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Abstract: Successful formation of electronic interfaces between living cells and electronic components
requires both good cell viability and performance level. This paper presents a technology for the
formation of nanostructured arrays of multi-walled carbon nanotubes (MWCNT) in biopolymer
(albumin) layer for higher biocompatibility. The layer of liquid albumin dispersion was sprayed on
synthesized MWCNT arrays by deposition system. These nanostructures were engineered using
the nanosecond pulsed laser radiation mapping in the near-IR spectral range (λ = 1064 nm). It was
determined that the energy density of 0.015 J/cm2 provided a sufficient structuring of MWCNT. The
structuring effect occurred during the formation of C–C bonds simultaneously with the formation of
a cellular structure of nanotubes in the albumin matrix. It led to a decrease in the nanotube defective-
ness, which was observed during the Raman spectroscopy. In addition, laser structuring led to a more
than twofold increase in the electrical conductivity of MWCNT arrays with albumin (215.8 ± 10 S/m).
Successful electric stimulation of cells on the interfaces with the system based on a culture plate was
performed, resulting in the enhanced cell proliferation. Overall, the MWCNT laser-structured arrays
with biopolymers might be a promising material for extended biomedical applications.

Keywords: arrays of carbon nanotubes; albumin; laser structuring; electrical stimulation; scanning
electron microscopy; Raman spectroscopy; growth of cells; heart cells; bioelectronics

1. Introduction

The development of biocompatible materials with specific properties represents an
important issue in biomedical research [1,2]. In this context, biocompatible conducting
materials are of special interest, e.g., for biomedical applications ranging from tissue
engineering, drug delivery, and bioimaging, to biosensing [3–12]. Particularly, tissue
engineering with electrical stimulation allows to regulate various cellular behaviors such

Polymers 2022, 14, 1866. https://doi.org/10.3390/polym14091866 https://www.mdpi.com/journal/polymers

https://doi.org/10.3390/polym14091866
https://doi.org/10.3390/polym14091866
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0001-6514-2411
https://orcid.org/0000-0002-4166-8408
https://orcid.org/0000-0002-3194-6064
https://orcid.org/0000-0002-5670-2058
https://doi.org/10.3390/polym14091866
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/article/10.3390/polym14091866?type=check_update&version=1


Polymers 2022, 14, 1866 2 of 21

as cellular adhesion, alignment, proliferation, or differentiation, and thus facilitate the
regeneration of damaged tissues, such as skin, bone, nerve, or myocardium tissues [13–19].

Carbon nanotube (CNT) is a unique material that provides an opportunity to sig-
nificantly enhance conductivity of the material while remaining its biocompatible prop-
erties [20–22]. CNTs have a number of useful properties, such as high tensile strength,
elasticity, thermal conductivity [23], electrical conductivity [24], and biocompatibility [25].
These properties indicate that the use of CNTs as a part of nanointerfaces for biomedical de-
vices can be promising. These interfaces may be used both for solving diagnostic problems,
e.g., reading signals from tissues with high resolution, and for transmitting electrical im-
pulses to cells [26]. It is known that electrical stimulation improves cell differentiation and
proliferation [27]. Ionic currents and electrical potentials inside cells affect the function and
development of cells and tissues [28]. Disruption or alteration of ionic gradients or surface
charges of cells via an applied electric field can lead to changes in cell signaling pathways
and gene expression, which lead to positive changes in differentiation, proliferation, and
cell motility [29]. Electrical stimulation of cells results in accelerated cell growth, improved
cell adhesion, enhanced interaction between cells, and increased cell viability [30–32].

One of the important applications of electrically conductive nanointerfaces in biomedicine
is the treatment of cardiovascular diseases (CVD), which are currently the leading cause of
death in the world [26,33]. An acute shortage of donor organs, along with an increasing
demand for them, prompts researchers to look for alternative ways of treating CVD [34].
Currently, there are two main approaches: injection of hydrogels with cells, and implanta-
tion of patches with cells and active substances [35]. The disadvantage of both approaches
is the low survival rate of the implanted cells, while the additional electrical stimulation
can increase their positive outcome rate. When developing an electrically conductive
nanointerface, it is necessary to ensure high reproducibility of characteristics and, using
a series of preliminary experiments, to select the optimal mode of cell stimulation that
improves their survival and does not lead to death [36]. The choice of materials that make
up the nanointerface is also important; they must have high biocompatibility and suitable
mechanical characteristics [37]. In order to enhance an effect from the electrical stimulation,
the alignment of CNT arrays can be performed [38]. In addition, aligned arrays of CNTs
promote orientation of cells in one direction, which has a positive effect on the transmission
of signals between them, which is especially important for ensuring contractions of the
heart tissue [39]. There are a large number of methods for orientation of CNT arrays [40–42].
However, preference is given to optical methods, which make it possible to change the
structure and shape of CNTs upon contactless exposure to an electromagnetic field [43–46].
When CNT arrays are treated with laser radiation, bonds are created between the walls
and ends of CNTs, due to which it is possible to achieve a decrease in contact resistance
and, as a result, higher electrical conductivity of structures and efficient transmission of
electrical impulses to cells [47]. In this case, the surface morphology, structure, and CNT
binding quality can vary with changes in the amount of energy reported due to changes in
the wavelength, power, intensity, and time of irradiation [48].

