, m = 320 g/mol, and kBT = 300kB = 4.14× 10−21 J. The simulation time unit tu is
thus equal to 3.86 ps.

4. Results
4.1. Chain Size versus Time during an Expansion

In this work, we study the variation of chain size by calculating the radius of gyration
of chain during an expansion, given by the formula

Rg(t) =

[
1
N

N

∑
i=1

(ri(t)− rcm(t))2

]1/2

(8)
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where ri(t) is the position of a monomer i at time t and rcm(t) is the center of mass of the
chain. Figure 2 presents the calculated Rg(t) curves in five single runs for a system of the
chain length N = 512, released from a confining volume fraction φ0 = 0.4. The release
starts with an initial chain size equal to 4.05(3) at t = 0, and the size increases with time in
a zigzagged way toward a final value ranged between 15 and 28. The large zigzag shows
that the passage of chain expansion suffers from strong thermal fluctuations. In order to
get rid of the fluctuations, 1000 independent runs are performed and the averaged chain
size at time t is computed by the following way:

R(t) =
〈

R2
g(t)

〉1/2
. (9)

The result has been plotted in the figure, in black-colored line for comparison. The
averaged curve exhibits smooth growing behavior, allowed for further analysis. It shows
that a large number of sampling is necessary for the study of the kinetic behavior of
polymer expansion.

N=512

φ0=0.4

R
g
(t

),
  
 R

(t
)

t

Run 1

Run 2

Run 3

Run 4

Run 5

average over 1000 runs

 0

 5

 10

 15

 20

 25

 30

0×10
0

2×10
5

4×10
5

6×10
5

8×10
5

1×10
6

Figure 2. Variations of chain size Rg(t) in five single runs for the case (N, φ0) = (512, 0.4), denoted
by Run 1 to Run 5 in the legend. The averaged variation R(t) over 1000 independent runs is plotted
in black color for comparison.

In order to have a thorough picture of the expansion behaviors, we performed simula-
tions for the systems with N = 2gN released from the φ0 = 0.4× 2−gF condition, by varying
gN from 5 to 9 and gF from 0 to 3. The averaged variations of chain size for the various
conditions are presented in Figure 3, plotted in a linear time scale to have a global view.

N=512

N=256

N=128

N=64

N=32

R

t

φ
0
=0.4

φ
0
=0.2

φ
0
=0.1

φ
0
=0.05

 0

 5

 10

 15

 20

 25

0×10
0

2×10
5

4×10
5

6×10
5

8×10
5

1×10
6

Figure 3. Averaged variation of chain size R(t), for chain length N = 32, 64, 128, 256, and 512 released
from φ0 = 0.4, 0.2, 0.1, and 0.05. The chain length is indicated near the corresponding group of the
curves, while the volume fraction is given in the legend.
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We, astonishingly, found that the R(t) curves are separated into groups, depending on
the chain length. The dependence on the initial volume fraction φ0 is weak in each group,
barely seen in the figure. We see also that the expansion duration spans several orders in
time for different chain lengths.

To see clearly the spanning behaviors and the dependence on φ0, we replot the ex-
pansion curves in Figure 4a by using log scale. The φ0-dependence in each group curves
appears only in the beginning of expansion (i.e., in the small t regime). By tracing in the
reverse time direction, a group curve separates into individual ones, each tends toward the
initial chain size given by the confining condition φ0.

N=512

N=256

N=128

N=64
N=32

(a)

R

φ0=0.05

φ0=0.1

φ0=0.2

φ0=0.4

 0

 5

 10

 15

 20

 25

N=512N=256N=128N=64N=32
(b)

R~

t

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

10
1

10
2

10
3

10
4

10
5

10
6

Figure 4. (a) R(t) vs. t plotted by using logarithmic scale for the time axis. (b) Normalized chain size
R̃ ≡ R/RF vs. t in the semi-log plot. The chain length N is indicated near the group curves. The
legend for φ0 can be read in Panel (a) of the figure.

We have studied the initial chain size R0 at t = 0 and the final size RF when the R(t)
curve reaches a steady value. The results are given in Figure 5.

N
0.35(1)

N
0.38(2)

(a)

R
0

N

φ0=0.05

φ0=0.1

φ0=0.2

φ0=0.4

10
0

10
1

10
1

10
2

10
3

N
0.60(2)

(b)

R
F

N
10

1
10

2
10

3
10

0

10
1

Figure 5. (a) The initial chain size R0 vs. N and (b) the final chain size RF vs. N in the log–log plot.
The value of φ0 is given in the legend of Panel (a).

