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Abstract: Environmental chemical contaminants in food seriously impact human health and food
safety. Successful detection methods can effectively monitor the potential risk of emerging chemical
contaminants. Among them, molecularly imprinted polymers (MIPs) based on electrochemical
biomimetic sensors overcome many drawbacks of conventional detection methods and offer opportu-
nities to detect contaminants with simple equipment in an efficient, sensitive, and low-cost manner.
We searched eligible papers through the Web of Science (2000–2022) and PubMed databases. Then,
we introduced the sensing mechanism of MIPs, outlined the sample preparation methods, and sum-
marized the MIP characterization and performance. The classification of electrochemistry, as well as
its advantages and disadvantages, are also discussed. Furthermore, the representative application of
MIP-based electrochemical biomimetic sensors for detecting small molecular chemical contaminants,
such as antibiotics, pesticides, toxins, food additives, illegal additions, organic pollutants, and heavy
metal ions in food, is demonstrated. Finally, the conclusions and future perspectives are summarized
and discussed.

Keywords: molecular imprinting; electrochemical biomimetic sensors; small-molecule chemical
contaminants

1. Introduction

Small molecule compounds, such as pesticides, veterinary drugs, mycotoxins, and
environmental pollutants (persistent organic pollutants (POPs), dioxins, heavy metal ions),
pose a risk to human health and pollute water, air, soil, and agricultural products [1,2].
Therefore, developing methods to monitor small molecule compounds is crucial. To
detect small molecule compounds, a variety of methods, such as chromatography [3],
chromatography-mass spectrometry [4], biological detection [5], and immunological ap-
proaches [6], have been developed. However, these methods have drawbacks and limita-
tions, such as being time-consuming, requiring skilled labor, and restricting their use in
situ and real-time detection [7].

In recent years, electrochemical sensors have been widely used to determine contami-
nants due to their sensitivity, rapid assay time, small size, portability, low cost, and low
reagent content [8,9]. However, it is quite challenging to eliminate matrix interference while
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maintaining sensitivity [10]. To improve the sensitivity of electrochemical sensors, numer-
ous techniques, such as nanomaterials, especially gold nanoparticles (AuNPs) [11,12], car-
bon nanotubes [13], and different electrode modifiers (ionic liquids and polymers) [14,15],
have been used to improve the analytical performance in electrochemical sensors, which
have demonstrated a suitable device for small molecule contaminant detection [6].

Biosensors include two main distinct components: a bioreceptor and a biorecogni-
tion element [16]. The biorecognition element is critical in determining the target analyte
selectively and accurately. Antibodies bind specifically and selectively to their target anti-
gens. However, making antibodies to recognize small molecule compounds is challenging
because they have low molecular weights with a single antigenic determinant cluster.
Furthermore, small molecule compounds are haptens with an acceptable reactogenicity
profile; however, they are nonimmunogenic. For these reasons, designing compounds that
mimic antibodies is greatly appreciated. Molecularly imprinted polymers (MIPs), as artificial
antibodies, have offered a new option for the selective identification of target analytes [17].
MIPs are often called plastic antibodies, similar to naturally occurring antibodies [18]. They
possess remarkable recognition properties that have been used in various applications, such
as drug delivery, purification, and sensors [19–21]. Combining the advantages of MIPs and
electrochemical sensors makes it possible to fabricate low-cost, convenient devices with
high sensitivity and selectivity, quick response, superior chemical/mechanical stability,
miniaturization, automation, reusability, and in situ detection of target analytes [22].

In this review, qualified studies were searched through the Web of Science (2000–2022)
(http://www.webofscience.com/wos/alldb/basic-search, accessed on 1 October 2022) and
PubMed databases (https://pubmed.ncbi.nlm.nih.gov/, accessed on 1 October 2022). To
find appropriate literature, we combined the keyword phrase “electrochemical sensors”
with the terms “molecularly imprinted technology,” “food contaminants”, “small-molecule
chemical contaminants,” and “agro-food”. After evaluating the publication titles, key-
words, and abstracts, valuable full-text articles were downloaded from the database. We
demonstrate the MIP sensing mechanism in detail, summarize the preparation methods,
and introduce the characterization and performance evaluation of MIPs. Second, electro-
chemical classification and its advantages and disadvantages are discussed. Moreover, we
emphasize the application of MIP-based electrochemical biomimetic sensors for detecting
antibiotic and pesticide residues, toxins, food additives, illegal additions, environmental
organic pollutants (POPs), and heavy metal ions in food. Finally, the conclusions and
prospects are discussed.

2. Molecular Imprinting Technology
2.1. The Principle of MIPs

Molecular imprinting technology (MIT) follows the “key and lock” principle for syn-
thesizing polymers with specific recognition and selective adsorption to target molecules.
These polymers are known as MIPs [23]. Although there are several production meth-
ods, they all follow the same basic pattern. The process generally includes three steps
(Figure 1) [24]: (1) Under certain conditions, the template molecule and the functional
monomer are self-assembled in a suitable solvent via reversible covalent, noncovalent, or
semicovalent bonding between functional groups to form a template-monomer complex; (2)
appropriate cross-linkers and initiators are added to the above system, and the other chem-
ical bonds of the monomer interact with the cross-linkers through photopolymerization or
thermal polymerization forming a network structure with a high degree of cross-linking
and a particular three-dimensional space, allowing the functional groups to be fixed; and
(3) finally, the template molecule is chemically or physically separated from the polymer,
leaving matching three-dimensional cavities on the substrate’s surface. The stereo cavities
in the imprinted layer serve a specific recognition function and can be selectively com-
bined with templates from complex samples to achieve separation and detection [25]. The
procedure is straightforward, quick, and convenient.

http://www.webofscience.com/wos/alldb/basic-search
https://pubmed.ncbi.nlm.nih.gov/
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2.2. Preparation Methods
2.2.1. Bulk Polymerization

Bulk or mass polymerization usually includes dissolving template molecules, func-
tional monomers, crosslinkers, and initiators in a fixed ratio in solvents, such as chloroform,
toluene, or acetonitrile, and then placing them in a glass or quartz vial to form a block
polymer under light or thermal initiation, which is crushed and ground to obtain particles
of appropriate size. Because of its simplicity and speed of preparation, bulk polymerization
is the most convenient approach to synthesizing MIPs [26]. However, the grinding pro-
cess creates an irregular morphology, which may result in considerable variation between
different batches. Furthermore, some binding sites are destroyed, lowering extraction
efficiency, selectivity, and reproducibility [27,28]. In addition, the technique requires many
templates and is susceptible to template leakage and poor site accessibility. This is because
the imprinted polymeric matrices are usually thick, and the residual template molecules
and recognition sites are deeply embedded in the matrices, making them difficult to pro-
cess [29,30]. Due to these factors, its applications and development are limited. The
advantages and disadvantages of bulk polymerization are summarized in Table 1.

