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Abstract: Infrared thermography techniques with thermographic data analysis have been widely
applied to non-destructive tests and evaluations of subsurface defects in practical composite materials.
However, the performance of these methods is still restricted by limited informative images and
difficulties in feature extraction caused by inhomogeneous backgrounds and noise. In this work,
a novel generative manifold learning thermography (GMLT) is proposed for defect detection and
the evaluation of composites. Specifically, the spectral normalized generative adversarial networks
serve as an image augmentation strategy to learn the thermal image distribution, thereby generating
virtual images to enrich the dataset. Subsequently, the manifold learning method is employed for the
unsupervised dimensionality reduction in all images. Finally, the partial least squares regression is
presented to extract the explicit mapping of manifold learning for defect visualization. Moreover,
probability density maps and quantitative metrics are proposed to evaluate and explain the obtained
defect detection performance. Experimental results on carbon fiber-reinforced polymers demonstrate
the superiorities of GMLT, compared with other methods.

Keywords: non-destructive evaluation; deep learning; thermographic data analysis; generative
adversarial network; defect detection; manifold learning

1. Introduction

As one of the advanced composite materials, the demand for carbon fiber-reinforced
polymer (CFRP) in new energy, equipment manufacturing, and other fields is growing
rapidly [1]. Research on its nondestructive evaluation (NDE) and structural health mon-
itoring has become a necessary and interesting topic. During the manufacturing and
long-term service of CFRP products, defects are inevitably generated inside the materials.
The unknown sizes, shapes, locations, and physical properties of the defects make the NDE
study of CFRP a challenge. Infrared thermography (IRT) [2], as a classical non-destructive
test technique, has gained wide interest in CFRP quality assessment and cultural heritage
restoration [3–7]. Although IRT offers several advantages in terms of detection efficiency,
its direct performance does not provide satisfactory results. In most practical investiga-
tions, inhomogeneous backgrounds and noise mask the objects in IRT-recorded thermal
images. Moreover, the manual inspection of each thermal image is time-consuming and
laborious, and the detected results are ambiguous. Therefore, processing and analyzing
thermographic data has become an important procedure to enhance the accuracy and scope
of IRT applications, which has emerged as a growing concern for IRT researchers.

Machine learning methods have been widely utilized in various fields over the last two
decades [8–10], including the processing and analysis of thermograms in IRT-based defect
detection. Typical thermographic data analysis methods include principal component ther-
mography (PCT) [11], sparse PCT [12], thermographic sequence reconstruction (TSR) [13],
blind source separation [14], autoencoder [15], and convolutional neural networks [16]. It

Polymers 2023, 15, 173. https://doi.org/10.3390/polym15010173 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym15010173
https://doi.org/10.3390/polym15010173
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-5573-1781
https://orcid.org/0000-0002-4066-689X
https://orcid.org/0000-0001-5190-7815
https://orcid.org/0000-0002-0025-6175
https://doi.org/10.3390/polym15010173
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym15010173?type=check_update&version=2


Polymers 2023, 15, 173 2 of 15

is worth mentioning that manifold learning [17–19] methods recently introduced into the
field of thermography show promising defect detection performance [20,21]. Nevertheless,
it is difficult to obtain an accurate and explicit mapping from the input data manifold
to the output embedding in the manifold thermography method because of the serious
collinearity between the thermal images. Additionally, due to the limited thermal images,
the performance of most thermogram analysis models aforementioned is restricted, and
there is still potential for improvement.