At the same time, covering the multi-walled carbon nanotube (MWCNT) arrays with
biocompatible polymers can improve cell survival in the area of contact with MWCNTs
and contribute to a more physiological transition from the hard surface of MWCNTs
to the soft surface of human tissues [49,50]. One suitable polymer for this purpose is
albumin, an important transport protein in the blood that provides many nutrients for
cells [51]. Albumin coatings are often used in cardiovascular engineering to reduce the
risk of thrombosis [52]. During laser treatment, albumin amino acids adhere firmly to
nanotubes, which increases the stability of the material [53].

It is known that it is possible to create nanocomposites from disordered systems
of carbon nanotubes in the albumin matrix, which are formed by evaporation of water–
albumin dispersion with nanotubes by laser radiation [53].

It has been established that nanotubes are functionalized by oxygen atoms of negative
residues of aspartic and glutamic amino acids, which are located on the outer surface of the
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albumin molecule [54]. There are two possible types of interactions between nanotubes
and biopolymer in a nanocomposite: (1) hydrophobic interaction and (2) formation of
covalent bonds. In this regard, there is a significant number of defects in nanotubes caused
by covalent attachment of oxygen to the graphene surface. Under the laser radiation,
nanotubes form contacts with each other, providing an electrically conductive network [55].
However, creating a homogeneous liquid dispersion with uniformly distributed carbon
nanotubes is an extremely difficult task [56,57]. Therefore, such a disadvantage relates to
the distribution of nanotubes inside a solid nanocomposite.

In this regard, attractive methods for obtaining planar nanocomposites with a uni-
formly distributed system of nanotubes will be the methods related to the use of initial
nanotubes that are firmly attached to the substrate and ordered.

Therefore, in this article we have proposed a technology for the formation of electrically
conductive materials based on vertical MWCNT arrays grown at a silicon substrate, which
were ordered and densely distributed over the substrate area.

To obtain biopolymer materials with contacts between nanotubes, vertical arrays, as
in [55], were coated with albumin and subjected to laser exposure. The morphology of
the obtained materials was characterized using electron microscopy, energy-dispersive
spectroscopy, and Raman spectroscopy. The effect of laser radiation energy density on the
morphology and electrical conductivity of nanomaterials was also described. With the help
of the developed installation, the applicability of the formed nanomaterials as interfaces for
electrical stimulation of the growth of connective and cardiac tissue cells has been proved.

2. Materials and Methods
2.1. Formation of Samples from MWCNT Arrays with Albumin

Arrays of multi-walled carbon nanotubes were first synthesized to form biocompatible
interfaces. MWCNT synthesis was carried out according to the following procedure.
N-doped 4,5 ohm-cm, (100) oriented silicon 4-inch wafer (Si-Mat, Landsberg am Lech,
Germany) was cut to samples with a size of 10 mm × 10 mm. A catalytic pair of Ti
(10 nm) and Ni (2 nm) was deposited on a substrate treated in a Piranha solution by the
electron beam evaporation method. MWCNT arrays were synthesized by catalytic plasma-
enhanced chemical vapor deposition using Nanofab 800 Agile setup based on the platform
PlasmaLab System 100 (Oxford instruments, Abingdon, UK). This process was followed by
the redox annealing in order to form catalyst nanoparticles on a substrate. The annealing
parameters were identical: oxidation at 280 ◦C for 5 min in O2 and Ar with RF plasma
of 100 W; reduction at 700 ◦C for 5 min in NH3 and Ar with RF plasma of 100 W. The
temperature rise time was 15 min. All stages were carried out in a single cycle without
breaking the vacuum. After the synthesis, the samples were cooled down to 280 ◦C within
30 min without the samples extraction, and then a hydrophilic treatment was performed.
The synthesis parameters are presented in Table 1.