Table 1. The advantages and disadvantages of MIP preparation methods.

Preparation Methods Advantages Disadvantages Ref.

Bulk polymerization

Simple, rapid, cheap, robust,
resistant to harsh

environments, and does not
require a sophisticated or

expensive analytical
instrument.

Irregular morphology,
low yield, template

leakage, binding sites
deeply buried, destroyed

binding sites.

[26–30]

Suspension
polymerization Regular particles.

Poor recognition,
polydisperse size, and

polarity solvent interfere
with the imprinting

process.

[30–32]

Emulsion
polymerization

High specific surface area,
regular shape, size, good

dispersity, narrow particle
distribution, water-soluble.

Low binding capacity. [33–35]
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Table 1. Cont.

Preparation Methods Advantages Disadvantages Ref.

Precipitation
polymerization

No stabilizers, simple, good
yields, less time, small and
uniform size, and suitable

im-print of different
compounds.

High dilution conditions,
careful adjustment of the
synthetic parameters, and
a large porogen volume.

[36–38]

Surface imprinting

Uniform and controllable
particle size, good selectivity
and stability, high adsorption

capacity, fast mass transfer and
binding kinetics, and good

reproducibility.

Limited surface areas. [25,39,
40]

2.2.2. Suspension Polymerization

Suspension polymerization is a polymerization reaction that involves dispersing
monomers into small droplets and suspending them in deionized water. The general
reaction system is to add the organic phase (template molecules, functional monomers,
crosslinkers, and initiators) to the aqueous phase or other strong polar solvents in which
the dispersants are dissolved and then form a suspension by high-speed stirring. In this
system, the dispersion forms uniform droplets under the shearing force of the water and
protects the dispersant adsorbed on the surface. Then, the hydrophobic initiator triggers
the polymerization of the monomers to obtain spherical molecularly imprinted polymers
with a uniform particle size of approximately 10–100 µm. The particle size of the MIP can
be used as a filler for HPLC and SPE due to the suspension method [30,31]. However, the
suspension polymerization method adds the reaction components into the strong polar
solvent, which can significantly interfere with the imprinting process by hydrogen bonding
and weaken the binding between the template molecule and the functional monomer [32].
The advantages and disadvantages of suspension polymerization are summarized in
Table 1.

2.2.3. Emulsion Polymerization

Emulsion polymerization is similar to suspension polymerization, in which the tem-
plate molecules, functional monomers, and crosslinkers are dissolved in the organic phase.
Then, the organic mixture is transferred to the aqueous phase. After that, a stabilizer is
added to the dispersed phase, preventing diffusion through the continuous phase and
producing small, stable, uniformly sized emulsion droplets with particle sizes of approxi-
mately 50-1000 nm. The main advantages of this method are the high specific surface area,
good dispersity of the prepared microspheres, narrow particle distribution, and ability to
imprint water-soluble molecules [33]. The amount of emulsifier in this method can be ad-
justed to control the size of the polymer. Therefore, regular shapes and high yields of MIPs
can be obtained [34]. This method produces high yields of monodisperse nanoparticles;
however, the surfactant residues interfere with analyte identification during recombination,
resulting in low binding capacity [35]. The advantages and disadvantages of emulsion
polymerization are summarized in Table 1.

2.2.4. Precipitation Polymerization

The suspension polymerization method dissolves the template molecules, functional
monomers, crosslinkers, and initiators in the dispersant with a specific ratio and initiates
polymerization with heat or light. The resulting polymer is saturated with the solvent,
producing precipitation. The prepared imprinted polymerization particle size is uniform
and small, with a microsphere size of approximately 0.2–2 µm [36]. The choice of functional
monomer, solvent, and reactant ratio greatly influences the polymer yield and particle size.
The precipitation polymerization method does not require the addition of stabilizers to
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the reaction system. The prepared polymers are uniformly distributed, the operation is
straightforward with no complicated subsequent processing, and the utilization rate of raw
materials and polymer yield is high. This method is characterized by a simple process, time
savings, and high yield [37,38]. The major disadvantage is the strict requirement for solvent
viscosity; the desired particle size can only be obtained in a solvent with a lower viscosity.
The advantages and disadvantages of precipitation polymerization are summarized in
Table 1.

2.2.5. Surface Imprinting

The surface imprinting method causes the polymerization reaction to occur on the
surface of the solid-phase carrier. It prepares a polymer with molecular imprinting recogni-
tion sites distributed on the surface of the solid-phase matrix [39]. The main advantages
of this technology are as follows: the particle size of the prepared imprinted polymer
is uniform and controllable by selecting the appropriate carrier, and the specific surface
area of the imprinted polymer increases significantly when the carrier is a nanomaterial,
which effectively improves the adsorption capacity and imprinting efficiency. Because the
imprinted polymer is on the surface of the carrier, the encapsulation of the imprinted pores
is effectively reduced. The imprinted polymer shell layer on the surface is relatively thin,
so the adsorbed material transfers faster and can quickly reach the adsorption equilibrium
state [25]. However, the surface area of the substrate is minimal, and accordingly, the total
amount of the resultant imprinting cavities is always small [40]. Therefore, finding and
preparing substrates with large surface areas is crucial for better imprinting performance.
The advantages and disadvantages of surface imprinting are summarized in Table 1.