Obtaining informative data is one feasible way to improve the performance of machine
learning algorithms, especially in tasks where short or small data problems exist [22]. In
cases where data acquisition is costly or even impossible, data augmentation methods are
an alternative way to artificially increase the training dataset. For small data problems
of tabular or numerical type, data augmentation approaches can be divided into two
main subclasses: columnar methods and row-wise methods. Among them, the input
doubling method is a class of representative methods [23,24]. However, if we talk about
image data, the generative adversarial networks (GAN) family has become promising
as a notable data augmentation method in recent years. It has shown high efficiency
in enlarging image datasets and has been increasingly applied in various fields [25–27].
Recently, GAN employment in IRT has been reported. Guei et al. [28] presented a deep
learning framework using GAN-based augmented data for IR face image super-resolution
improvement and showed good results. Liu et al. [29] proposed a generative PCT (GPCT)
method to improve the PCT-based defect detection performance in composites. However, to
the best of our knowledge, the fusion framework of GAN-derived methods with manifold
learning methods with nonlinear feature extraction has been rarely investigated, which
may be a breakthrough to enhance the accuracy and reliability of IRT defect detection
and evaluation.

The aim of this work is to facilitate the success of thermography-based defect de-
tection through data augmentation and analysis, achieving an accurate inspection of the
geometric properties of subsurface defects in the specimen. The main contributions can be
summarized as follows:

1. A generative manifold learning thermography (GMLT) method is proposed for defect
detection and the evaluation of polymer composites.

2. The spectral normalization generative adversarial network (SNGAN) is designed as a
thermogram augmenter which enlarges the dataset; the isometric feature mapping
(ISOMAP) manifold learning is adopted to learn the intrinsic geometric structure of
the nonlinear thermographic data; and the partial least squares regression (PLSR)
latent variable method is proposed for visualizing defects.

3. A quantified defect–background separation index is developed for the performance
evaluation of different methods. Experiments on CFRP specimens demonstrate the
advantages of the proposed GMLT method. The probability density plot is used for
model interpretation.

2. Thermal Image Data Structures

In IRT defect detection, the experimental system is an indispensable experiment
foundation, which provides the thermal images directly for subsequent thermographic
data analysis methods. Here, the main components and functions of the IRT system are
briefly introduced so that the readers can better understand its working principle and refer
to it in practice. Figure 1 shows the general infrared system that contains three components:
an excitation heat source comprising one or two flash lamps, an infrared camera, and
a computer.
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Figure 1. Flash thermographic NDT configurations: (a) experimental set-up; (b) schematic set-up. 

The operation process of each component of the IRT system is described briefly. First, 
the flash lamp is used as the heat source to emit thermal pulses for heating the specimen. 
Then, an infrared camera is used to record the surface temperature pattern of the test 
specimen during the cooling stage. Finally, the captured thermal images are stored on a 
computer for subsequent analysis. As shown in Figure 2, the temperature pattern is rec-
orded as a ( )x y tN N N× ×  hyper-image, which may be viewed as a series of thermograms 
recorded at Nt sampling instants. Each thermogram is x yN N×  in size. For each pixel, the 
color indicates the surface temperature at the corresponding location. Each pixel corre-
sponds to a temperature change signal measured at the Nt-th time instant. Moreover, as 
shown in Figure 2, for most of the thermal image analysis methods, it is necessary to con-
vert the three-dimensional (3D) thermographic data into a 2D matrix by stretching each 
thermogram into a 1D vector [11–14]. 

 
Figure 2. The 3D thermographic data sequence and 2D raster-like matrix. 

3. Methodology 
In this section, a deep learning-based GMLT framework is established to facilitate 

IRT defect assessment. As shown in Figure 3, the framework consists of four parts, includ-
ing SNGAN-based thermogram augmentation, ISOMAP manifold learning, visualization 
of defect patterns using PLSR, and quantitative indicators for method evaluation. 

Figure 1. Flash thermographic NDT configurations: (a) experimental set-up; (b) schematic set-up.