Table 1. The synthesis parameters of MWCNT arrays.

Stage T, ◦C
Time,
min Pr, torr

P, W
(RF/LF)

Gas Phase

C2H2,
(cm3/min)

Ar,
(cm3/min)

NH3,
(cm3/min)

H2,
(cm3/min)

O2,
(cm3/min)

Oxidation 280 10 3 100/0 - 100 - - 100
Reduction 680 10 1.5 100/0 - 100 100 100 -
Synthesis 680 2 2 20/30 100 300 30 100 -

Hydrophilic
treatment 280 0.3 1 0/20 - 100 - - 100

To create a biocompatible interface, the MWCNT array was placed in a matrix of bovine
serum albumin (BSA). For this purpose, a suspension of distilled water and BSA (99%
purity, BioClot, Aidenbach, Germany) with a concentration of 5 wt.% was prepared. The
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BSA suspension was layered onto the MWCNT arrays using the spray deposition method.
To perform this, a modified E2V dosing system (Nordson EFD, Westlake, OH, USA) with
an outlet nozzle diameter of 0.5 mm was used. The distance between the sprayer and the
substrate was 10 cm. The suspension supply pressure was 2 bar. The samples were placed
on a heating table to evaporate water at temperatures up to 60 ◦C. Up to 50 layers were
applied to fully cover the MWCNT arrays.

2.2. Laser Structuring

To increase the electrical conductivity, MWCNT arrays were structured by exposure
to laser radiation. For this, a pulsed ytterbium fiber laser with a wavelength of 1064 nm
(pulse duration of 100 ns and pulse repetition rate of 100 kHz, power of up to 0.13 W) was
used. A galvanometric scanner with two mirrors (Figure 1) was used to position the laser
beam over the sample area.
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Then, the beam reached the objective, which focused the irradiation on the sample
surface into a 35 µm spot. The laser mapping step was about 100 µm. The energy density
ranged from 0.001 to 0.017 J/cm2. The optical setup was equipped with a distance sensor
for uniform irradiation of the sample area.

For the laser processing of samples, the scanning parameters were set via a specialized
software. The beam moved along a trajectory describing a square, which was filled with
lines with a slight overlap of laser spots on each other. This was performed in order to
compensate the intensity of the laser’s Gaussian beam profile. The beam movement speed
along the trajectory was 500 mm/s. The laser pulse lines were 5 mm long, parallel to each
other at a distance of 17 µm (Figure 1).

Thus, research included the following groups: 1. Si substrates with a synthesized
MWCNT array; 2. Si substrates with MWCNT array with BSA coating; 3. Si substrates with
a laser-structured MWCNT array with BSA coating at different radiation energies. Each
group contained five samples to obtain statistical results when reexamined. A substrate of
pure oxidized silicon was used for control.

2.3. Electron Microscopy

The study of samples’ topological features on Si substrates was carried out using
scanning electron microscopy (SEM) with FEI Helios NanoLab 650 (FEI Ltd., Hillsboro,
OR, USA). Accelerating voltage of electron column was 5 kV, and electron probe current
was 50 pA for MWCNT arrays. For samples coated with BSA, accelerating voltage and
electron probe current was 1 kV and 25 pA, correspondingly. Pressure in the vacuum
chamber was 3.9 × 10−4 Pa. The samples were attached to a conductive substrate using
a carbon tape. To study the morphological features of MWCNTs, transmission electron
microscopy (TEM) was used with a JEOL JEM-2100Plus complex at an accelerating voltage
of an electron column of 200 kV.

For this purpose, MWCNTs were mechanically transferred to a copper meshes. To
determine the size of the MWCNTs, distance measurements were carried out using the mi-
croscope Control software. A total of 15 repetitions were performed for each measurement.

2.4. Raman Spectroscopy

Raman spectroscopy is an effective tool for monitoring the structure of carbon nan-
otubes [58]. Since there is a high probability of lattice defects (vacancies), bends, and
curvatures within the synthesis of vertical MWCNT arrays, Raman spectroscopy is an
effective method for detecting such defects. Raman spectra of nanotube arrays contain
scattering bands G and D. With an increase in the nanotube defectiveness, the intensity
of the D-band increases compared to the G-band, since when bonds are broken in the
lattice, atoms with sp3-hybridized electrons appear outside the plane of the nanotube
layers [59]. Thus, the ratio of the intensities of the D and G bands is useful as a criterion for
the defectiveness of the structure based on MWCNT arrays. Sample spectra were obtained
in backscattering geometry on a LabRAM HR Evolution (Horiba Ltd., Villeneuve-d’Ascq,
France). The spectra were excited by an Ar laser (wavelength 514 nm, power 0.125 mW).
The 1800 gr/mm diffraction grating provided a spectral resolution of 0.5 cm−1. A BX41
microscope (Olympus Corp., Tokyo, Japan) and a precision motorized table were used
to focus the laser beam on the study area. The signal accumulation time was 15 s with
averaging over 3 spectra to improve the signal-to-noise ratio.