2.3. MIP Characterization Methods and Performance Evaluation
2.3.1. MIP Characterization Methods

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are
commonly used to characterize the morphology of MIPs. SEM is essential for analyzing the
surface morphology and pore characteristics of imprinted polymers [41]. TEM was used to
observe the thickness of the shell layer of the polymer synthesized by the surface imprinting
technique [42]. Atomic force microscopy (AFM) and various fluorescence techniques are
crucial for characterizing thin-film MIPs [43]. Moreover, nuclear magnetic resonance
(NMR) and Fourier transform infrared spectroscopy (FTIR) are used to analyze thin-film
MIPs, which is becoming increasingly important. NMR is a powerful technique that can
effectively verify the noncovalent bonding interplay between the template molecule and the
functional monomer. FTIR can determine the structural changes of the template molecule
in a solution or a solid-state [41,44]. If there is a hydrogen bonding interaction, then the
positions of the peaks of the hydroxyl, carboxyl, or amino groups in the molecule will
be shifted. X-ray derivatization (XRD) can determine whether there are crystallographic
changes in the inorganic carrier [45]. If the thermal stability is examined, thermogravimetric
analysis (TGA) can be used [45]. To synthesize core-shell polymers using surface imprinting
techniques, TGA can also estimate the amount of grafting in the polymer shell [46]. For
magnetic materials, such as Fe3O4, a vibrating sample magnetometer (VSM) is used to
analyze the magnetic properties by plotting the hysteresis lines [47].

2.3.2. MIP Performance Evaluation
Adsorption Isotherm Model

The equilibrium adsorption capacity is the most common parameter used to evaluate
the performance of MIPs. This means the quantity of the target analytes adsorbed per
unit mass of MIPs. To ensure equilibration, MIPs are exposed to the appropriate analyte
in suitable solvents for a sufficiently long time [48,49]. The capacity is calculated as
follows [48]:

Qe =
(C0 − Ce)V

m
(1)
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where C0 (mg/mL) and Ce (mg/mL) are the initial and equilibrium concentrations of the
target analyte in the sample, respectively, V (mL) is the target analyte sample volume, and
m (g) is the mass of MIPs or NIPs.

The Langmuir, Freundlich, and Scatchard models have been widely used for static ad-
sorption equilibrium evaluation. The Langmuir model assumes that monolayer adsorption
occurs in a homogeneous system and is expressed as follows:

Ce/Qe = Ce/Qm + 1/QmKL (2)

where Ce (mg/mL) is the equilibrium concentration of targets, Qe (mg/g) and Qm (mg/g)
are the equilibrium adsorption amounts and the maximum adsorption capacity of targets,
respectively, and KL (mL/mg) is an affinity constant that is related to the affinity of the
adsorbent for the binding sites [50].

The Freundlich model describes the adsorption of analytes on a heterogeneous surface
of the sorbent, and it can be expressed as follows:

log Qe = log KF + 1/n log Ce (3)

where KF (mL/mg) and 1/n are the Freundlich characteristic constants and heterogene-
ity factor, respectively, and 1/n is often between 0 and 1, which shows the adsorption
intensity of the target onto the adsorbent; the smaller the value, the more favorable the
adsorption [51].

The Scatchard model, also known as the independent site-oriented adsorption model,
helps to evaluate the binding properties and dependency of MIPs toward the analyte, and
it can be estimated as follows:

Qe/Ce = (Qmax −Qe)/Kd (4)

where Qe (mg/g) is the adsorption capacity of the polymers at equilibrium, Qmax is the max-
imum apparent adsorption capacity (mg/g), Ce (mg/mL) is the equilibrium concentration
of the target in solution, and Kd is the equilibrium dissociation constant [48].

Adsorption Kinetics

During the dynamic adsorption equilibrium evaluation, the obtained data can be sim-
ulated and analyzed using pseudo-first-order kinetics, pseudo-second-order kinetics, and
intraparticle diffusion models. The first two models are used to investigate the controlling
mechanism, and the last is used for the diffusion mechanism. The pseudo-first-order model
assumes that the diffusion step controls adsorption and can be evaluated as follows:

log(Qe −Qt) = log Qe − k1t (5)

where Qe (mg/g) and Qt (mg/g) are the adsorption capacity at equilibrium time and at
time t (min), respectively. k1 is the rate constant of the pseudo-first-order model [52].

The pseudo-second-order kinetic model is used to describe the chemisorption mecha-
nism, which includes the sharing or exchange of electrons between the adsorbent and the
ions to be enriched, and its equation is expressed as follows:

t/Qt = 1/
(

k2Q2
e

)
+ t/Qe (6)

where k2 is the rate constant of the pseudo-second-order model [52].
The above two kinetic models cannot describe the diffusion mechanism. Therefore,

the intraparticle diffusion model has further studied the diffusion mechanism, and the
equation is shown as follows:

Qt = kpt1/2 + C (7)
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where C is the intercept and kp is the intraparticle diffusion rate constant, which can be
obtained from the slope of the linear Qt~t1/2 [53].

Adsorption Selectivity

The selective adsorption properties of MIPs are commonly evaluated according to the
imprinting factor (IF), which can be obtained as follows:

IF =
QMIP
QNIP

(8)

where QMIP and QNIP are the amounts of analyte bound by MIPs and NIPs, respectively [54].
The MIP polymer can distinguish the template and its analogs, which include the

distribution coefficient (Kd), selectivity coefficient (k), or relative selectivity coefficient
(K’) [55].

Kd =
Qe

Ce
(9)

where Qe (mg/g) is the adsorption capacity at equilibrium and Ce (mg/mL) is the equilib-
rium concentration.

K =
Kd1
Kd2

(10)

where Kd1 and Kd2 are the analyte and analog distribution coefficients, respectively [56].

K′ =
KMIP
KNIP

(11)

where KMIP and KNIP are the MIP and NIP distribution coefficients, respectively.

Adsorption Performance

The solid phase extraction experiments are obtained via the following equation:

E% =
C0 − Ct

C0
× 100% (12)

where C0 (µg/L) and Ct (µg/L) are the concentrations of the target before and after extrac-
tion, respectively [53].

