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Abstract: Understanding material behavior is key to discovering innovative applications in any
field. Regardless of the exciting mechanical properties of polyurea, there has been a limited effort in
studying the use of polyurea for structural retrofit and strengthening applications. This study aims to
understand the behavior of polyurea under different tensile loading conditions to provide critical
information towards enabling the future use of polyurea in structural applications. Several standard
coupons are tested under various tensile loading conditions to understand the mechanical behavior
of eight different commercial polyureas. The study provides the full stress–strain characteristic curves
that can be used for constitutive modeling purposes. The results show that polyurea has a wide range
of properties from low strength flexible nature to high strength rigid nature. All tested polyureas
displayed some level of rate dependency, i.e., ultimate strength is a function of loading rates. The
high-strength polyureas tested only show slight rate dependency and good strength retention under
cyclic and fatigue tensile loading, suggesting that polyureas have promising mechanical properties
for potential structural applications.

Keywords: polyurea; tensile loading; rate dependent loading; cyclic loading; fatigue loading;
structural polyurea

1. Introduction

The civil infrastructure across the United States is aging and deteriorating. The
demolition and replacement of infrastructures demands a massive investment of time
and money. Thus, the repair and retrofit of existing structures are preferred to extend
their service life. Significant research efforts are pursued to explore new materials and
methods for reinforced concrete strengthening or retrofitting, e.g., the application of fiber
reinforced polymers and glass fiber reinforced polymers wraps, steel plates [1], and steel
jacketing [2]. Although these methods are highly effective, their application is costly
and time-consuming. Thus, this research aims to explore the application of polyurea for
structural strengthening purposes.

Polyurea is a type of elastic polymer formed by the polymerization reaction of two
components, polyamine and diisocyanate, as shown in Figure 1. The polyurea has a chain-
type structure that accounts for its flexible nature and provides the ability to form a durable
coating over a surface. The polyurea application on a surface includes three general steps:
cleaning the surface, mixing components, and spray coating. Initially, the surface to be
coated is thoroughly cleaned and dried to bond the coating to the surface properly. For a
typical application, a pneumatic spraying device mixes the two polyurea components at the
required temperature and pressure and sprays the mixture in different layers perpendicular
to one another [3].

Polyurea coating has essential applications for blast resistance and shock proofing
in military defense as the material can absorb and dissipate high-rate energy [4–6]. The
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material has high durability, chemical resistance, and weathering resistance, making it
suitable for numerous applications in the coating industry that include aesthetics, hydro
isolation, leak proofing of chemicals, and corrosion prevention. Due to its good abrasion
resistance, it is used in industrial flooring and parking lots enduring heavy moving loads.
The strong adhesion property of polyurea enables the confinement of spalled concrete
fragments under regular [7–9] and blast loading [4].
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Several experimental studies have been conducted to understand the behavior of
polyurea under different loading conditions, establish their mechanical properties, and
develop predictive numerical models. Beyer et al. [7] assessed the compressive strength,
stiffness, and ductility of polyurea sprayed concrete cylinders subjected to accelerated
environmental conditions. Standard cylindrical concrete samples were tested for axial
compressive strength after being subjected to freeze and thaw cycles and deicing chemical
attacks. The results showed that polyurea coating provides good durability, adhesion, and
enhances ductility. Yi et al. [10] studied the rate-dependent stress–strain behavior of the
polyurea and polyurethanes under compression in strain rate loading ranging from 103/s
to 104/s. The polyurea showed a behavioral transition from a rubber-like material at lower
strain rates (10−3/s–10/s) to leather-like material behavior at high strain rates (~103/s).
Similar conclusions about the strain rate dependency due to the transition of the polyurea
material from rubbery to leathery phase under uniaxial compressive and tensile loadings
were provided by Sarva et al. [11], Raman et al. [12], and Wang et al. [13]. Holzworth [14]
prepared seven polyurea material types by changing the ratio of isocyanate to amine from
95% to 120% and tested them to determine the change in glass transition temperature and
mechanical properties. The results showed that the increase in the isocyanate content could
increase the stiffness of the polyurea material. Several material constitutive models of
polyurea have been proposed by Mohotti et al. [15], Wang et al. [13], and Guo et al. [16] to
define the tensile behavior of polyurea at high strain rates. Nevertheless, there is limited
knowledge in the literature on the properties of commercially available polyurea for loading
rates that are pertinent to civil and structural applications.