2.5. Electrical Measurements

We analyzed the samples’ resistance via four-probe measurement technique using a
multimeter (34401A, Keysight Technologies Inc., Santa Rosa, CA, USA). The resulting resis-
tance value averaged over several experiments was further evaluated into specific conduc-
tivity, considering the geometric dimensions of the sample, using the following equation:

σ = 1/r, (1)
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where σ and r are the conductivity and the resistivity of the samples, respectively.

2.6. Fibroblast Cell Culture on the Samples

Fibroblast cell line (FH-T), which was acquired at the cell culture collection of the
National Research Center for Epidemiology and Microbiology of the Ministry of Health
of the Russian Federation, was used. Cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM), 90% culture medium supplemented with 10% calf fetal serum in a
6-well plate. The samples for the cell line were prepared under sterile conditions. Directly
after preparation, they were irradiated with ultraviolet light for 20 min. Immediately prior
to the incubation, samples were rinsed in DMEM for 10 min to eliminate contaminants.
Then, samples were placed on the bottom of the wells of a 6-well culture plate, and a
few milliliters of the medium were poured into each well with the sample. After being
kept for a few seconds, the medium was removed. Finally, the medium with cells was
filled in. Determination of the exact number of cells taken in the experiment was carried
out immediately before seeding the freshly prepared culture mixture in the wells with
the sample, using an automatic cell counter (Scepter Millipore, Merck KGaA, Darmstadt,
Germany). The FH-T cell concentration was approximately ≈ 4 × 104 cells/mL. Cells were
incubated for 24 h in a thermostat with 5% CO2 at 37 ◦C. Further, under similar conditions
of the thermostat, electrical stimulation of cells was carried out for 48 h.

2.7. Cardiomyocytes Cell Culture on the Samples

Cardiomyocytes were obtained from the heart of a Wistar rat with the permission of the
local ethics committee of the National Research Center for Epidemiology and Microbiology
of the Russian Federation Ministry of Health. The rats were up to 3 months old. The rats
were placed in a glass container with gauze soaked in chloroform and the monitoring of
their condition was performed. After 40 min, the rats were placed into a state of anesthesia.

The selected material was transferred into a sterile Petri dish. Using scissors and
tweezers, they were dissected to pieces of 4–7 mm in size and washed twice with phosphate-
buffered saline to remove mucus and blood elements. Then, the fragments of the tissue
were poured with 0.25% trypsin solution at a temperature of 37 ◦C, and a sterile magnetic
anchor was inserted into the flask. Then, the detached cells, together with trypsin, were
poured into centrifuge tubes and placed in an ice cuvette to limit further action of trypsin
on the cells. A second portion of trypsin was added to the remaining tissue, and the flask
was placed on a magnetic stirrer. The rotation speed was adjusted in such a way to avoid
foaming of the contents of the flask. Trypsinization was performed 4 times, but not until
the tissue was completely depleted.

After the end of trypsinization, the resulting cell suspension was centrifuged at
1000 rpm for 20 min. The supernatant was decanted, and the cell pellet was resuspended
in DMEM medium with 10% fetal bovine serum at 37 ◦C and poured into a flask through a
filter. After stirring the cell suspension, two samples of 0.5 mL were taken. To each sample,
0.5 mL of 0.1% crystal violet in citric acid solution was added and then stirred. Then, a
drop of the suspension was placed in the Goryaev counting chamber and the number of
cells with a distinguishable nucleus and intact cytoplasm was counted. Fetal bovine serum
and antibiotic were added to the nutrient medium. Removal of culture during subculture
was performed on the 5th day. Culture flasks (mattresses) with cells were examined under
a microscope at 70× magnification and selected with a full monolayer and a transparent
medium. Viable cells had clear boundaries and typical morphology without pronounced
granularity and vacuolization.

The procedure for planting cardiomyocytes on a sample and culturing them was
similar to the above-mentioned procedure for fibroblasts.