The operation process of each component of the IRT system is described briefly.
First, the flash lamp is used as the heat source to emit thermal pulses for heating the
specimen. Then, an infrared camera is used to record the surface temperature pattern
of the test specimen during the cooling stage. Finally, the captured thermal images are
stored on a computer for subsequent analysis. As shown in Figure 2, the temperature
pattern is recorded as a (Nx × Ny)× Nt hyper-image, which may be viewed as a series
of thermograms recorded at Nt sampling instants. Each thermogram is Nx × Ny in size.
For each pixel, the color indicates the surface temperature at the corresponding location.
Each pixel corresponds to a temperature change signal measured at the Nt-th time instant.
Moreover, as shown in Figure 2, for most of the thermal image analysis methods, it is
necessary to convert the three-dimensional (3D) thermographic data into a 2D matrix by
stretching each thermogram into a 1D vector [11–14].
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3. Methodology

In this section, a deep learning-based GMLT framework is established to facilitate IRT
defect assessment. As shown in Figure 3, the framework consists of four parts, including
SNGAN-based thermogram augmentation, ISOMAP manifold learning, visualization of
defect patterns using PLSR, and quantitative indicators for method evaluation.
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3.1. SNGAN-Based Thermogram Augmentation

Data augmentation has become one primary method of saving data collection costs to
solve small data problems [28–30]. For the thermographic data analysis, a critical factor
restricting the performance of the thermography method is the limited number of thermal
images. Therefore, it is a natural idea to adopt the data augmentation strategy to solve
the challenge of the insufficient amount of data faced by thermography methods. Among
the data augmentation techniques, thanks to the clever game structure design, GAN
and its derivatives perform well in several application scenarios and provide promising
solutions [26–29]. In this work, SNGAN [25], as an improved GAN algorithm, is used as a
data augmentation tool to augment the dataset and enrich the diversity of the data.

The SNGAN contains two deep neural networks, one is a generator and the other is a
discriminator. Compared with the GAN, the other structures of SNGAN remain unchanged,
but the weight matrix of the discriminator is spectrally normalized [25]. This structure im-
provement allows SNGAN to obtain good capabilities without the intensive adjustment of
the hyperparameters, whereas the implementation is simple, and the additional calculation
is small. Specifically, spectral normalization is performed on the weight matrix Wi of each
layer of the discriminator [25]:

Ŵi =
Wi

σ(Wi)
(1)

where Ŵi is the weight matrix after the spectral normalization of each layer; σ(Wi) is the
spectral parameterization of the weight matrix (i.e., L2 matrix norm of Wi). At this time, all
layers of the discriminator satisfy the 1-Lipshcitz limit, and the entire discriminator meets
the 1-Lipshcitz limit. In this way, SNGAN solves the legacy problem of the Wasserstein
GAN and has better data generation capability than the general GAN [25].

The SNGAN-based thermography augmentation architecture is shown in Figure 4,
which is used to generate images similar to the original thermal image distribution. In this
model, the generator G contains one fully connected layer and four deconvolutional layers,
and the discriminator D contains one fully connected layer and three convolutional layers.
All the convolution kernels are set to 3 × 3. All the convolution steps of the whole model
are 2, except for the last deconvolution layer of G where the convolution step is 1. Figure 4
shows the structure of each layer and the number of neurons set. It should be emphasized
that the ReLU and tanh activation functions are used in the G network, while the leaky
ReLU activation function is used in the D network. More importantly, compared to the G
network, the D network performs spectral normalization at each layer in addition to the
use of batch normalization.
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3.2. ISOMAP-Based Manifold Learning Thermography

As a manifold learning algorithm, the ISOMAP [17] has been applied to the domain
of thermography and developed as a manifold learning thermography (MLT) method for
the detection of CFRP [20]. It distinguishes the inhomogeneous background, noise, and
defect features in thermal images, enabling the detection of defects effectively. However,
like most thermal image data analysis methods, the MLT method also faces the challenge
of thermogram shortage, which limits its defect detection performance.