We can see that R0 scales like N0.35(1) at φ0 = 0.4, very close to the expected N
1
3

behavior, because the initial chain size should be proportional to the cavity diameter D
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through the relation D = σ
(

N
φ0

) 1
3 . However, as φ0 decreases, we observed that the scaling

exponent increases slightly, becoming 0.38(2) for the case at φ0 = 0.05. The deviation
comes from the fact that the distribution of the monomers in the cavity is not perfectly
uniform, and, thus, R0 is not truly proportional to D. The non-uniform effect augments as
φ0 decreases because in a larger cavity, the confined chain has an increased chance to be
not a good sphere. We will show it later. Concerning the relaxed chain size, we obtained
the well-known scaling behavior RF ∼ N0.60(2) in Panel (b), which is independent of φ0.

We then compare the expansion behavior over different chain lengths. The chain size
R(t) is normalized by the final size RF, as having been plotted in Figure 4b. Now we see
clearly how the separated curves vary from their initial values and converge towards the
final grouped one. The group curves for different N appear in a regular way on the plot,
suggesting the existence of some kind of scaling law in the time space.

4.2. Scaling Behavior of Chain Size in the Second Stage

To study the scaling behavior for the variation of chain size, time t is scaled by a
multiplication factor θ9−gN . We found that by using an appropriate θ, the normalized R̃
curves for different N and φ0 can be shifted and collapsed onto a target one in the large
time regime (i.e., in the second stage of expansion). Recall that the chain length N is chosen
as a power of 2 with the exponent denoted by gN in this study. The number 9 appeared in
the exponent of the factor states that N = 29 = 512 is the target curve. Figure 6 presents
the calculations by using three θ values: 4.51, 5.11, and 5.71.

(a) θ=4.51

R~

φ0=0.05
φ0=0.1
φ0=0.2
φ0=0.4

 0
 0.2
 0.4
 0.6
 0.8

 1

(b) θ=5.11

R~

 0
 0.2
 0.4
 0.6
 0.8

 1

(c) θ=5.71

R~

t × θ
9−g

N

 0
 0.2
 0.4
 0.6
 0.8

 1

10
1

10
2

10
3

10
4

10
5

10
6

Figure 6. Normalized chain size R̃ vs. the scaled time t× θ9−gN plotted for different chain length
N = 2gN and φ0 = 0.4× 2−gF by using (a) θ = 4.51, (b) θ = 5.11, and (c) θ = 5.71. The confining
volume fraction φ0 is given in the legend. The dashed line is the master curve for the second stage, fit
from the data in (b) in the region with t× θ9−gN > 3× 105.

We observed that with θ = 4.51, the shift for the curves on the time axis is somewhat
insufficient for the small N systems, while the shift is a little bit too much if θ is taken
the value 5.71. The ensemble of the scaled curves in the both cases exhibits a broader
distribution, particularly seen on the “neck region” of the curves near the scaled time
3 × 105. The best collapse occurs at θ = 5.11, which produces the finest neck for the
ensemble of the curves. The details how we obtained the optimized scaling factor θ with a
precision to the second decimal are explained in Section S1 of Supplementary Materials.

Because the initial size R0 scales about as N
1
3 and the final size RF as N0.6, the normal-

ized R̃ should attain the value zero at t = 0 as N tends to infinity. As a consequence, the
parameter bc in Equation (5) should be 1, which defines a master curve for the expansion
of a chain in the second stage. The master curve can be obtained by fitting the data in the
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region t× θ9−gN > 3× 105 in (Figure 6b), and has been plotted in the figure in dashed line
for reference.

Concerning the characteristic time τc, we verify first that the variation of chain size in
the second stage can be described by the equation

R̃(t) =
(

1− exp
(
− t

τc

))β

(10)

with β = 1
5 . The quantity F(t, β) = −t/ ln

(
1− R̃

1
β (t)

)
was calculated from the simulation

data for N = 512 by using three β values, 1
4 , 1

5 and 1
6 , and the results are presented in

Figure 7. A good choice of β shall produce a constant quantity against time and the constant
value is τc.

β=1/6

β=1/5

β=1/4

N=512

F
(t

,β
)

t

φ0=0.4

φ0=0.2

φ0=0.1

φ0=0.05

0×10
0

1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

6×10
5

7×10
5

0×10
0

2×10
5

4×10
5

6×10
5

8×10
5

1×10
6

Figure 7. Quantity F(t, β) = −t/ ln
(

1− R̃
1
β (t)

)
calculated from the simulation data for N = 512,

plotted against t at β = 1
4 , 1

5 and 1
6 . The value of φ0 is given in the legend. The theoretical curves for

F(t, β) are plotted in yellow color by assuming R̃(t) =
(

1− exp
(
− t

4.03×105

))1/5
.