A large body of literature is focused on studying the polyurea behavior under blast
and impact loads and its applications. Davidson et al. [4] studied the blast performance of
polyurea-retrofitted masonry walls. The explosive testing results showed the remarkable
effects of polyurea as a retrofit coating to improve the confinement of blast fragments
for masonry walls. Hrynyk and Myers [17] investigated the out-of-plane behavior of
unreinforced masonry arching walls reinforced with polyurea and glass fiber reinforced
polymer (GFRP). The masonry walls showed a brittle failure under out-of-plane blast
loading. However, the use of polyurea retrofit increased the out-of-plane loading and
energy dissipation capacities of unreinforced masonry and reduced or prevented the
masonry debris scatter upon collapse. The polyurea coating application as a reinforcement
for different constructions, including reinforced concrete panels [18], steel plates [19], high-
performance cementitious composites [20], and as a helmet suspension pad material [5],
have been investigated under blast or impact loadings. Collectively these studies presented
polyurea as an excellent material for blast retrofit applications.

There has been limited literature on the structural application of polyurea under
regular loading conditions. Greene et al. [21] performed flexural and shear tests on eight
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beams specimens sprayed with polyurea with/without chopped E-glass fibers. A beam
with 6 mm polyurea coating showed a 23.8% increase in ultimate beam capacity in flexure.
Marwan et al. [22] investigated a total of sixteen reinforced concrete beams strengthened
with polyurea coating (ten in shear and six in flexure). Results showed an increase in
flexural capacity by 19.4% in shorter beams and 11.2% in longer beams for 6 mm thick
polyurea spray. Additional shear capacity of 42.5% in shorter beams and 28.2% in longer
beams were added by the 6 mm thick polyurea coating. Parniani and Toutanji [23] examined
the behavior of RC beams sprayed with polyurea under monotonic loading (1.5 mm/min)
and fatigue loading (sinusoidal loading with a load ratio of 0.2). Two thicknesses of
polyurea coating, 2.5 mm and 5 mm, were used. Results showed an increase in flexural
capacity by 9.2% and 17.2% for 2.5 mm and 5 mm thick polyurea spray, respectively. The
coating improved the ductility of the beams. A theoretical model for behavior of polyurea
strengthened beams under cyclic non-reversal flexural loading was proposed that showed
satisfactory results for midspan load-deflection for up to one million loading cycles. In other
studies by Greene and Myers [21], Carey and Myers [24], and Song et al. [25], polyurea
coating integrated with glass fibers showed a significant increase in flexural, shear, and
ductility of concrete members. Studies of sprayed polyurea on tensile strength of concrete
slabs by Rizwan et al. [26], crushing strength of concrete rings by Szafran and Matusiak [27],
and compressive strength of columns by Tuhin and Tazarv [8] showed that polyurea could
aid in improving the strength of the concrete members.

Despite the significant body of related literature as summarized above, there is still
a major knowledge gap that this study will contribute to. There is a lack of full compre-
hensive tensile stress–strain relationships for the wide range of readily and commercially
available polyurea under different tensile loading scenarios such as rate-dependent or cyclic
loading and unloading. Such fundamental and full stress–strain behavior is inevitable
for constitutive modeling, sectional analysis, and structural design for repair and retrofit
applications. Meanwhile, most of the previous work that focused on structural applications
did not provide the full material characterization of the adopted retrofit solution, which
hinders the expansion of those studies towards developing and calibrating analytical mod-
els or design guidance. Therefore, the main objective of this study is to understand and
document the full stress–strain tensile behavior under different loading scenarios of a wide
range of polyurea with varying strength and strain capacities. This research can provide a
catalog of different types of polyurea that can be used as first step to examine and investi-
gate the innovative structural applications of elastomeric polymers. The objective here is
to compare the tensile properties of commercial polyurea. For this purpose, monotonic,
rate-dependent, cyclic, and fatigue tensile tests are performed on a total of eight types
of commercial polyurea material coupons to evaluate and compare their tensile behavior.
Based on the discussed test results, we conclude the study by providing recommendations
on the polyurea material with promising mechanical properties for further research on
structural strengthening applications.