2.8. Stimulation with Electric Field

Figure 2 shows a developed experimental setup for electrical stimulation of cell growth.
Acupuncture sterile needles made of gold-plated surgical steel with a diameter of 0.3 mm
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were used as electrodes in the electrostimulation device. Acupuncture needles are widely
used in a medical practice. The material they are made of has a high degree of biocom-
patibility with the human body, as well as the electrical conductivity that is necessary
for high-enough conducting electrical impulses. The needles were bent at a 90◦ angle.
Figure 2a schematically represents the position of the electrodes soldered to the breadboard
relative to the samples. The tip of the needle adjacent to the sample was also bent, forming
a loop-like shape. This was necessary to smooth the contact between the needle and the
sample. The other end was soldered to the breadboard, allowing the electrode to spring
into contact with the substrate’s surface. Each well of culture plate contained two electrodes
(positive and negative); the distance between them was 24 mm. In the lid of the culture
plate, two holes with a diameter of 0.4 mm were formed. Their lo-cation corresponded to
the position of the electrodes passing through the holes in the plate.
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cell growth.

The electrical stimulation setup consisted of a culture 6-well plate, electrodes, an
electric pulse generator, a power supply, and connection elements (i.e., electrical wires and
clamps) (Figure 2b).

As a power supply, a “Krona (6F22)” type rechargeable manganese–zinc salt battery
with a nominal voltage of 9 V was used. During the electrostimulation, all of the setup
elements were placed in the CO2 incubator. The incubator provided the necessary environ-
mental conditions (i.e., the temperature of 37 ◦C and the carbon dioxide content of 5%) for
the vital cells activity.

Based on MTT assay, it was found that optimal electrical stimulation of cell growth was
provided by an electrical pulse generator, producing a continuous sequence of electrical
pulses of 80 µV amplitude. The pulse duration was 2.5 ms, and pause duration was 1.2 s.

2.9. Cell Viability Study

Live cell staining was performed using 10 mg/mL fluorescein diacetate and 5 µg/mL
ethidium bromide (both Sigma-Aldrich, Darmstadt, Germany) in a supplemented cell
growth medium to stain mainly cells nuclei. Cells with fluorescein diacetate were incubated
for 15 min at 37 ◦C, and then with ethidium bromide for 5 min at 37 ◦C. The live imaging
was conducted at day in vitro (DIV) 1. The imaging was performed via a fluorescence
microscope (Olympus BX43, Olympus Corporation, Tokyo, Japan) and via a laser scanning
microscope (LSM880, Carl Zeiss, Berlin, Germany) using the Zen software (Zen 2.3 SP
1 FP3 Black, Carl Zeiss Microscopy GmbH, Jena, Germany). In each case, three images
were acquired. Pure silicon substrates without MWCNTs and cover glasses were used for
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control samples. In addition, the MTT assay was used to assess cell viability [60]. MTT
analysis was performed by determining the optical density on a microplate photometer
(Immunochem-2100, High Technology Inc., North Attleboro, MA, USA). The optical density
was proportional to the number of living cells. The culture medium was removed from the
wells of the tablet after the study. A total of 100 mL of pure nutrient medium and 20 mL of
MTT at a concentration of 5 mg/mL were added to each well. Then, the cells with MTT
were kept for 2 h in a CO2 thermostat. Next, the culture medium and MTT were removed,
and 100 mL of dimethyl sulfoxide was added. This was necessary for the dissolution of
formazane, which was restored by cells. Then, the cellular sediment was resuspended for
10 min and the optical density was measured at a wavelength of 492 nm. Cell viability was
calculated as the percentage of cells grown on nanocomposites in relation to the number of
cells grown in the control.

3. Results and Discussion

For the analysis of the MWCNT interface quality change after the laser structuring
and its biocompatibility (i.e., enhanced cell metabolism and cell functionality) with and
without electrical stimulation of cells, an in-depth investigation of the synthesized arrays
was performed. The morphology, which correlates to the surface quality of the result-
ing arrays, was tested via SEM, TEM, and Raman spectroscopy. Electron microscopy is
rather illustrative since it precisely provides a visualized proof of the qualitative surface
enhancement of MWCNT arrays. Moreover, these experiments (SEM, TEM, and Raman
spectroscopy) are well established for the characterization of the CNTs in general. Further-
more, the influence of laser structuring was analyzed together with electrical stimulation to
investigate the resulting cell proliferation. Herein, fluorescence microscopy measurements
provide qualitative and quantitative analysis.