One can see that β = 1
5 gives the best, leveled-off curves at a value around 4.03× 105

in the time regime t > 105 for the four φ0 cases, while the curves increase with time by
choosing β = 1

4 and decrease by using β = 1
6 . Moreover, using the obtained τc value,

we are able to calculate theoretical F(t, β) by assuming R̃(t) =
(

1− exp
(
− t

τc

))1/5
. The

theoretical curves for the three studied β values have been plotted in the figure in yellow
line. We can see that the variation trends of the simulation data with respect to the different
β can be well captured by the yellow curves. The results suggest strongly β = 1

5 . Large
fluctuations exhibit later when t is larger than 5× 105. It is because R̃ approaches 1 and,
thus, the denominator of F(t, β) becomes divergent. Consequently, the uncertainty of R̃
leads to the big fluctuations.

We have calculated another quantity G(t, τc) = ln
(

1− exp
(
− t

τc

))
/ ln R̃(t) for N = 512

by assuming τc = 4.03× 105. This quantity is expected to attain the value β−1, allowing a
direct verification of the exponent. The results are presented in Supplementary Materials,
Figure S3. We observed that G(t, τc) evolves to a constant value around 5, distinguishable
from 4 and 6. It supports again that β is 1

5 .
Once knowing the β value, we can now determine τc via a single-parameter fit of

Equation (10) in the large time regime. The obtained τc values for different releasing
conditions are given in Figure 8, plotted against N in Panel (a) and against φ0 in Panel (b).
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Figure 8. (a) τc vs. N for a given φ0. The value of φ0 can be read in the legend. (b) τc vs. φ0 at a fixed
N. The chain length N is indicated near the corresponding curve.

We found that τc scales as Nxc with xc = 2.36(5) and is independent to the varying of
φ0. The obtained exponent xc corresponds to a θ-value equal to 22.36 ' 5.13, which agrees
with the optimal θ used in collapsing the variational curves in Figure 6.

Figure 9 presents the results of fitting for τc at φ0 = 0.4. Because the relaxation time
has several orders of difference for different chain lengths, we use the scaled time t̃ = t/τc
to make the plot in order to see clearly the fitting curves.
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Figure 9. Fitting chain expansion in the second stage for φ0 = 0.4. The scaled time t̃ = t/τc is used to
make the plot. Panel (a) is plotted in linear scale of t̃ while Panel (b) is plotted in logarithmic scale.
The chain length can be read in the legend.

Panel (a) is the plot in linear scale while Panel (b) is a replot by using the logarithmic
scale. The fitting was performed in the large time regime t̃ > 0.3. A direct comparison
of the two panels shows that while looking good globally in Panel (a), the fitting curves
deviate from the simulation ones in the small time region, only seen on the log scale in
Panel (b).

We notice that the scaling relation τc ∼ N2.36(5) has the exponent xc larger than the
predicted one, 2, derived in Section 2. We will discuss about it in Section 5.
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4.3. Change of Chain Conformation during an Expansion Process

The time parameter τc obtained in the previous subsection can serve as a measure to
study the progress of an expansion process, owing to the existence of the asymptotic master
curve. For example, the total expansion time τ can be defined to be the triple of τc, the time
required for an expanding chain to attain 98% of its final size RF according to Equation (5).
Therefore, t̃ = t/τc is a dimensionless time which describes the progress of expansion.

Here, we study the change of chain conformation using t̃. The 9 elements of the
gyration tensor [G] of chain were calculated via the formula

Gab =
1
N

N

∑
i=1

(ri,a − rcm,a)(ri,b − rcm,b) (11)

where a and b denote ones of the x, y, or z components. The eigenvalues λ1, λ2, and λ3 of
[G] were then computed during the process and arranged to be λ1 ≥ λ2 ≥ λ3. How the
eigenvalues vary with the scaled time t̃ is presented in Figure 10 for N = 512.

We can see that λ1, λ2, λ3 are identical at the beginning when φ0 is large, such as
φ0 = 0.4 and 0.2. The value trifurcates with passing of the time, and λ1 becomes much
larger than the other two eigenvalues. On the contrary, if φ0 is small, the three eigenvalues
have shown differences since the beginning, even though the confining cavity is spherical.
For example, we have λ1 = 21.1(3), λ2 = 17.6(2), λ3 = 14.4(2) for the case φ0 = 0.05
at t̃ = 0. The distribution of monomers is hence not uniform in the cavity under such a
loose confining condition and possesses a structure with unequal mean square distance
to the cavity center in the three principal directions. It explains the observed scaling
behavior R0 ∼ N

1
3+δ in Figure 5a with a deviated exponent δ. The final eigenvalues are

332.9(9.3), 68.6(7.9), and 22.8(3.5) as time tends to infinity. We have verified that the
equality R2 ≡

〈
R2

g

〉
= λ1 + λ2 + λ3, is valid at any time moment.
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Figure 10. Eigenvalues λ1, λ2, λ3 of [G] as a function of t̃ for N = 512, released from (a) φ0 = 0.4,

(b) φ0 = 0.2, (c) φ0 = 0.1, and (d) φ0 = 0.05. The
〈

R2
g

〉
curve is plotted in each panel for comparison.