2. Materials and Methods
2.1. Polyurea Material

Eight different types of commercial polyurea materials are used in this study. Table 1
shows the list of polyurea materials with the commercial names, assigned material type,
and the characteristics according to the manufacturer datasheets [28–34]. Gel time is the
time for polyurea to become highly viscous and non-workable. Tack-free time is the time
the polyurea material surface becomes non-sticky.
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Table 1. Properties of polyurea used in the study based on the manufacturer’s datasheet.

Material Type (S#) Commercial Name Rupture Strength
MPa (psi)

Elongation at
Rupture Gel Time Tack Free Time

S1 Arostruct® 41.4
(6000) 2.5–3.5% 10–12 s 2 min

S2 Arostruct® with fibers * n/a n/a n/a n/a

S3 Bridge Deck Membrane 13.8
(2000) >250% 10 s 30 s

S4 Bridge Deck Membrane
Topcoat

13.8
(2000) >250% 90 s 2 min

S5 AquaVersTM-405
15.2

(2200) >500% 25 s 180 s

S6 SL/75TM 8.9
(1295) >406% 1 min 10 min

S7 Nukote PP300 55 ± 3
(8000 ± 500) 2 ± 1% 15–20 s 60–90 s

S8 Nukote HTD 26 ± 2
(3550 ± 250) 200–300% 5–15 s 30–45 s

* The information on the properties of the material was not disclosed by the manufacturer.

2.2. Coupon Preparation and Test Setup

Test coupons were cut out from carefully prepared polyurea sheets of various dimen-
sions. The coupons for testing were cut into two ASTM D638 [35] die types: die type I
and die type IV. Figure 2 shows a sample of the various coupon specimens cut out for the
tests. Test coupons of S3, S4, S5, S6, and S8 polyurea materials were prepared manually
using dies and a 1-ton Arbor press. However, S1, S2 and S7 polyurea materials were too
stiff for manual cutting. Therefore, the test coupons were cut from sheets using a water jet
device. Since the thickness of the coupons was nonuniform, we measured and averaged
the thickness of coupons at the two ends and the middle.
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Figure 2. Coupon samples of Polyurea materials (a) S1, (b) S2, (c) S3, (d) S4, (e) S5, (f) S6, (g) S7, and
(h) S8.

Different type of tensile tests that include monotonic, rate-dependent, cyclic, and
fatigue tests were performed to understand the mechanical behavior of polyurea materials.
All tests were performed using a 200-kN Instron® universal testing machine (UTM) that is
equipped with high-performance hydraulic grips for the proper testing of specimens with
various thicknesses. Coupon samples were placed in the UTM maintaining consistent grip
spacing. The inbuilt transducers in the Instron UTM recorded load and displacement data.
Figure 3 shows the test setup. Both die-type coupons for all polyurea material types were
tested for monotonic and rate dependent tensile tests. The die type I coupons of S1 and S7
materials were further tested for cyclic and fatigue tensile tests for full characterization, as
they showed promising strength properties for potential structural applications.
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2.3. Monotonic Tensile Tests

Uniaxial monotonic tension tests were performed for both ASTM D638 [35] die type
I and IV polyurea coupons. Loading rates for the coupons were evaluated based on the
ASTM recommendation. Four coupons for each die size were tested for the each polyurea
type. Since the stress–strain response behavior was observed to be consistent among the
four samples, only two coupons for the other die types were tested. Test matrix and loading
rates used for each polyurea material with the average thickness and number of coupons
tested are shown in Table 2.

Table 2. Test matrix, loading rates used, polyurea coupon thickness, and number of coupons tested.