3.1. Morphology of Interfaces Based on MWCNT Arrays with BSA

The synthesized MWCNT arrays were an ordered system of vertically aligned carbon
nanotubes. The average diameter was determined mainly by the size of the catalyst
nanoparticles formed on the substrate. The height of the array was ~2 microns (Figure 3a,b).
TEM images of nanotubes show the structure of individual multilayer nanotubes (Figure 3c).
The nanotubes had an outer diameter of 12–15 nm, the number of walls was 8–15, the
wall thickness was 3–5 nm, and the diameter of the inner channel was 4–7 nm. Defects
were present on the walls of the nanotubes, including outer walls [61,62]. Figure 3 marks,
with green ovals, transition regions in which there is a lower number of defects in the area
compared to that in the defect-free part of the nanotube framework.

It is known that laser exposure to nanotubes leads to the formation of covalent bonds
between carbon nanotubes [63]. C–C bonds are formed in the most radiation-heated
defective regions of the nanotube backbone due to reduced thermal conductivity in these
regions. Because of laser exposure, the synthesized vertical array of nanotubes (Figure 3b)
changes its morphology, namely, on the one hand, the nanotube frame bends, and on the
other hand, the nanotubes bind to each other (Figure 3d). That is, laser radiation with an
energy density of 0.013 J/cm2 contributes to the formation of a nanotubes network in the
array. Such MWCNT connections are highlighted in green in Figure 3d. It is also known
that the formation of a scaffold structure is possible under the action of laser radiation,
as was demonstrated in the case of scaffold based on single-walled carbon nanotubes in
a biopolymer matrix of albumin and chitosan [53,64]. This formed structure provides
increased electrical conductivity to the biopolymer material [55,65]. In this case, electrical
conductivity strongly depends on the morphology of the structure created from polymers
and a network of nanotubes [66]. In this regard, the morphology of interfaces based on
MWCNT arrays coated with BSA biopolymer before and after laser exposure with different
energy densities was analyzed using SEM (Figure 4).
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Figure 3. SEM (a,b) and TEM (c) images of MWCNT arrays on Si substrate before and after laser
exposure with an energy density of 0.013 J/cm2 (d). Green ovals show transition regions in which
there is a higher number of defects in the area compared to that in the defect-free part of the nanotube
framework. Nanotube binding regions are highlighted in green.

Figure 4a shows an SEM image of an MWCNT array coated with a layer of BSA
biopolymer. At the same time, nanotubes are not visible through the BSA layer. The
biopolymer surface was characterized by the presence of rare cracks up to 30 µm in size.
The study of cracks made it possible to detect nanotubes inside the biopolymer layer.
However, nanotubes no longer had a vertical, but a chaotic orientation (Figure 4b). Thus,
after synthesis, the nanotubes had a vertically oriented morphology. In addition, further
hydrophilic treatment in plasma Ar+O2 was carried out, which contributes to the wetting
of CNTs due to the formation of broken bonds [61]. When applying an aqueous suspension
of BSA by spray-deposition, the flow was directed perpendicular to the substrate [67].

This flow leads to a change in the distance between the nanotubes and the manifes-
tation of binding energies between individual nanotubes [68]. As a result, the nanotubes
are reoriented, as well as their intertwining and, in some cases, the formation of bundles
appeared [69]. In detail, the types of bonds and bond energies between CNTs and water in
various variations are shown in the article [70].

Nanotubes were also coated with a biopolymer layer. The possibility of wrapping
nanotubes with an albumin layer was described in [71]. Due to this, the nanotube diameter
increased by 20–40%.
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For the formation of interfaces, the energy density of pulsed laser exposure was
experimentally established, which ensures the structuring of MWCNTs in the BSA matrix
due to their binding to each other at the sites of defects. This process occurred at the energy
density of 0.011–0.015 J/cm2. At a lower energy density, the binding of nanotubes in the
array did not occur. The physical mechanism of the bonds formation between nanotubes
can be explained as follows: during the process of laser exposure with an energy density of
more than 0.011 J/cm2, energy is absorbed by electrons and converted into atomic energy.
The collision of phonons with carbon atoms leads to the formation of defects such as
vacancies and interstices in the nanotubes backbone due to the ballistic collision of electrons
with carbon nuclei [48]. Due to the moderate temperature, the mobility of such defects leads
to the breaking of C–C bonds in different MWCNT layers [72]. Chemical bonds are formed
on the contact surface of bound carbon nanotubes. This leads to a surface reconstruction of
the outer graphene layers and a decrease in their diameter. Crossed MWCNT joints are
formed in the area of the outer graphene layer, which provides welding with the formation
of heptagons and pentagons pairs of carbon atoms [73]. Figure 4c–e shows that when
exposed to laser radiation, the amount of albumin on the sample’s surface decreases with
an increase in energy density in the range 0.011–0.015 J/cm2.