In this work, the GMLT approach is proposed to address the challenge of insufficient
thermographic data. Section 3.1 presents the details and procedures of the thermogram
augmentation. This section introduces how to build the ISOMAP manifold architecture
for feature extraction in the GMLT framework. It is assumed that the IRT experiment
obtains a 3D thermographic dataset of (Nx × Ny)× Nt, representing Nt frames of Nx × Ny
thermal images. In the beginning, the 3D thermographic dataset is used as input data,
and the SNGAN data augmentation model is trained. The generated data have almost the
same distribution as the real thermographic data when the model converges. Finally, Ng
simulated thermal images are obtained. Similar to the original data, they are viewed as a
(Nx × Ny)× Ng 3D matrix.

Then, the original IRT data and the SNGAN-generated data are merged and prepro-
cessed. Specifically, the (Nx × Ny)× Nt dataset is merged with the (Nx × Ny)× Ng dataset
into a 3D-integrated dataset with dimensions Nx × Ny × (Nt + Ng). The merging process is
to attach the generated thermal images to the original dataset. As manifold learning often
deals with the eigendecomposition of a matrix, the 3D Nx × Ny × (Nt + Ng) integrated
dataset is transformed into an (Nx × Ny)× (Nt + Ng) 2D X. Each column of X is a one-
dimension expansion of a single thermal image, and each row is the temperature response
at a single pixel location. To reduce the computational effort and efficiently extract features,
a normalization procedure is performed on the matrix X = [x1, x2, · · · , xNt+Ng ] ∈ R(Nx×Ny).
This means that each column is subtracted from its mean and divided by its standard
deviation. For simplicity, the normalized matrix is still denoted by X.

Next, the ISOMAP method is implemented to solve the low-dimensional embedding
Y of X. Let each column xi of X be a sample. The k-nearest neighborhood algorithm is
used to construct the neighborhood graph H. After this, the Euclidean distance dX(xi, xj)
between two adjacent sample points, xi and xj, is calculated as the edge weight. Later, the
ISOMAP utilizes Dijkstra’s algorithm to find the shortest path and calculates the shortest
path distance dH(xi, xj) to estimate the geodesic distance between all pairs of points on the
manifold [19,20]. Specifically, the ISOMAP initializes dH(xi, xj) = dX(xi, xj) if xi and xj are
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linked by an edge; otherwise, dH(xi, xj) = ∞. For each value of r = 1, 2, ∞, Nt + Ng, in turn,
replace all the entries dH(xi, xj) by min{dH(xi, xj), dH(xi, xr) + dH(xr, xj)

}
. The matrix of

final values DH = dH(xi, xj) contains the shortest path distances between all pairs of points
in H.

Then, multidimensional scaling is applied to the matrix of distances DH = dH(xi, xj)
to construct the low-dimensional coordinates Y. Let the squared distances matrix
Si,j = (DH)

2
i,j and the centering matrix H be calculated as follows:

Hi,j = δi,j −
1

(Nt + Ng)
I (2)

where δij =

{
0 i = j
1 i 6= j

and I are an identity matrix.

Define the operator τ as follows:

τH = − HSH
2

(3)

After the eigenvalue decomposition of the matrix τH , the first d eigenvalues (in
descending order) {λi}d

i=1 and the corresponding d eigenvectors {τi}d
i=1 are obtained.

Finally, the ISOMAP dimensionality reduction result, i.e., the embedding matrix Y of the
input data X, is calculated, and Y =

[√
λ1τ1,

√
λ2τ2, . . . ,

√
λdτd

]T .

3.3. Defect Patterns Visualization Using PLSR

The main drawback of the manifold learning approach is that there is no explicit map-
ping from the input data manifold to the output embedding. When the ISOMAP method is
used for IRT data analysis, the low-dimensional embedding results do not provide direct
visual convenience for defect detection. Previously, the MLT method employed ordinary
least squares regression (OLSR) in finding the explicit mappings [20]. However, there is
serious collinearity in the thermographic data, resulting in unstable solutions and hence
affecting the visualization results.