The color representations of the curves are given in Panel (a).

The three eigenvalues were then used to compute the two shape factors, called as-
phericity A and prolateness P [72], defined by

A =
3(λ2

1 + λ2
2 + λ2

3)

2(λ1 + λ2 + λ3)2 −
1
2

(12)

P =
27(λ1 − λ̄)(λ2 − λ̄)(λ3 − λ̄)

2λ3
1

(13)
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where λ̄ is the mean value of the three eigenvalues. The asphericity A quantifies the
degree of the chain shape deviating from a sphere. The value lies between 0 and 1: zero
for a perfect sphere and 1 for a rod structure. The prolateness P is used to distinguish
a prolate conformation (P > 0) from an oblate one (P < 0). The prolate conformation
is an elongated configuration occurred when λ1 � λ2 & λ3, whereas the oblate one is
a flattened structure with λ1 & λ2 � λ3. Here, we have modified the definition for the
prolateness, so that the value of P lies between −1 and 1. The conventional definition
is Pc = (λ1 − λ̄)(λ2 − λ̄)(λ3 − λ̄)/λ̄3, which produces a value between −0.25 and 2, not
equal in the ranges for an oblate and a prolate structure [72,73].

Figure 11 presents the averaged 〈A〉 and 〈P〉 for the chain N = 512 expanding from
the four studied φ0 situations.

The curves increase very rapidly so that the logarithmic scale is used to see the varia-
tions. Panel (a) shows that the chain deviates from a sphere-like structure in a very short
time period, at about t̃ = 0.005, after the releasing. The 〈P〉 curves (in Panel (b)) departs
from zero and increase also quickly with time. The result follows our anticipation that the
expanding chain should become prolate eventually and displays a coil-like structure. We
have studied the data in the region t̃ > 3 and calculated the averaged values. The obtained
result is 0.438(7) for 〈A〉 and 0.497(12) for 〈P〉. We have also calculated the conventional
prolateness 〈Pc〉 and the final value is 0.551(13). These values are consistent with the ones,
〈A〉 = 0.431 and 〈Pc〉 = 0.541, for coil chains reported in literature [73,74].

A notable finding in our study states that the change of chain conformation in an
expansion process is not sensitive to the confining volume fraction and follows basically a
master curve of evolution against the scaled time t̃.

N=512
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(b)

〈P
〉

 t~ 
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Figure 11. (a) Asphericity 〈A〉 and (b) prolateness 〈P〉, plotted against the scaled time t̃. The chain
has N = 512, expanding from four different initial volume fraction φ0. The value of φ0 can be read in
the legend of Panel (a).

4.4. Scaling Behavior in the First Stage

We have shown that an expanding chain changes its conformation very quickly and
maintains the initial sphere-like structure only for a short time, measured by the time scale
τc. To understand further the behavior in the very beginning, we calculate now the scaled
chain size R′, defined to be R divided by the initial chain size R0. The results, R′ vs. t, are
plotted in Figure 12 in linear scale, categorized by the four studied φ0 in Panel (a1), (b1),
(c1), and (d1), respectively.
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Figure 12. Scaled chain size R′ = R/R0 vs. scaled time tω = t×ω9−gN for the four studied φ0 cases.
The chain length N can be read from the legends in (a2–d2). Panels (a1–d1) are plotted by setting
ω = 1. Under the setting, tω is just t and, thus, the plots present the evolution of R′ against the
ordinary time t. Panels (a2–d2) show the collapse of the time-scaled curves by using the appropriate
ω value, 1.55, 1.64, 1.73, and 1.81, respectively.

We can see that the R′ curves for different N depart from the value 1 and increase in a
similar way in each panel. We found that by multiplying a suitable scaling factor ω9−gN

to the time t, similar to the analysis performed in Figure 6, the curves can be stretched
and collapsed onto the one for N = 512. The results are given in Panel (a2), (b2), (c2), and
(d2). The optimal ω value for the best collapse is 1.55, 1.64, 1.73, and 1.81, respectively, for
φ0 = 0.4, 0.2, 0.1, and 0.05. Readers can refer to Supplementary Materials, Section S3, for
the explanation how we obtained the values.

The collapse of the curves reveals an important scaling property under the fixed-φ0
condition: the chain does expand like a sphere for a while; however, the duration is quite
short in a time span measured by some characteristic time, which should be τs. We therefore
fit the very-beginning behavior of R by using Equation (3) by considering τs and α as two
fitting parameters. The fitting was performed iteratively by using Levenberg–Marquardt
algorithm in the time range [0, 10τs], until the convergence of τs. A demonstration of the
fitting results is given in Figure 13a for the case φ0 = 0.4, plotted with the scaled time
t′ = t/τs.