Material Type Die Type Loading Rate Used
mm/min (in/min)

Average Coupon
Thickness mm (in)

Number of Coupons Tested

Die Type I Die Type IV

S1

I, IV

5.08 (0.2) 5 (0.197) 4 2
S2 5.08 (0.2) 6 (0.236) 4 2
S3 254 (10) 2 (0.079) 2 4
S4 254 (10) 2 (0.079) 2 4
S5 254 (10) 2 (0.079) 2 4
S6 254 (10) 4 (0.157) 4 2
S7 5.08 (0.2) 2.5 (0.098) 2 4
S8 254 (10) 2 (0.079) 2 4

2.4. Rate Dependent Tensile Tests

The coupon samples of polyurea were tested under three different loading rates se-
lected to represent typical structural applications, such as retrofitting for vehicular impacts
and seismic loading events. From the literature, strain rates in structures for vehicular
impact range from 10−4/s to 10−3/s [36] and for earthquake ground motions range from
10−3/s to 10−1/s, as observed by Li et al. [37]. This information, combined with the mea-
sured grip spacing compatible for test coupons, was used to estimate appropriate loading
rates according to the following relation (Equation (1)), where grip spacing corresponds to
the original length of the test coupons.

Loading Rate (in/min−1) = Strain Rate (min−1) × Grip Spacing (in) (1)

Based on the loading rates obtained using the strain rates from the literature quoted
above, the minimum loading rate chosen for rate-dependent tensile testing was 0.2 in/min
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(5.08 mm/min), the maximum loading rate was chosen to be 20 in/min (508 mm/min,
maximum loading rate capacity of the equipment), and the mean loading rate was selected
to be 10 in/min (254 mm/min).

The coupons used, test setup, and test procedure were similar to the standard ASTM
monotonic tensile tests. Table 3 shows the test matrix for the rate-dependent tensile tests.

Table 3. Test matrix for the rate-dependent test.

Material Type Die Types Loading Rates Used
mm/min (in/min)

Average Coupon
Thickness mm (in)

Number of Coupons Tested

Die Type I Die Type IV

S1

I, IV
5.08 (0.2)
254 (10)
508 (20)

5 (0.197) 2 2
S2 6 (0.236) 2 2
S3 2 (0.079) 2 2
S4 2 (0.079) 2 2
S5 2 (0.079) 2 2
S6 4 (0.157) 2 2
S7 2.5 (0.098) 2 2
S8 2 (0.079) 2 2

2.5. Cyclic Tensile Test

Die type I coupons of S1 and S7 polyurea materials were tested under non-reversal
cyclic tensile loading. The coupons, test setup, and data acquisition were similar to the
tensile tests previously discussed. The loading rate used for the test is 5.08 mm/min
(0.2 in/min). Three coupons for each polyurea material were tested under cyclic tensile
loading with a loading pattern as shown in Figure 4.
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2.6. Tensile Fatigue Test

Die type I coupons of S1 and S7 materials were tested for tensile fatigue loading. The
fatigue load used in this test is 70% and 90% of the average peak loading from the tensile
tests. The samples were loaded either up to 150 cycles or until the failure for each fatigue
load case. The test setup was again similar to the tensile test setup shown before in Figure 3.
The loading rate was 50.8 mm/min (2 in/min) for all polyurea coupons.

3. Results and Discussions
3.1. Tensile Behavior of Different Material Types

Load and displacement data acquired by the Instron UTM are post-processed to get
stress–strain values for the tests. Engineering stress values are calculated by dividing the
load values by the initial coupon sectional area at the narrow section, i.e., desired failure
location. Engineering strain values are obtained by dividing the extension values to the
original grip spacing measured at the start of the test. Figure 5 shows the average tensile
stress–strain plot generated by averaging the stress values at constant strain values from all
tested coupons for different die types and polyurea material types.
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Table 4 summarizes the yield strength, elongation, and ultimate strength of different
polyurea. The yield strength is calculated using the 0.2% strain offset method [38]. The
slope of the linear portion of the stress–strain curve is calculated to obtain the initial stiffness
of the polyurea material.

Table 4. Tensile tests results summary for eight different tested commercial polyureas.