Here, PLSR is used to solve the explicit mapping and give the procedure for defect
visualization [31]. One main reason is that it is competent for analysis scenarios where the
number of samples is less than the number of variables, and there are significant multiple
correlations in the independent variables. In this task, the PLSR model takes the column
vectors of the X and Y as samples and each row as a dimension. The column vectors of
matrix Y are normalized before the analysis. The multivariate model of PLSR is as follows:

X=VPT+E (4)

Y=UQT+F (5)

where X is the (Nx × Ny)× (Nt + Ng) thermographic data matrix; Y is the (Nx × Ny)× d
ISOMAP embedding matrix; V and U are the score matrices obtained after applying
principal component analysis (PCA) for X and Y, respectively; P and Q are the load
matrices obtained after applying PCA for X and Y, respectively; and the matrices E and F
are the corresponding error terms.

The relationship between X and Y cannot be established by directly using (4) or (5).
Regression analysis is performed on the score matrices V and U based on the correlation of
the column vectors to obtain the transformation matrix B:

U=VB (6)

where B=(VTV−1)VTU.
The transformation matrix B describes how matrix X is mapped by ISOMAP to the

embedding matrix Y, which can be used as a display mapping for ISOMAP dimensionality
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reduction. To visually defect defects, each column vector (noted as the indicator vector,
IV) of matrix B is reconstructed into a two-dimensional matrix of size Nx × Ny, and then
visualized as an IV thermogram using a Jet color mapping algorithm with high contrast
that can effectively highlight image details. Eventually, d IV images (d << (Nt + Ng)) with
the geometric properties (location, shape, and size) of the defects can be observed, thus
contributing to the efficiency and accuracy of defect detection by IRT.

3.4. Quantitative Indicators for Method Evaluation

The main goal of thermographic data analysis methods is to extract defect features
from the thermographic data. Indicators for evaluating the performance of different meth-
ods are developed for quantifying the extracted defect information. The thermographic
defect detection problem discussed in this work is an unsupervised learning task. There-
fore, indicators designed for supervised learning are generally not available. There are
few existing indicators that are suited to evaluating the performance of unsupervised
thermogram processing methods. Among them, the signal-to-noise ratio (SNR) [32] is a
popular and widely used criterion which reflects the ratio between defect information and
noise in the analysis results. It is calculated as follows:

SNR =
Mdef −Min

σin
(7)

where Mdef is the average value of pixel values in the defective area, Min is the aver-
age value of pixel values in the intact area, and σin is the standard deviation value of
pixel values in the intact area. The SNR is a dimensionless indicator. In situations
where the backgrounds are homogeneous, a large SNR value indicates a better defect
detection performance.

However, when the backgrounds are inhomogeneous, the SNR indicator often pro-
vides results against human experiences. The reason is that this index reflects the global
signal-to-noise ratio, while human beings identify defects based on the local contracts
between the defect regions and their surroundings. To solve this, this work proposes a
defect-background separation (DBS) indicator as a complement to SNR. It is calculated
as follows:

DBS =
|Mdef −Min |2

σdef
2 + σin

2 (8)

where the pixels of the defective area are recorded as one class, and the pixels of the intact
areas are denoted as the other. Mdef and σdef

2 are the average value and variance value
of the pixels in the defective area of the thermogram, respectively. Min and σin

2 are the
average value and variance value of the pixels in the intact area, respectively.

The DBS index evaluates the thermogram analysis methods from the perspective
of signal separation. Specifically, the DBS index quantifies the degree of separation of
information between defects and intact areas in the extracted features, which is related
to the ease of identifying defects with the naked eye and helps determine the shape
and location of defects. A larger DBS value indicates a larger inter-class distance and a
smaller intra-class distance, which means the defect is more separable from the intact area.
Therefore, a larger DBS indicates better defect identification results.