We see that the simulation data can be well described by the fitting curves, showing
the validity of using Equation (3) to approximate the size expansion in the first stage.
Figure 13b shows how the fitting curves look like in the whole expansion process, plotted
by using the other scaled time t̃ = t/τc in logarithmic scale. It is clear that Equation (3)
cannot describe the chain size in the second stage.
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Figure 13. Fitting of the chain size in the first stage of expansion by using the two-parameter fit of
Equation (3). The φ0 is 0.4 and the chain length N is indicated in the legend. The fitting curves are
plotted in gray dashed lines. Panel (a) is plotted by using the scaled time t′ = t/τs in linear scale, for
the purpose to check the validity of the fitting. Panel (b) is plotted by using t̃ = t/τc in logarithmic
scale, to have a global view of the fitting curves in the expansion process.

The obtained parameters τs and α are plotted against N in Figure 14 for scaling analysis.
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Figure 14. (a) τs vs. N and (b) α vs. N for different φ0. The value of φ0 can be read in the legend of
Panel (b).

We found that τs follows a power law Nxs with the exponent xs equal to 0.61(5),
0.71(4), 0.77(4), and 0.84(4), respectively, for the four φ0 cases in Panel (a). Because τs is the
scaling time for the chain variation in the first stage, the exponent xs should relate to the
scaling factor ω used for the collapse of the R′ curves in Figure 12 by the way: xs = log2 ω.
The four obtained ω values give the corresponding xs equal to 0.63, 0.71, 0.79, and 0.86,
respectively, which are in good agreement with the results of the scaling analysis.

Figure 14b shows that the exponent α is roughly constant at a given φ0 with re-
spect to varying of the chain length. To check the consistency, we calculated the quantity
H(t, τs) = log(R′)/ log(1 + t

τs ) by using the τs value obtained in Figure 14a. The quantity
is expected to attain the value α in the first stage.

We can see in Figure 15 that H(t, τs) is basically constant in the fitting region except in
the very beginning t′ . 1, where H(t, τs) departs from zero at t′ = 0, exhibits a peak, and
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then evolves to become a plateau. The plateau for the four studied cases has a value of
about 0.980, 0.108, 0.126, and 0.133, respectively, corresponding well to the α value obtained
by fitting. The deviation of H from a plateau near t′ = 0 indicates that the size variation
does not truly follow Equation (3) at the starting point of expansion. It is understandable
because Equation (3) was derived under a quasi-equilibrium assumption. Therefore, it
describes only the steady-state behavior, unable to depict the transient one just after the
releasing of the chain from a cavity. We will discuss more about it later.
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Figure 15. Quantity H(t, τs) = log(R′)/ log(1 + t
τs
) calculated by using the simulation data R′ and

the fitting parameter τs, plotted against t′ for the case (a) φ0 = 0.4, (b) φ0 = 0.2, (c) φ0 = 0.1, and
(d) φ0 = 0.05. The chain length can be read in the legend of Panel (a).

According to our scaling theory, the exponent α is predicated 3νb−1
6νb+1 , or inversely, the

scaling exponent νb can be calculated from α via the equation νb = 1+α
3−6α . It allows us to

obtain an estimate for the value of νb, which is 0.455, 0.471, 0.502, and 0.515, respectively,
computed from the four plateau values. Since these νb’s are all close to 0.5, the ingredients
of the blobs constituted in the calculation of the free energy in Equation (2) should be in a

melt state. Concerning the characteristic time, the scaling theory predicts τs ∼ R
1
α
0 N

−1
3νb−1 .

For a general scaling R0 ∼ N
1
3+δ for the initial chain size in a confined cavity, the theory

yields τs ∼ N
2
3+

δ
α . The simulations have given the resulting exponent xs from 0.61(5)

to 0.84(4) in Figure 14a, which falls roughly in the same range xs & 2
3 , compared to the

prediction. We are not able to make a conclusive comparison further because it requires a
very accurate measurement for both of the exponents δ and α. In particular, the α exponent
is relatively small and appears in the denominator, which can easily amplify the error of δ
in calculating the predicted xs. Additionally, the scaling exponents should be obtained in
the limit of infinite chain length. Whether the studied chains have been long enough to
approach the limit or be able to reduce the finite-size effect to a considerably small level
requires much investment of research, which is beyond the reach of the current study.
Nonetheless, the simulations presented here show supporting evidences to the scaling
behaviors predicted by the theory.

4.5. Speed of Expansion

The rate of change of the chain size describes how fast a chain expands during a
process. In this subsection, we study of the mean expansion speed VR =

〈
dRg
dt

〉
, obtained

by calculating first the numerical differential of single trajectories of the radius of gyration
Rg via a three-point formula [75] and then averaging them over the 1000 independent runs.
Figure 16 presents the results of calculation for the case φ0 = 0.4.
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Figure 16. Expansion velocity VR as a function of time t for φ0 = 0.4. The chain length N can be read
in the legend.