Polyurea Material ASTM D638 Die
Type

0.2% Offset
Yield Strength

MPa (ksi)

Initial
Stiffness
MPa (ksi)

Rupture Strength
MPa (ksi)

Strain at Rupture
(%)

S1
Die Type I 27.7 (4.02) 1903 (276) 43.4 (6.29) 4.09

Die Type IV 28.5 (4.14) 2013 (292) 40.1 (5.81) 2.99

S2
Die Type I 52.5 (7.61) 3199 (464) 60.7 (8.80) 2.29

Die Type IV 54.6 (7.92) 3454 (501) 57.9 (8.40) 1.92

S3
Die Type I 6.0 (0.87) 110 (16) 19.3 (2.79) >339 *

Die Type IV 6.1 (0.88) 110 (16) 17.9 (2.59) >216 *

S4
Die Type I 4.3 (0.63) 110 (16) 15.9 (2.30) >331 *

Die Type IV 4.6 (0.66) 103 (15) 15.9 (2.30) >339 *

S5
Die Type I 2.8 (0.41) 48 (7) 11.7 (1.70) >376 *

Die Type IV 2.5 (0.36) 48 (7) 12.4 (1.80) >284 *

S6
Die Type I 1.0 (0.15) 14 (2) 6.6 (0.96) >274 *

Die Type IV 1.1 (0.16) 14 (2) 7.6 (1.10) >248 *

S7
Die Type I 25.65 (3.72) 1689 (245) 36.34 (5.27) 4.03

Die Type IV 23.99 (3.48) 1827 (265) 39.44 (5.72) 3.51

S8
Die Type I 10.5 (1.53) 310 (45) 23.9 (3.46) 179

Die Type IV 9.8 (1.42) 296 (43) 21.9 (3.17) 137

* The strain at rupture values for S3, S4, S5, and S6 material are approximate as the grip slippage occurred before
the coupons ruptured.

3.2. Tensile Behavior Comparison of Different Material Types

It can be observed from Figure 5 and Table 4 above that the ultimate stress values
for S1, S2, and S7 materials are higher than S3, S4, S5, S6, and S8 polyurea. However, the
rupture strain of S1, S2, and S7 materials is less than 4%, while the rupture strain of S3, S4,
S5, and S6 exceeds 100%. Figure 6 shows the combined average stress–strain curves from
monotonic tensile tests for different commercial polyureas. Figure 6a,c shows a comparison
for the high-strength S1, S2, and S7 polyureas, while Figure 6b,d compares the low-strength
S3, S4, S5, S6, and S8 polyureas for die types I and IV, respectively.

The strongest pure polyurea material is the S2 material with a maximum tensile
strength of 43.4 MPa (6.3 ksi), and S6 is the weakest material with a maximum strength
of 6.6 MPa (0.96 ksi). S2 polyurea has the highest strength of 43.4 MPa (6.3 ksi) but the
lowest ductility with a rupture strain of only 1.92%. S5 polyurea has the lowest strength
of 6.6 MPa (0.96 ksi) but the highest ductility with a rupture strain of 376%. A trend of
ductility loss with increased strength and initial stiffness can be seen in the comparative
results of the tested commercial polyureas. Moreover, these results confirm that S1, S2, and
S7 materials have high ultimate strength and larger initial stiffness and could be suitable
for structural applications.

Upon comparing the test results of standard coupons (die type I) of S1 and S2 materials,
the tensile strength of S2 material 60.7 MPa (8.8 ksi) is 1.4 times greater than that of
S1 material 43.4 MPa (6.3 ksi). However, the strain at rupture decreases to 1.92% from
2.99%. So, it is observed that the addition of glass fibers into the polyurea matrix increases
the material strength but reduces the ductility.
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Figure 6. Comparison of monotonic tensile stress-strain response of (a) ASTM die type I coupons of
S1, S2, and S7 material, (b) ASTM die type I coupons of S3, S4, S5, S6, and S8 material, (c) ASTM die
type IV coupons of S1, S2, and S7 material, (d) ASTM die type IV of S3, S4, S5, S6, and S8 material.

3.3. Rate Dependent Behavior of Different Material Types

Figures 7 and 8 show the average stress–strain curves generated from the rate-
dependent tests on the different commercial polyurea. For the loading rate of 0.2 in/min
and die type I coupons of S3, S4, S5, and S6 materials, test to failure encountered grip
slippage problems and long test time. So, the tests were terminated at the elongation of
2 in. The dotted lines are the projected estimate for the tests terminated.