It is also known that exposure to laser radiation on albumin leads to its ablation [74].
Figure 4f demonstrates that nanotubes in the BSA matrix formed a cellular structure. At
the same time, X-, Y-, and T-shaped joints between nanotubes formed at 0.015 J/cm2, as
Figure 4h shows. An increase in the energy density of more than 0.015 J/cm2 led to the
destruction, related to carbon sublimation (Figure 4i) [75], of the samples structure and a
decrease in electrical conductivity (Figure 4i).

The change in the concentration of chemical elements in the samples was estimated
by the results of energy dispersion spectroscopy (EDX) (Table 2). This method allowed
establishing the regularity of the change in the ratio of the chemical elements that make up
albumin with an increase in the energy density of the affected laser radiation. An increase in
the concentration of C atoms and a decrease in the number of N, O, and S atoms presented
in the amino acids indicates a decrease for albumin in the samples after laser exposure.

Table 2. Results of EDX measurements.

Element
Content in Initial

Sample (%)
(Figure 4a,b)

Content in Samples after Laser Treatment (%)

0.011 J/cm2

(Figure 4c)
0.013 J/cm2

(Figure 4c)
0.015 J/cm2

(Figure 4e,f)

C 70.7 ± 0.6 72.6 ± 0.8 75.4 ± 0.8 80.0 ± 0.7
N 16.3 ± 0.5 14.7 ± 0.6 12.6 ± 0.4 10.2 ± 0.5
O 8.6 ± 0.2 8.0 ± 0.3 7.7 ± 0.3 6.3 ± 0.2
S 2.6 ± 0.1 2.4 ± 0.1 1.8 ± 0.1 1.3 ± 0.3

Na 1.7 ± 0.1 1.5 ± 0.1 1.4 ± 0.1 1.2 ± 0.2

It is known that MWCNTs have a large number of defects in the carbon structure [53].
The number of defects in MWCNT arrays may vary as a result of external influences.
Therefore, in order to estimate the evolution of defectiveness after the laser structuring
(the ratio of the D and G bands’ intensities lowered with a decrease in the defectiveness
of the nanotubes [59]), a Raman spectroscopy of MWCNT arrays for both original and
laser-structured samples at 0.015 J/cm2 was performed. The Raman spectra of the obtained
samples include characteristic scattering bands G (~1585 cm−1) and D (~1350 cm−1), G’
(~2697 cm−1), and D+G (~2940 cm−1) (Figure 5). The ratio of D and G intensities in
the original sample was 1.98, while after laser structuring, this ratio decreased to 1.21.
Therefore, the laser influence leads to a decrease in the defectiveness of MWCNTs. A
similar effect was observed in [76,77]. At the same time, the intensity of the ~1350 cm–1

peaks somewhat decreases after laser exposure, which indicates that the selected laser
radiation energy density does not damage the main amount of MWCNTs [78]. The intensity
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of the G’ band (the overtone of the D band) decreased after laser treatment, which also
indicated a decline in the defectiveness of the CNT [79].
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Figure 5. Raman spectroscopy of MWCNT arrays after synthesis (green line) and under irradiation
with an energy density of 0.015 J/cm2 (red line).

Thus, the efficiency of the laser processing on the CNT arrays was established. As a
result of the laser processing, we achieved a controlled structuring of nanotubes, especially
at their upper ends.

3.2. Electrical Conductivity Measurements

Table 3 presents the results of measuring electrical conductivity of samples with and
without laser exposure. It was found that when the ratio of BSA and MWCNT changed
as a result of laser exposure, the electrical conductivity increased. At the same time,
higher electrical conductivity indicates the effective formation of a network of bound
nanotubes wrapped with albumin molecules. When exposed to a laser with an energy
density of 0.015 J/cm2, the value of electrical conductivity increased by more than two
times and amounted to 215.8 ± 10 S/m. A further increase in the radiation energy density
to 0.017 J/cm2 contributed to a decrease in electrical conductivity. Therefore, interfaces for
cellular studies were formed at 0.015 J/cm2.

Table 3. Electrical conductivity of samples with and without laser exposure.