Since the chain is initially enclosed in a cavity, VR is zero at t = 0. When the expansion
starts, the velocity surges, quickly reaches a maximum, and then decreases. The curve
begins to show thermal fluctuations when the velocity becomes small to a certain extent.
The shorter the chain length, the larger the fluctuations.

Theoretical prediction for the expansion speed can be obtained by taking the time
derivative of Equations (3) and (5). The predicted velocities are

dR
dt

=
αR0

τs

(
1 +

t
τs

)α−1
(14)

dR
dt

=
βRF

τc

(
1− exp

(
− t

τc

))β−1
exp

(
− t

τc

)
(15)

for the two stages. A noticed problem comes from the 1st-stage equation which predicts a
non-zero initial expansion velocity of VR = αR0

τs
. This contradicts the fact and is a drawback

of the prediction. As mentioned in the previous subsection, the theory is designed to
describe the quasi-equilibrium behavior because of the assumption of instant balance
between the free energy change and the energy dissipation in the derivation. It cannot
depict transient behavior such as how an expanding chain gains its velocity from a starting
static state.

Figure 17 compares the simulation results with the two velocity equations by taking
N = 512 with φ0 = 0.4.

We can see that the predicted first-stage velocity curve (the red one) deviates from the
peaked simulation curve (the black one), exhibiting a plateau in the very beginning of the
expansion in the logarithmic plot, Panel (a). It evolves to merge with the simulation curve
at t′ ' 1. The non-consistency has a duration of about 1τs, which has been seen in Figure 15.
The second-stage velocity curve joins the simulation one when t̃ > 10−3. The scaled time
t̃ = t/τc has been indicated on the top of the plot to describe the process. Panel (b) presents
the variations in linear scale. The velocity surges abruptly and sharply at t′ = 0. One can
hardly see the difference between the simulation and the predicted first-stage curves.
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Figure 17. Expansion velocity VR vs. scaled time t′ = t/τs for N = 512 with φ0 = 0.4, plotted in
(a) logarithmic scale and (b) linear scale. The simulation curve is drawn in black color, the velocity
calculated from Equation (14) in red color, and the velocity calculated from Equation (15) in blue
color. The process described by the scaled time t̃ = t/τc can be read on the top of the plots.

How the maximum velocity VR,max varies with N and φ0 is presented in Figure 18.
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Figure 18. Maximum expansion velocity VR,max as a function of N at a fixed φ0 (Panel (a)) and as a
function of φ0 for a given N (Panel (b)). The value of the fixed φ0 in (a) and the given N in (b) can be
read in the legend of the panels.

We can see that VR,max exhibits a power-law decrease with N under the fixed φ0
condition, as shown in Panel (a). If it is the chain length being fixed, the higher the confining
volume fraction, the larger the maximum velocity (refer to Panel (b)). The behavior follows
our intuition.

5. Conclusions and Discussions

We have developed a two-stage model to describe the expansion process of a chain
releasing from a spherical cavity. The kinetic equation of chain size was derived by
balancing the rate of the free energy change with the rate of the energy dissipation of
the chain during the process. In the first stage, the chain undergoes a fast expansion. We
assumed that the chain expands with a spherical conformation and predicted the variation
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of chain size to be R(t) = R0

(
1 + t

τs

)α
with α = 3νb−1

6νb+1 and τs ∼ R1/α
0 N

−1
3νb−1 . In the second

stage, the speed of expansion slows down greatly and the chain is relaxed by maintaining a
coil-like structure. It is called the coil expansion and the size variation was predicted to

follow R(t) = RF

(
1− exp

(
− t

τc

))β
where β = 1

5 and τc ∼ N2.
Extensive Langevin dynamics simulations were then performed to verify the theory by

varying systematically the chain length N and the confining volume fraction φ0. We have
shown that the expansion behavior of chain can be well described by the two-stage model.
The resulting τs scales as Nxs , and the exponent xs and the exponent α both depend on the φ0,
as having been shown in Figure 14. The characteristic time τc for the second stage scales such
as Nxc with xc equal to 2.36(5), and the exponent β is about 1/5 (refer to Figures 7 and 8).

To make the scaling behaviors more evident, we present here, in Figure 19, the log–log
plot of the evolution of chain size for different chain lengths by using the two scaled times,
t′ = t/τs and t̃ = t/τc, for the case φ0 = 0.4.
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Figure 19. Evolution of the chain size for the case φ0 = 0.4 plotted by using (a) the t′ = t/τs time
scale and (b) the t̃ = t/τc time scale. The chain length can be read in the legend of Panel (a). The lines
demarcating the regimes for the sphere-like state and the final coil state are plotted in dash-dotted
and dashed lines, respectively, both in magenta color.