Reuse time is another critical evaluation in practical industrial applications. To reduce
cost, people hope that absorbents can be used multiple times instead of in a disposable
manner [57].

Chromatographic Evaluation

Chromatographic evaluation is another method to describe the selectivity of molecu-
larly imprinted polymers, and the retention factors of analytes were determined with MIPs
and NIPs packed in the column, and they can be determined as follows:

K =
tR − t0

t0
(13)

where tR (min) and t0 (min) are the analyte and unretained sample retention time in the
column, respectively.

The IF is obtained by calculating the MIP and NIP columns’ capacity factor (k) ra-
tio [18].

IF =
KMIP
KNIP

(14)

where KMIP and KNIP are the MIP and NIP distribution coefficients, respectively.
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3. Electrochemical Sensors

Electrochemical sensors consist of two parts: receptors (recognition elements) and
transducers (signal converts) [16]. In MIP electrochemical biomimetic sensors, the MIP
membrane acts as a receptor and is immobilized on the transducer surface by an appropriate
method. The principle of MIP-based electrochemical sensors is illustrated in Figure 2 [58].
When the target enters the specific cavity within the MIP membrane and binds specifically
to its recognition site, the output electrical signal of the transducer changes. The detector
can detect the signal for the determination of template molecules. Based on different
response signals, sensors can be classified into current, potentiometry, capacitance, and
conductivity [40].
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3.1. Electric Current Sensors

Since Mosbach et al. [59] first constructed a MIP-based electric-current sensor, this
technique has been widely reported. In MIP electric current sensors, quantitative analytes
detect the current changes before and after template binding to MIPs. Since they are stable,
sensitive, and selective, they are widely used [60].

Amperometry and voltammetry are two main types of electric current sensors. Voltam-
metric techniques are most often applied, including differential pulse voltammetry (DPV),
cyclic voltammetry (CV), square wave voltammetry (SWV), and linear sweep voltammetry
(LSV) [61]. They can detect not only direct electroactive targets but also indirect non-
electroactive targets. The template molecule can penetrate the recognition holes in the
imprinted membrane to reach the transducer surface and generate the corresponding electri-
cal signal for the electroactive molecule. The quantitative analysis of the template molecules
can be obtained by observing the magnitude of the electrical signal. Nonelectrically active
molecules can be measured indirectly with the help of competitive measurements or the
addition of special electrochemical signal probes [62,63]. When more template molecules
occupy the recognition cavities in the imprinted membrane, there is less chance that the
electrochemical probe can penetrate the imprinted membrane to reach the electrode surface,
and the smaller the peak current of the electrochemical probe will be. For example, Li et al.
proposed using a competitive measurement to recognize thiol-3-indoleacetic acid (IAA) [64].
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Figure 3 depicts the detection procedure and principle for nonelectrically active molecules.
The membrane is the key to electric current sensors; specific pores in the MIP membrane
must exist so that the target molecules can penetrate through the membrane to the electrode
surface. Since the MIP recognition ability is directly related to the MIP sensitivity, strategies
for improving the MIP sensitivity are available here.
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Figure 3. Schematic illustration of nonelectroactive molecular detection. (1) Elution; (2) IAA-S
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deposition. Adapted with permission from Ref. [64]. Copyright 2014, Elsevier.

Merits: Simplicity, automation, miniaturization, high sensitivity, low cost, detection of
electroactive and nonelectroactive molecules.

Demerits: Labeling the analyte to increase the electrochemical reaction at the working
electrode.

3.2. Potentiometry Sensors

Potentiometric sensors measure the potential difference between the working elec-
trode functionalized with MIPs and a reference electrode [65]. Compared with electric
current sensors, potential signals are generated after target analytes bind to the imprinted
membrane. Because the target analytes do not need to pass through the imprinted mem-
brane, the imprinted template can be any size. Its combination with MIPs can substantially
improve the selectivity of MIP potentiometric sensors. Potentiometry sensors are made
up of two main components: ion-selective electrodes (ISEs) and field-effect transistors
(FETs) [40]. ISEs are well known for ionic molecule selection, such as pH electrodes. MIP
films are crucial in ISEs and have been used to detect ionic species. Selective membranes
are formed from metal salts or polymeric (MIP) membranes containing ion exchangers
or neutral carriers that can detect neutral molecules. For instance, Wang et al. proposed
a novel MIP-based ISE sensor to detect neutral bisphenol with high selectivity [66]. The
result exhibited high selectivity; Figure 4 schematically illustrates the process. In addition,
field-effect transistors (FETs) are another semiconductor transducer sensitive to changes
in surface potential at the gate electrode [67]. This device can practically monitor any
charged template molecule. Potentiometric sensors are considered the most promising
for use, independent of molecular size and rapid response; however, their stability and
reproducibility are slightly poor.

Merits: Accessibility, high sensitivity, miniaturization, simplicity, low cost.
Demerits: Lack of specificity.
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3.3. Capacitance/Impedance Sensors

Capacitance sensors, also called impedance sensors, are measured by detecting the im-
printed membrane response to the template molecule capacitance before and after binding,
providing an interfacial response signal without adding other reagents or probes, and are
helpful for detecting nonelectroactive substances. The capacitance value of the capacitance
sensor is determined by both the dielectric constant and the thickness of the electric layer,
so it is necessary that the MIP-imprinted film fixed on the transducer surface has good
insulation and is an ultrathin imprinted film. El-Akaad et al. developed a capacitive sensor
based on MIPs that detects the insecticide imidacloprid in water. Electropolymerization
showed satisfactory performance when the particles were immobilized on the surface of a
gold electrode [68]. Capacitive sensors have the advantages of high sensitivity, label-free,
real-time monitoring, and a simple manufacturing process. In addition, the film’s low
thickness and high uniformity are the main advantages of capacitive sensors, and more
work should be performed in future research.

Merits: Simplicity, cheap, fast, good sensitivity, biocompatibility with biological sam-
ples, no reference electrode, miniaturization.