Based on Figures 7 and 8, it is noted that the polyurea materials show some degree
of rate dependency. For all pure polyurea materials (S1–S8 except S2), the strength of
the polyurea increases with the increasing rate of loading, a trend commonly observed in
viscoelastic materials. The degree of the rate dependency is prominent in the S3, S4, S5, S6,
and S8 materials, while S1 and S7 materials show low rate dependency because of their
high stiffness. However, rate dependency for the S2 polyurea is not distinct compared to
other polyureas, which might have resulted from the addition of the glass fibers to the
polyurea matrix that increased material stiffness. The S1, S2, and S7 materials have been
shown to have high tensile strength and insignificant rate-dependent behavior.
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3.4. Cyclic Tensile Behavior of Selected Material Types

As the pure polyurea materials S1 and S7 showed desirable mechanical properties in
the monotonic and rate-dependent tensile test, they were rendered as the most promising
for potential structural applications, and in turn, were tested further under cyclic and
fatigue loading. Figure 9 shows the average stress–strain curve generated from the cyclic
tensile tests of the S1 and S7 polyurea.
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Figure 9. Average stress-strain curve for the cyclic tensile test of (a) S1 and (b) S7 material.

It is observed that the unloading curve of polyurea nearly overlaps the reloading
curve until the third cycle of loading. There is no distinct softening effect due to the
cyclic loading. After the polyurea coupon yields, the unloading and reloading curves get
separated, and plastic deformation is observed. The unloading stiffness for both materials
decreases gradually. This indicates the nonlinear behavior of the polyurea material. The
backbone curve of the cyclic test is consistent with the average tensile test’s stress–strain
curve showing only a slight decrease in strength under the cyclic loading as the material
enters the nonlinear phase. These results add to the suitable mechanical properties of
polyurea material for wide range of structural applications.

3.5. Tensile Fatigue Behavior of Selected Material Types

S1 and S7 material coupons are tested to failure or complete 150 cycles under 70% and
90% of the max loading obtained from tension tests results. Both S1 and S7 material coupons
endured 150 cycles for 70% of the max load. However, S1 material coupons failed at the
11th and 48th cycles for 90% of the max load. As for S7 material, both coupons endured the
complete 150 cycles for 90% of max load. Figures 10 and 11 show the stress–strain curves
for the tensile fatigue testing for both load ratios of the two materials.

For both tested polyurea material types, it is observed that the slope of the stress–strain
curve does not seem to change drastically, but a small plastic deformation is observed in
each cycle of the fatigue loading that accumulates with every cycle. These results suggest
that a further in-depth study of the fatigue load behavior for the polyurea material is
needed, which is suggested for future work.
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4. Conclusions

The study investigated the stress–strain behavior of commercial polyureas under
various tensile loading scenarios, such as monotonic loading, varying rate of loading, cyclic
loading, and fatigue loading. The results from the tensile monotonic tests showed that
polyurea could vary from high strength to low strength with an ultimate tensile capacity
of 43.4 MPa (6.3 ksi) and 6.62 MPa (0.96 ksi), respectively. Similarly, a wide variation in
ultimate strain can be observed that ranged from 2.99% to more than 376%. From the rate
dependency tests, it was seen that the S1 (Arostruct®), S2 (Arostruct® with fibers), and S7
(Nukote PP300) polyurea material types show insignificant rate-dependent behavior on the
loading rates equivalent to the strain rates due to earthquake loading. The rate-dependent
tests confirm an increase in the ultimate strength of polyurea with the increase in the rate of
loading, but with a decrease in ductility capacity. The cyclic loading tests for S1 (Aro-Struct)
and S7 (Nukote PP300) material show only a slight decline in strength, even under repeated
cyclic loading. These results concluded that S1 material (Arostruct®) and S7 (Nukote PP300)
polyurea types have the most promising mechanical properties and are thus the class of
polyureas recommended for structural applications.

The findings showed an increase in ultimate strength from S1 (Arostruct®) to S2
(Arostruct® with fibers) material due to the addition of glass fibers. So, it is proposed
that the addition of fibers might improve the polyurea properties for structural purposes.
Accordingly, more research is recommended for future studies to understand the behavior
of polyurea mixed with different type of fibers and the effect of fibers on the mechanical
properties of the composite material.

In closing, this study provides a comprehensive assessment of the tensile properties of
a wide range of polyureas under different loading scenarios. However, a key contribution of
this study is providing, for the first time, full stress–strain characterization and relationships
for this large range of polyureas, which can be readily used for constitutive modeling and
analytical investigations of future structural applications of polyurea.
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