In the t′ scale (Panel (a)), the curves are “aligned” from the left-hand side of the figure,
in the regime corresponding to small t where the chain is still sphere-like and scales as Nνs

with νs ' 1/3. Because the expanding time depends on the chain length, the final coil chain

is reached at different time moment t′∗∗. One can show that t′∗∗ ∼ R
xc−xs

νc with νc ' 0.6
being the scaling exponent for the coil chains. The t′∗∗ curve has been drawn on the figure in
dashed magenta line. On the right side of the curve, the chains are fully relaxed. Panel (b)
is plotted by using t̃ scale. The evolution curves are aligned from the right-hand side at this
time, in the regime t̃ & 3. Under the scale, the expanding chains leave the sphere-like state

at the time moment t̃∗. The demarcation line t̃∗ ∼ R
xs−xc

νs has been plotted in the figure in
magenta dash-dotted line. We now see clearly how the behaviors of chain expansion are
scaled with the two characteristic times in a process.

Our simulations have revealed that the expansion behavior is determined mainly by
the chain length, not sensitive to the confining volume fraction (refer to Figure 3). Because
the ratio τs/τc possesses a quite negative exponent xs− xc, the process is largely dominated
by the second stage of expansion, particularly when the chain length is long. Therefore,
in practice, we see mostly the second-stage behavior and τc is a more suitable time scale
to describe the expansion. We have defined the expansion time to be τ = 3τc. Figure 20
presents the theoretical curves by using the scaled time t̃ and the length variable R̃ = R/RF.
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The gray dashed curve is the principal variation curve for the second stage, defined
by R̃(t̃) = (1− exp(−t̃))1/5. The region left to the curve, colored in yellow, is the domain
space for the variation of chain size in the first stage, which depends on both N and φ0. For
a given N, a smaller φ0 results in larger R̃ as shown in Figure 20a. If it is φ0 being fixed
(see Figure 20b), the larger the chain length, the lower the R̃ curve will be. The variation of
chain size turns to follow the universal gray-dashed curve when being in contact with it.
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Figure 20. Prediction of chain size plotted by using the scaled time t̃ and length variable R̃. The size

variation in the first stage, R̃(t̃) = R̃0

(
1 + t̃

τ̃s

)α
, are plotted in colored lines (a) at N = 512 for various

φ0 values and (b) at φ0 = 0.4 for various chain lengths. The color representations are given in the
legend of each panel. The principal variation curve for the second stage, R̃(t̃) = (1− exp(−t̃))1/5,
is plotted in gray dashed line. The yellow region denotes the domain space where situate the size
variation curves for the first stage.

In the study, we have obtained τc ∼ N2.36(5), which is significantly different to the
predicted N2 behavior. Here we discuss two possible causes which could lead to the
difference. The first one comes from the “uniform” setting of the velocities in participation
of the energy dissipation in Equation (1) by dR

dt . A more precise setting should consider the
velocities vi of individual monomers, and the balance equation shall read as

dF
dt

= −
N

∑
i=1

ηv2
i ' −

∫
V

ηv2(r, t)ρ(r, t)d3r. (16)

To make the equation analytic, we can approximate the summation by an integral, but
the monomer distribution ρ(r, t) and the velocity distribution v(r, t) at any position r in the
occupied space V need to be known at any time t during the expansion. It will be a very
difficult task to obtain these two time-dependent distributions from simulations. However,
the non-consistency on the scaling of τc can be treated in a different way by modifying the
balance equation to be:

dF
dt
' −ηN1+χ

(
dR
dt

)2
(17)

with the exponent χ taking into account the additional effect of the monomer and velocity
distributions in the integrand and casting it into a power-law dependence on N. Our
simulations suggest that χ should acquire a value of about 0.36.

The second possible cause is related to the non-equilibrium effect in a process. The
expansion of a compressed chain evolves in a very fast way, particularly in the first stage.
The balance equation was set under the assumption that the free energy change of chain
can be dissipated instantly and completely into the environment. Generally, it is not the
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case and, therefore, some kind of retardant effect leads to a prolongation of the relaxation,
resulting in a larger N-exponent for the expansion time. A combination with the first cause
yields the effective exponent equal to 2.36(5).

An alternative explanation is to regard the second stage of expansion as a relaxation
of a coil chain departing from small deformation, i.e., in a linear response regime. The

relaxation time τR can be estimated by R2
F

DR
with DR being the diffusion coefficient of chain

in dilute solutions [67]. In Rouse dynamics, DR is known to be kBT
ηN . It yields τR ∼ N1+2νc ;

we thus have τR ∼ N2.2 by using νc ' 0.6 (refer to Figure 5b). The estimated exponent
2.2 is found close to the one obtained for τc. The true connection between different kinds
of relaxation time of chain and the characteristic time of expansion merits a thorough
investigation in the future.