Demerits: Low specificity and low sensitivity compared with amperometric and
potentiometric methods.

3.4. Conductivity Sensors

Conductometric sensors measure conductivity variation before and after MIPs bind
with target molecules [69]. The preparation of MIP films is an essential part of the devel-
opment of conductivity sensors. Latif et al. prepared a conductive sensor for monitoring
PAHs with MIP for recognition, and the sensor exhibited good performance [70]. This
sensor is simple and inexpensive based on the electrical conductivity conversion principle.
However, the synthesis and rinsing operations in the preparation process significantly
affect the sensor performance, resulting in poor reproducibility and low sensitivity. These
factors influence the broad use of conductometric sensors.

Merits: Label-free, simple, real-time monitoring, fast, inexpensive.
Demerits: Poor reproducibility.

4. Application of MIP Electrochemical Biomimetic Sensors for Detecting Small
Molecule Chemical Food Contaminants
4.1. Antibiotic Residues

Antibiotics are extensively used to treat bacterial infections due to their broad spectrum
of antibacterial activity. However, the incorrect use of antibiotics causes them to occur
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in water, food, and beverages. More seriously, the accumulation of antibiotics (parents
and metabolites) due to misuse and overuse may result in antibiotic resistance [71,72].
Therefore, maximum residue limits (MRLs) have been set for antibiotics in food and the
environment, and several analytical methodologies have been used to monitor antibiotics.
Among these methods, MIP-based electrochemical techniques meet the requirements for
detection [73].

Antibiotics are divided into aminoglycosides, amphenicols, β-lactams, fluoroquinolones,
macrolides, tetracyclines, and others based on their origin, structure, and mechanisms of
microbial action [73,74]. Table 2 shows various methods developed to detect antibiotics
based on MIP-electrochemical techniques. For instance, Long et al. fabricated a selective
glass carbon electrode (GCE) based on MIP modified with magnetic multiwalled carbon
nanotubes (MWCNTs) decorated with Fe3O4 for detecting kanamycin (Figure 5). The lin-
ear range was observed from 1.0 × 10−10 mol/L to 1.0 × 10−6 mol/L with a detection
limit of 2.3 × 10−11 mol/L. The recoveries of kanamycin in real samples (chicken/liver,
pig/liver, milk) ranged from 92.5–105.3%. The proposed imprinted sensor successfully used
for kanamycin detection in complex real samples shows potential for consideration in the
future [75]. The MIP-based electrochemical sensor indicated that it might avoid analog
interference and improve detection efficiency. Erythromycin (Ery) is a macrolide that is
extensively used in life. Ayankojo et al. prepared an electrochemical MIP-based sensor for
Ery quantification using a screen-printed electrode (SPE). The MIP for Ery was constructed
through the electropolymerization of m-phenylenediamine (mPD). CV was applied to detect
the Ery bound to the MIP to prevent the template from oxidizing during testing. This sensor
reached a LOD of 1.0 × 10−10 mol/L and was successfully applied to tap water. Moreover,
Ery-SPE/MIP demonstrated good selectivity that can distinguish between target analytes
and analogs [76].
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Table 2. Detection of food antibiotic residues using different MIP electrochemical biomimetic sensors.

Class Electrochemical
Techniques

Functional
Monomer Target Polymerization

Method
Transducer
(Modified) Sample LOD (mol/L) Linear Range (mol/L) Ref.

Aminoglycosides

CV o-
phenylenediamine Kanamycin Electropoly-

merization
GCE-SWCNH-

COOH Water 1.0 × 10−5 1.0-5.0 × 10−5 [77]

CV and DPV MAA Kanamycin Surface imprinting GCE-CNT (Fe3O4) Chicken/liver,
pig/liver, milk 2.3 × 10−11 1.0 × 10−10–1.0 × 10−6 [75]

DPV Pyrrole-3-carboxylic
acid Streptomycin Electropolymerization GCE

(PPy3C/ERGO)
Porcine kidney,

honey 0.5 × 10−9 0.2–8.0 × 10−8,
0.08–1.0 × 10−6 [78]

SWV o-
phenylenediamine Streptomycin One-pot method ITO Milk, honey 1.72 × 10−10 8.6 × 10−8–3.44 × 10−5 [79]

Amphenicols DPV C16VimCl Chloramphenicol Surface imprinting GCE (P-r-GO,
CKM-3) Milk, honey 1.0 × 10−10 5.0 × 10−9–5.0 × 10−7,

5.0 × 10−7–4.0 × 10−6 [80]

β-lactams
CV Acrylamide Amoxicillin Bulk polymerization SPE Water 1.89 ± 1.03 × 10−9;

0.54 ± 0.1 × 10−9 0.01–5 × 10−7 [81]

CV o-
phenylenediamine Ampicillin Electropolymerization GCE (Au

NPs/SWCNTs) Milk 1.0 × 10−9 5.0 × 10−8–1.0 × 10−5 [82]

DPV MAA Cloxacillin Bulk polymerization SPCE (GO-Au NPs) Milk 3.6 × 10−8 1.1–7.5 × 10−7 [83]

Fluoroquinolones
CV MAA Ciprofloxacin Bulk polymerization GCE (Ch-AuNP) Water, milk,

pharmaceuticals 2.1 × 10−7 0.01–1 × 10−4 [43]

CV and SWV Pyrrole and o-
phenylenediamine Enrofloxacin Electropolymerization PGE Pharmaceuticals 6.57 × 10−13 1.0 × 10−4–1.0 × 10−10 [84]

CV Pyrrole Norfloxacin Electropolymerization
GCE

(CoFe-MOFs/Au
NPs)

Milk 1.31 × 10−13
0.05–1.0 × 10−10,
0.1–1.0 × 10−9,
1.0–6.0 × 10−9

[85]

Macrolides
DPV 4-ABA Azithromycin Electropolymerization SPCE Water 8.0 × 10−8 0.05–1.0 × 10−5 [86]

CV m-
phenylenediamine Erythromycin Electropolymerization SPE Water 1.0 × 10−10 0.2–1.6 × 10−8 [76]