4. Experiments and Results
4.1. Thermogram Dataset Preparation

The shapes of defects in real industrial products composed of composite materials are
usually irregular and diverse. It is difficult to evaluate these products because the unknown
nature of its defects makes it impossible to judge the accuracy of the evaluation results.
In this experiment, a CFRP specimen was fabricated using the resin transfer molding
process [20]. The 20 carbon fiber sheets and epoxy resin used to form the CFRP specimen
had a thickness of roughly 1 cm and a planar size of roughly 18 cm × 18 cm. Three Teflon
strips were diamond, circle, and trapezoid., respectively. Each of them had an area of
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about 3 cm2 and were inserted into the carbon fiber sheets prior to the injection of ther-
mosetting resin into the fiber preforms that had been placed in a closed mold. The deepest
defect, which is diamond-shaped, is located under three layers of carbon fiber sheets, the
circular defect is located under two layers of fiber sheets, and the trapezoidal defect is
located under a single layer. A diagram of the CFRP specimen with defects is shown in
Figure 5, where each defect is located in a different plane and at a different depth. This dis-
tribution information is used to judge the results of thermographic data analysis methods
including GMLT.
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After the specimen is prepared, pulse thermography (PT) is used to detect internal
defects. PT [15,20] is one of the commonly used IRT techniques to detect defects. The
configuration of the PT system is shown in Figure 1, with a 3200 W
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s flash lamp to heat
the specimen by emitting thermal pulses. The parameters of the infrared camera are set
as follows: model, TAS-G100EXD, NEC type; sensor, uncooled microbolometer thermal
focal plane; resolution, 320 × 240 pixels; wavelength, 8–14 µm; temperature range, –40 to
1500 ◦C; sampling rate, 30 frames/second; and experimental layout, reflection mode.
Finally, a total of 90 thermal images were obtained in three seconds. The study subsequently
focused only on the 308 × 212 pixels region of interest in each thermogram. Figure 5
shows three thermal images recorded at different sampling instants, where the heavily
inhomogeneous background masks the defect information.

4.2. Defect Detection Results of CFRP

In this case, TSR, PCT, and MLT methods were performed to evaluate the subsurface
defects of CFRP specimens for comparison with GMLT. TSR, as a signal reconstruction
method, improves the spatiotemporal resolution of thermographic data by filtering the
data in the time direction. Figure 6 shows that the four thermograms reconstructed by the
TSR method appear to have the same visual state. Compared to the original thermograms,
the TSR reveals the rough location of the defects. However, TSR only applies a polynomial
filter in the time dimension; it does not take advantage of the large amount of spatial
information contained in the thermogram. Consequently, it is difficult to determine the
shape of the defect, and there is still a certain uneven background and noise in the images.
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As a representative data dimensionality reduction method, PCA and its extended
algorithm have been applied in thermography because of its ability to reduce noise and
simple implementation [11]. As shown in Figure 7, six principal component (PCs) images
of the PCT method show three types of information including uneven background, noise,
and defects. Compared to the original thermograms and the TSR method analysis results,
the PCT method obtains better performance for defect detection. PC1 mainly contains an
uneven background, while PC3 and PC4 show prefabricated defects, the location of which
is clear. However, the contrast between defects and intact areas in the PCT analysis results
is not conspicuous for defect identification.
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Figure 8 shows the ISOMAP-based MLT approach, which uses the PLSR method to
visualize defects. Notice that the MLT method here is an improved version compared
with the one used in ref. [20]. The target dimension is set to 6, and the number of nearest
neighbors is set to 5. Its results of defect detection are better than both TSR and PCT meth-
ods. The geometric characteristics of round and trapezoidal defects are clearly displayed
in IV1. In IV2, the deepest diamond defects are revealed. Other IVs do not show useful
information. In addition, the MLT method cannot display all the defects in one IV, which
has caused inconvenience to the inspection process.
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On a computer with 16 G of RAM, an Intel Core i7 CPU, and a Windows 7 operating
system based on the TensorFlow framework, the GMLT method is calculated and imple-
mented. The batch size is set to 5, the loss function is optimized using the Adam optimizer,
and the learning rate is set at 0.002 during the SNGAN training. The training parameters of
ISOMAP are: the number of neighbors is also 5 and the target dimension is 6.