We remark that it has been proposed since the mid-1980s that the collapse of single
chains undergoes two-stage kinetics [76,77]. The first stage is a fast crumpling of the chain
into a unknotted globule with a required time scale about τcrum ∼ N2 and the second
one is a slow rearrangement of the chain into a knotted globule via reptations with the
estimated time τrep ∼ N3. For a counterpart action, the expansion of chain, we anticipate a
shorter time for the disentanglement because the reptation to untie the knots on the chain is
biased by entropic forces due to the swelling of the chain itself [41]. Therefore, the scaling
exponent for the expansion time should lie between 2 and 3, which agrees with what we
have observed here.

Coil-to-globule transition of polymers caused by deterioration of solvent quality has
been investigated extensively in the past [78–84]. Although the expansion study presented
here resembles a reverse version of the collapse transition, there exist two main differences:

(1) In the expansion study, it is the external restriction (the confining wall) forcing the
chain to be confined in a small space, regardless of the solvent quality, while in a
coil-to-globule transition, the globule is formed by internal attractive interactions,
which collapses the chain from interior owing to the poor solvent condition. The
internal structure of the two kinds of globule are thus different. The globule in the
first case can have a less dense center if the intra-chain interaction is repulsive or
the chain has stiffness [29,85]. The second case can form so-called “molten globule”,
which possesses a dense core with a loosen shell structure [83,86,87]. Consequently,
the geometry is less certain, compared to the first one.

(2) The coil-to-globule transition is a relatively slow process. Different intermediate
states, such as pearl-necklaces, racquets, folded structures, can be formed in the
passage [84,88–91]. The expansion, on the contrary, is a very fast and violent process.
Once the external restriction is removed, the chain expands straightforwardly back to
a coil state. No intermediate states are expected if no important attractive interactions
are involved. The smaller the confining space, the faster the expansion will be. Even
for a globule-to-coil transition induced by improving the solvent quality, the process
is not a simple reversal of the coil-to-globule one. Hysteresis has been observed,
indicating strong nonequilibrium effects or formation of some kind of intra-chain
structures in the process [86].

Therefore, the studied chain expansion should be analogous to the globule-to-coil
transition with prudence. Subtle but significant differences appear between them, from
the mechanism which drives the transition, to the representation, such as the speed of
expansion, and the structures. An in-depth study similar to this is hence necessary to
understand how a confined chain expands after releasing from a confinement. Different
to the previous globule-to-coil study [41–43], we do not observe any clear sign indicating
that the released chains are trapped in an arrested state in this study. The chain globules
in our confinement hence should not be strongly entangled or tightly knotted. It could
simply be a consequence of the lack of local attractive interactions between beads in our
simplistic model. Therefore, it is important in the following work to clarify the role of local
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attractions, such as van der Waals interaction or reversible bond formation [92], on the
occurrence of possible arrested states in a chain expansion process.

To have an idea how long it takes for a ssDNA or RNA chain released from a capsid,
we can apply the scaling law τc ' 0.18N2.36 obtained in Figure 8. For a chain length of
about 1 kbp, the scaling gives τc ' 2.16× 106, which is about 8.35µs when converted to
the real unit. Therefore, a typical expansion time for releasing ssDNA or RNA from a
capsid is of about microsecond order. Previous studies by using detailed simulation models
have obtained a similar time order for genome release from an opened capsid [19–21].
We emphasize that the results reported here are certainly not quantitative predictions.
Biological systems are very complex and have complicated interactions, especially in an
aqueous environment where these entities live. Their behaviors are determined by a
combination and a competition of different driving forces. Therefore, the simplistic model
used here is not possible to give quantitative descriptions. Nonetheless, we have proposed
a simple two-stage model to understand free release of a chain from a small cavity: a
spherical expansion, followed by a coil expansion. For restricted release happened from
an opened capsid, we anticipate more stages in the expansion. For example, the chain
globule should be squeezed first to “eject” through the open hole on the capsid, up to
a certain extent; it is then followed by a possible “elliptical” expansion combined with
the ejection, and finally completed by a coil expansion and diffusion. According to the
current study, the characteristic time τs can be a thousand times or more smaller than τc.
Therefore, a time resolution of nanosecond order is required to be able to experimentally
study the early-stage behavior of genome release. If the chain has stiffness like dsDNA,
the expansion time will be shortened further because the stiffness can help restoring the
chain back to its coil conformation. To study it, one can include angle potentials in the
model to simulate chain stiffness, which will introduce a new length scale to the system,
called persistence length. We expect that the expansion behavior will be altered if the
cavity diameter becomes comparable to or smaller than the persistence length. Moreover,
genetic materials are generally ionizable in solutions. Therefore, it is very important to
understand expansion of charged chains in ionic solutions. We will investigate these topics
in the future.
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