Tetracyclines CV Dopamine and
oligonucleotides Tetracycline Electropolymerization GCE (Au NPs) Milk 1.44 × 10−13 5.0 × 10−9–1.0 × 10−7,

1.0 × 10−9–1.0 × 10−6 [87]

DPV 3-Aminopropyl-
triethoxysiloxane Oxytetracycline Surface imprinting

polymerization Magneto electrode Milk __ 2.17 × 10−9–2.17 × 10−4 [88]
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4.2. Pesticide Residues

Pesticides are used to prevent and combat different weeds, pests, or diseases to im-
prove the quality of crops and production [31]. They are mostly sprayed on target plants or
the soil. Notably, only a few pesticides are transmitted to target plants [89], and the rest
accidentally reach the surface, the atmosphere, or underground waters. They can remain in
the environment for a long time, causing serious concern [89,90]. Therefore, developing
quick, sensitive, and reliable methods for quantitative pesticides is necessary. MIP-based
electrochemical sensors are a valuable method used to monitor the detection of various
pesticides. As shown in Table 3, the glass carbon electrode (GCE) and carbon paste electrode
(CPE) are popular electrodes. For the detection of diazinon, a MIP-based CPE sensor was
designed [91]. The MIPs were synthesized using diazinon as a template molecule and
methacrylic acid (MAA) as a functional monomer. Cavities for diazinon were formed after
the templates were removed. The CPE sensor and recognition of MIPs exhibited great sen-
sitivity for diazinon and were successfully applied in water and apple fruit samples. Based
on the same theory, MIPs combined with CPE sensors were used to detect hexazinone [92]
and propazine [93]. Apart from GCE and CPE electrodes, screen-printed electrodes (SPEs)
are also popularly used with MIPs [94]. For example, an electrochemical MIP sensor for
the quantitative test of malathion has been devised (Figure 6). It was fabricated using an
Au-SPE electrode by acrylamide polymerization in the presence of malathion as a template.
The established method has proven to be highly accurate, rapid, and inexpensive for quan-
tifying low levels of malathion residues in contaminated olive oil and fruit samples. To
improve the sensitivity and magnify the sensor’s signal, nanoparticles (such as Au NPs
and MWCNTs) are used for electrode modification. For example, Amatatongchai et al.
prepared a sensor based on GCE electrodes coated with SiO2 and vinyl end groups to
analyze profenofos (PFF). After the electrodeposition of MIP on the CNT/GCE surface, the
electrode was immersed in a DMF solution. DPV could directly monitor the recognition by
the MIP. The proposed sensor with high selectivity was successfully applied to determine
PFF in vegetable samples [95].

Table 3. Detection of food pesticide residues by different MIP electrochemical biomimetic sensors.

Electrochemical
Techniques

Functional
Monomer Target Polymerization

Method
Transducer
(Modified) Sample LOD

(mol/L)
Linear Range

(mol/L) Ref.

CV and SWV methylpropenoic
acid diazinon Suspension

polymerization CPE Well water,
apple fruit 7.9 × 10−10

2.5 × 10−9–
1.0 × 10−7,
1.0 × 10−7–
2.0 × 10−6

[91]

DPV 2-
vinylpyridine hexazinone Noncovalent

approach CPE Water 2.6 × 10−12 1.9 × 10−11–
1.1 × 10−10 [92]

DPV acrylamide propazine Precipitation
polymerization CPE

Onion,
tomato,
lettuce

1.0 × 10−9 0.01–1.0 × 10−6,
0.1–5.5 × 10−5 [93]

CV and DPV acrylamide malathion Deposition
polymerization

SPE
(Au NPs)

Olive oils,
fruits 1.8 × 10−11 3.0 × 10−13–

3 × 10−9 [94]

CV and DPV Aminobenzoic
acid carbofuran Electropoly-

merization
GCE

(Au NPs) Vegetable 2.4 × 10−8 5.0 × 10−8–
4.0 × 10−4 [17]

DPV
methacrylic
acid, vinyl
benzene

chloridazon Precipitation
polymerization

CPE
(MWCNT) Water 6.2 × 10−8 5.7 × 10−7–

4.0 × 10−4 [95]

SWV MAA diuron Bulk
polymerization

CPE
(MWCNT-

COOH)
Water 9.0 × 10−9 5.2 × 10−8–

1.25 × 10−6 [96]

CV MAA methyl
parathion

Precipitation
polymerization CPE Soil,

vegetable 3.4 × 10−13 1.0 × 10−12–
8.0 × 10−9 [97]

CV MAA paraoxon
Surface

imprinting
polymerization

GCE
(3D-CNTs) Vegetable 2 × 10−9 1.010−8–2 × 10−4 [98]
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4.3. Mycotoxins

Mycotoxins are a large and diverse group of naturally occurring chemicals mainly pro-
duced by strains of three fungal genera, namely, Aspergillus, Penicillium, and Fusarium [99].
Agricultural products are susceptible to mycotoxin contamination during harvest [100].
Although many countries have set and implemented MRLs, various food and agricultural
products contaminated with mycotoxins still exceed the published guidelines and nega-
tively influence humans and animals [101]. Therefore, effectively detecting trace amounts of
mycotoxins in food samples is very valuable. Many researchers have noted the advantages
of MIP-based sensors, which have been used for mycotoxin detection, as shown in Table 4.

Table 4. Detection of food mycotoxins by different MIP electrochemical biomimetic sensors.

Electrochemical
Techniques

Functional
Monomer Target Polymerization

Method
Transducer
(Modified) Sample LOD

(mol/L)
Linear Range

(mol/L) Ref.