It is inevitable to consider how much thermogram generation is appropriate in the
GMLT method. Too few generations are not conducive to the learning of the model, whereas
too many generations will not endlessly improve the model’s performance. In this work,
considering that there were 90 raw thermal images, 80 simulated thermal images were
generated. This is not guaranteed to be optimal, but after several tests, it was found that the
performance of the GMLT method is relatively robust when varying around this quantity.
Eventually, the whole dataset contains 170 thermal images. Figure 9a shows several
generated thermal images. Comparing Figures 5 and 9a, the original thermograms and the
simulated thermograms are visually similar. Both of them contain severe inhomogeneous
backgrounds from uneven heating and measurement noise. Defective information is
masked so that detection becomes difficult.
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As shown in Figure 9b, t-distributed stochastic neighbor embedding (t-SNE) [33] is
used to visualize the distributions of the generated and original data. The marked numbers
indicate the order of the original thermograms in the time sequence. It can be observed
that the generated images are distributed around the original image in the middle of the
sequence. A reasonable explanation is that the denoising and feature extraction ability of
SNGAN make it more inclined to generate images similar to the information part of the
training images [23]. In the original thermogram sequence, the first few frames contain
a lot of noise and an uneven background, the last few frames contain less temperature
contrast patterns, and the middle section contains the critical information that is the main
object of learning for SNGAN. Therefore, the GMLT method incorporating the SNGAN
data augmentation strategy has good defect detection performance.

The analysis results of the GMLT method are shown in Figure 10. It can be seen
that a few IV thermograms can determine the geometric characteristics such as the shape
and position of the defect. For details, IV1 extracts all the defect information, and their
distribution locations are obvious. Additionally, IV2 clearly shows the boundary of each
defect, which is more conducive to the identification of the defect shape. Compared with
the first three methods, the GMLT method has better information separation and noise
reduction, which promotes the reliability of IRT defect detection.
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Figure 10. Analysis results of GMLT method on three-defective CFRP sample: (a) IV1; (b) IV2;
(c) IV3; (d) IV4; (e) IV5; (f) IV6.

Table 1 compares the SNR values of several methods. Firstly, of the four methods,
the proposed MLT and GMLT methods outperform in defect identification, because both
have significantly larger SNR values than the other two methods. Secondly, it can be noted
that the GMLT method has a significantly larger SNR value in all defects compared to the
MLT method, which shows that the GMLT method better detects all defects. In addition,
for individual defects, the GMLT method has a larger SNR value than the MLT method
for diamond and circular defects, while the latter has slightly higher SNR values than
the former for trapezoidal defects. In our opinion, such a slight difference in the SNR
value indicates that the ratio of signal to noise in the visualized thermogram is similar for
both methods.
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Table 1. Comparison of SNR values of various methods.

SNR

Diamond defect Circular defect Trapezoidal
defect All defects

TSR 0.64 1.61 1.39 1.32

PCT [11] 1.98 2.01 3.81 1.78

MLT [20] 2.33 2.50 4.21 2.35

GMLT 2.64 2.83 4.19 2.64

The DBS values of several methods are listed in Table 2. It can be seen that GMLT has
significantly the largest DBS values for both individual defects and all defects, indicating
its best performance in separating defects and background information. In summary, the
evaluation results of both metrics demonstrate that the GMLT method shows good IRT
defect detection performance in composite materials.

Table 2. Comparison of DBS values of various methods.