DPV Aniline AFB1, FuB1
Chemical

oxidative poly-
merization

A–ITO,
F–ITO Corn

1.0 × 10−12

(AFB1),
4.6 × 10−13

(FuB1)

3.2 × 10−12–
1.6 × 10−9 (AFB1),

1.4 × 10−12–
7.0 × 10−10

(FuB1)

[21]

CV o–phenylen-
ediamine Zearalenone Electropolymeri-

zation SPGE Corn flakes 6.3 × 10−10 7.85 × 10−9–
6.28 × 10−7 [102]

DPV pyrrole ochratoxin A Electropolymeri-
zation

GCE
(MWCNTs)

Spiked beer,
wine 4.1 × 10−9 0.05–1.0 × 10−6 [103]

CV L–arginine deoxynivalenol Electropolymeri-
zation

GCE
(COOH–

MWCNTs)
Wheat flour 7.0 × 10−8 1.0 × 10−7–

7.0 × 10−5 [104]

DPV aniline patulin Electropolymeri-
zation

GCE
(Au@Cu–
MOF/N–
GQDs)

Apple juice 4.6 × 10−12 6.5 × 10−12–
4.6 × 10−7 [105]

Singh et al. prepared an electrochemical sensing platform fabricated using MIP-
based techniques for aflatoxin B1 (AFB1) and fumonisin B1 (FuB1) detection. During
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the MIP synthesis process, polyaniline was used as a MIP matrix, and AFB1 and FuB1
were used as template molecules (Figure 7). The proposed biosensors exhibited good
sensitivity and low detection limits for AFB1 and FuB1, opening up a promising strategy
to detect mycotoxins [21]. Radi et al. reported a MIP-based sensor for ZEA quantification
using a screen-printed gold electrode SPGE modified with molecularly imprinted poly(o-
phenylenediamine) (PPD) by electrosynthesis. The developed method was effectively
applied to accurately determine ZEA in cornflakes and presented low LOD, excellent
repeatability, and stability [102]. To increase sensitivity, Pacheco et al. used MWCNTs to
fabricate a DPV sensor for ochratoxin A (OTA) detection in spiked beer and wine. The
results indicated that the developed method is easy to operate and has the potential to
be applied in the routine analysis of OTA in food samples [103]. Based on MIPs with
electrochemical techniques, strategies can also be applied to detect deoxynivalenol in
spiked beer and wine [104], and patulin in wheat flour [105].
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4.4. Food Additives

Food additives are substances used in food to preserve flavor and improve taste,
appearance, or other properties [106]. It is legally allowed to add a certain measure of
food additives; however, the type of additives, the scope of use, the maximum amount of
additives, and the residues are strictly regulated [107]. However, many food additives are
inappropriately used in food for profit, and these substances are harmful to humans [107].
Various methods have been used to detect food additives in a sensitive, selective, and
accurate manner. Analysts preferred MIP-based electrochemical sensors among them.
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Qin et al. developed a GCE sensor modified by graphene oxide (GO) decorated with
Ag NPs [108]. Under optimal conditions, the proposed sensor has a wide range and a
low limit of sunset yellow. This demonstrated that the sensor could be a reliable and
straightforward method for practical sunset detection. The GO materials maximize the
availability of the nanosized surface and provide fast mass transport to the binding sites.
Another example is using a MIP-based sensor to detect butyl-hydroquinone (TBHQ) in
spiked edible oil (Figure 8). The sensing phase of the sensor was built on the surface using
MIPs, Pd Au nanoparticles, and reduced graphene oxide (GO). The sensor demonstrated
good binding kinetics to TBHQ and high stability, selectivity, and sensitivity, with a LOD
of 0.28 mol/L, and HPLC confirmed the results [109]. Some additives have a similar
structure, such as sunset yellow and tartrazine. To distinguish them, Li et al. created an
electrochemical sensor based on MIP to measure amaranth [110]. The sensor demonstrated a
broad linear correlation range with low LOD and high recoveries, distinguishing amaranth
from sunset yellow and tartrazine analogs, and was effectively used to assess amaranth in
soft drinks.
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Figure 8. A schematic fabrication process of the MIP−based sensor for TBHQ detection. Adapted
with permission from Ref. [109]. Copyright 2029, Elsevier.

4.5. Illegal Additives

Illegal food additives are nonfood substances prohibited in human food [111]. Melamine
includes many nitrogen elements extensively employed in many fields, especially dairy
products [112–115]. However, the illegal use of melamine in dairy products can harm
humans and animals [115]. The U.S. Food and Drug Administration (FDA) and China’s
Ministry of Health have stipulated melamine amounts [116]. Because of the advantages of
MIPs coupled with electrochemical sensors, they are also used for melamine. Chen et al.
prepared a facile sensor-based GCE modified with Au and polyaniline composite (Au@PANI)
to amplify the sensor signal and increase the electrode. Then, the template melamine was
further assembled onto Au@PANI. This sensor presents a simple but efficient low detection
limit for melamine [117].

Clenbuterol is another illegal additive often used as a therapeutic drug for pulmonary
disease. However, it is often misused in veterinary feeds to improve growth rates and
increase lean muscle proportions [118]. To detect it rapidly and accurately, Zhao et al. [119]
used clenbuterol hydrochloride (CLB) as the template molecule and pyrrole as the func-
tional monomer to prepare MIPs on Fe2O3@Ru(bpy)3

2+, and the prepared MIPs were
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applied to deposit the electrochemiluminescence (ECL) sensor. The fabrication steps of
the ELC sensor are presented in Figure 9. The change in the ECL signal showed a linear
standard curve with the concentration of CLB, and it showed low LOD and good recoveries,
which can be used in practical life with high value.
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Figure 9. The different steps for the preparation of the sensor. Fe2O3 was used as the carrier to
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increased when the polymer was eluted from the MIPs (a), and the signal decreased (b) when the
CLB rebinding to MIPs. Adapted with permission from Ref. [119]. Copyright 2022, Elsevier.

4.6. Environmental Organic Pollutants

Persistent organic pollutants (POPs) are toxic and very persistent in soils, ranging
from decades to centuries. They can be transported from local to global sources and bioac-
cumulate in the food chain, causing several health hazards and environmental effects [120].
POPs, which include PCDD/Fs, PCBs, and organochlorine pesticides (OCPs), are among
the most significant and risky contaminants in soil [121].

PAHs (polycyclic aromatic hydrocarbons) are a class of organic pollutants that consist
of at least two fused benzo rings. To detect them, Latif and colleagues synthesized MIPs
based on a screen-printed interdigital gold electrode and used it as a conductometric sensor
to determine PAHs [70]. The results from the conductive measurement showed that the
sensor could detect PAHs with a LOD of 1.3 × 10−9 mol/L, which was selective and sensi-
tive for anthracene detection in water. 2,4-Dichlorophenol (2,4-DCP) is a highly poisonous
chlorophenol compound that has long-term effects on humans and animals. PDA-rGO
was synthesized by Liu et al. and used as a supporting surface for the MIP (Figure 10).
Based on this sensor, a specific and sensitive 2,4-DCP electrochemical sensor was developed
and successfully applied to a water sample [122]. Since PCBs have no electrochemical
activity, reports in the literature about electrochemical methods for detecting PCBs are
limited. Beta-cyclodextrin (β-CD) has a special structure that can enable ferrocene to form
host-guest inclusion complexes. PCB compounds can replace ferrocene in the cavity owing
to their higher affinity toward β-CD. Based on this concept, an electrochemical sensor was
built for the ultrasensitive detection of PCBs through a decrease in the ferrocene DPV signal,
with a detection limit of 5 × 10−13 mol/L [123].

4.7. Heavy Metal Ions

Heavy metals are toxic and persistent chemical elements regardless of their concentra-
tion. Increased industrial activity and urbanization have led to heavy metal accumulation
in soil and water sources. They can be transduced from local to global levels so that they
may pose risks and hazards to humans and the ecosystem [124]. As shown in Table 5, some
applications of electrochemical MIP-based sensors for monitoring metal ions in water and
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soil samples were observed. This section mainly introduces MIPs based on electrochemical
sensors for common and toxic heavy metal ion detection, such as Pb2+, Hg2+, As3+, Cd2+,
and Cr3+.
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Table 5. Detection of heavy metal ions by different MIP electrochemical biomimetic sensors.

Electrochemical
Techniques

Functional
Monomer Target Polymerization

Method
Electrode

(Modified) Sample LOD
(mol/L) Linear Range (mol/L) Ref.

CV 4–vinyl
pyridine Pb2+

Suspension
polymeriza-

tion
GCE Water, fruit

juice 2.4 × 10−10 4.8 × 10−10–3.5 × 10−7 [125]

SWV Itaconic acid Hg2+
Precipitation
polymeriza-

tion
CPE Water 2.9 × 10−11 1.0 × 10−10–2.0 × 10−8 [126]

CV
o–

phenylene-
diamine

AS3+ Electropolyme-
rization

GE
(IIP–NPG) Water 7.1 × 10−12 2.0 × 10−11–9.0 × 10−9 [127]

DPV MAA Cd2+ Bulk poly-
merization CPE (IIP) Spiked water,

rice, blood 1.99 × 10−9 4.0 × 10−9–5.0 × 10−7 [128]

ISEs Itaconic acid Cr3+
Thermal

polymeriza-
tion

CPE (IIP–
MWCNTs)

Sea, river
water, soil 5.9 × 10−7 1.0 × 10−6–1.0 × 10−1 [129]

Dahaghin et al. created a GPE with magnetic ion-imprinted nanoparticles Fe3O4@SiO2@IIP
for efficient Pb2+ recognition in water and fruit juice [125]. For the synthesis of Fe3O4@SiO2@IIP, 4-
vinyl pyridine was chosen as the functional monomer, and 2-(2-aminophenyl)-1H-benzimidazole
was used as a binding ligand (Figure 11). The results showed that the developed sensor had
excellent recognition behavior toward Pb2+ ions, with a low detection limit (2.4× 10−10 mol/L)
and a wide linear concentration range (4.8 × 10−10-3.5 × 10−7 mol/L). Another study by
Alizadeh and colleagues reported a sensitive electrochemical sensor based on CPE coated
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with MWCNTs for detecting Hg2+ in environmental water samples [126]. It demonstrated
acceptable sensing behavior toward the target Hg2+ ions over a linear concentration range
of 1.0× 10−10 mol/L to 2.0 × 10−8 mol/L, and the detection limit was 2.0 × 10−10 mol/L.
Moreover, Ma et al. developed a gold electrode (GE) that was modified by an ion-imprinted
polymer (IIP) and nanoporous gold (NPG) for As3+. The developed sensor demonstrated good
reliability and specificity and was successfully applied to quantify As3+ in water [127]. Based on
the same theory, different modification strategies are also used for Cd2+ [128] and Cr3+ [129].
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5. Conclusions and Perspective

Small molecule chemical contaminants, such as mycotoxins, antibiotics, and pesti-
cides, negatively influence human health and the environment. Therefore, developing
rapid, accurate, and efficient analysis requirements is essential to detect these contami-
nants. Compared with traditional detection methods, electrochemical sensors overcome
many limitations and promote efficiency, sensitivity, and low-cost detection with innovative
miniaturized equipment. This view demonstrates the MIP sensing mechanism, summarizes
the preparation methods, and introduces MIP characterization and performance evaluation.
Second, electrochemical classification and its advantages and disadvantages are discussed.
Moreover, we emphasize the application of MIP-based electrochemical biomimetic sensors
for antibiotic residues, pesticide residues, toxins, food additives, illegal additions, envi-
ronmental organic pollutants (POPs), and heavy metal ions. MIP-based electrochemical
sensors for contaminant detection demonstrated a significant improvement.

Although MIPs have demonstrated their potential as recognition elements, the re-
quirement for an extremely low LOD is still challenging. The sensitivity and affinity of
MIPs are typically improved through nanomaterials, and strategies for improving MIP
sensitivity are available here. This has inspired researchers to develop new and innovative
MIP sensors for target molecule detection. Therefore, more nanomaterials and other new
materials should be investigated in the future. There is no specific method for imprinting a
specific class of molecules. As a result, the synthesis process and the functional monomers
must be determined experimentally. Functional monomer investigation is also needed, and
they may collaborate with other advanced technologies. For example, computational stud-
ies [118], reported in a few publications, are increasingly used to select suitable functional
monomers.
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