DBS

Diamond defect Circular defect Trapezoidal
defect All defects

TSR 0.30 1.61 2.07 0.86

PCT [11] 1.22 2.29 2.91 1.01

MLT [20] 1.63 3.76 3.37 1.75

GMLT 2.18 3.92 3.78 2.09

4.3. Benefits Analysis of Thermogram Augmentation

The results in the previous section demonstrate that the GMLT method outperforms
the MLT method in terms of defect identification, while the only difference between the
two is the fused thermogram augmentation strategy or not. To explore the impact or benefit
of data augmentation, the pixel distribution plots and probability density plots of MLT and
GMLT in the directions of IVs are plotted, respectively.

Taking Figure 11a as an example, the top-right subplot shows the distribution of pixels
in the IV1 and IV2 thermograms for the MLT method. The different colors and markers
indicate the pixels in different regions of the thermal image. It shows that different classes of
pixels are mixed together in a way that is difficult to distinguish. Therefore, the projections
of the pixels in the IV1 and IV2 directions are plotted and used to show the separation of
heterogeneous data. Although the projection map was intended to provide information
on which IV direction the pixels are better separated in, it is still not obvious. In such a
situation, the probability density plots are added to better show the separation of defect
from the background (i.e., the pixels in the intact region are in one category and the pixels
in the defective region are in the other category).
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Figure 11. Pixel distribution and respective projections and their probability density plots in IV1 and
IV2: (a) MLT; (b) GMLT.

As shown in Figure 11a, the probability density plot of the data in IV1 shows that the
data are better separated in that direction than in IV2. The DBS value in the lower left corner
of the figure indicates that IV1 is a better projection direction than IV2, and the data can be
better separated in this direction. As shown in Figure 7 for the MLT results, the defects of
IV1 are indeed clearer than that of IV2. Compared with Figure 11a, the probability density
plot of GMLT shown in Figure 11b on the same class of data on the IV1 projection is more
distinguished, indicating that the GMLT method can maximize the separation of defect
information from other information and achieve better defect detection results. Similarly,
Figure 12 shows the advantages of GMLT and the importance of the projection direction
with a probability density plot. Figure 12a shows that the MLT method has inferior data
separation in both the IV3 and IV4 directions, which corresponds to the undetectable defect
information in the IV3 and IV4 thermograms in Figure 8. In contrast, Figure 12b clearly
shows that the data are almost inseparable in the IV3 direction of the GMLT, and the data
are well separated in the IV4 direction, which is consistent with the defect information
detected by IV3 and IV4 in the GMLT result shown in Figure 10.
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In summary, the proposed GMLT method works well in the task of defect identifica-
tion. It demonstrates that thermogram augmentation is an effective way to improve the
performance of thermography analysis methods. A reasonable interpretation is that larger
datasets allow the GMLT model to build a neighborhood graph that reflects the inherent
structure of the data, and to obtain embedded components that retain its manifold after
dimensionality reduction.

5. Conclusions

Many NDE applications of IRT require machine learning-based data analysis models
to obtain faster and more accurate inspection results. The performance of existing thermo-
graphic data processing methods is often constrained by the limited thermogram dataset.
In this work, an image augmentation strategy was considered to solve the problem of data
shortage. A GMLT method was developed to promote the effectiveness of the IRT-based
defect detection and assessment. This method employed a SNGAN-based augmentation
strategy and PLSR to address the challenges of limited data and large display mapping
solution errors in the manifold thermography method, respectively. The feasibility and
superiority of the proposed method for detecting subsurface defects in CFRP specimens
were experimentally illustrated. The t-SNE visualizations and the DBS index denote that
the proposed method finds a better projection direction for compressing nonlinear thermo-
graphic data and obtains the intrinsic data structure. The limitation of this study is that the
time series properties of the thermograms were not considered during image augmentation.
Therefore, there is still room for improvement in thermogram augmentation for further
enhancing detection accuracy. In the future, the problem of how to find generated images in
a more efficient and effective manner, such as using 3D GAN, will be further investigated.
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