Initial
Sample

Samples after Laser Exposure

0.011 J/cm2 0.013 J/cm2 0.015 J/cm2 0.017 J/cm2

Specific
conductivity
value (S/m)

100.7 ± 2 155.3 ± 4 174.8 ± 5 215.8 ± 10 112.2 ± 12

In addition, according to the results of electrical conductivity and SEM, it can be
concluded that the decrease in albumin concentration occurred with a gradient. The
content of BSA mainly dropped at the maximum elevation, while closer to the base of the
MWCNT array, a sufficient amount of BSA remained for the formation of cellular interfaces.

3.3. Fibroblast Cell Growth on Interfaces

The growth of fibroblast cells on laser-structured and unstructured samples with and
without electrical stimulation was analyzed in the study. Electrical stimulation is a well-
known method used to control cells by inducing changes in various cellular processes such
as apoptosis, proliferation, differentiation, and migration [29,80]. This is due to the fact
that all living cells have a transmembrane potential voltage difference, which is regulated
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by the balance between the accumulation of various ion concentrations both inside and
outside the cell. The voltage difference of the transmembrane potential is controlled by
ion channels and transporters [28]. The concentrations of Na+, K+, Ca2+, Mg2+, H+, and
Cl- ions are different inside and outside the cell [81]. K+ ions predominate inside the cell
and Na+ ions predominate outside the cell. Hodgkin and Huxley’s research showed that
due to the different concentrations of K+ ions on both sides of the membrane, energy is
created to generate voltage on the membrane. Due to the uneven distribution of sodium
ions, the activation of the cell reaction occurs; because of sodium ions, an active reaction
of the cell becomes possible—an action potential. The high concentration of sodium ions
on the outer side of the membrane is balanced by negatively charged chloride ions and
the concentration of potassium is balanced by the presence of negatively charged anions,
resulting in electrical neutrality inside and outside the cell.

Ion channels are responsible for the transfer of charged particles through the cell
membrane [82]. Channels can be in open and closed states. The change of states is usually
carried out because of changes occurring in the channel proteins, and is determined by
factors coming both from outside (exogenous signals) and inside the cell (endogenous
signals) [83]. In most cases, the state of an open or closed channel is characterized randomly.
Despite this, there are signals that can change (increase or decrease) the permeability of the
ion channel, and can also increase or decrease the probability of finding a structural protein
configuration that promotes the transition between states [84].

The resting potential of most cells is characterized by a negative electric charge caused
by a higher concentration of negative ions inside the cell compared to the concentration of
negative ions outside the cell [85]. The negative resting potential creates a potential differ-
ence across the membrane that regulates voltage-sensitive ion transport and ATP synthesis
in mitochondria. The negative charge is partly due to an excess of negative ions inside
the cell (Donnan potential) and partly due to ionized groups on the membrane (surface
potential). The use of electrical stimulation changes the transmembrane resting potential of
the cell, which has a significant effect on cell functionality and cellular metabolism [86,87].

For comparison, Si substrates (only chemically cleaned) were added as a reference.
Figure 6 shows the density of living fibroblast cells obtained on Si substrates with MWCNT
arrays, and the reference samples after 24 h in vitro (schematic image is given in Figure 6g).
Figure 6a–f shows examples of fluorescence images obtained after live cell staining, whereas
in Figure 6h, the statistics derived from these images are presented. The main results of
this experiment were as follows:

- On laser-structured arrays, regardless of electrical stimulation, cells were grown more
evenly and continuously distributed on the surface (i.e., homogeneous), whereas
on samples without laser structuring, cells were distributed as separated “islands”
(i.e., non-homogeneous).

- Electrical stimulation of cells on the structured MWCNT arrays brought a significant
effect on the cell growth density, exceeding the ones without stimulation almost
three times.

Among other biomedical applications, and due to their electrical conductivity and
elastic properties, MWCNT-based composites can be used in the form of thin films, e.g., for a
cell proliferation [53,88], as deformation sensors applied to a human skin [89], substrates for
cells stimulation devices [90], or tissue regeneration [91]. Therefore, in order to demonstrate
the potential of our MWCNT arrays for thin films biological applications, fibroblasts were
immobilized on structured and unstructured arrays and electrical stimulation was applied.
The fluorescence images (Figure 6a–h) show exemplary images of living fibroblasts cultured
directly on the MWCNT arrays within 24 h. For the control (Figure 6d,h) samples, cell
densities of ~500 mm−2 were obtained, which was comparable to standard values for
fibroblast-coated substrates [92]. For unstructured arrays (Figure 6a,e), the density of cells
increased for both nonstimulated (~740 mm−2) and stimulated (~1050 mm−2) samples
in comparison to the control. The results showed that even for unstructured stimulated
samples, the cell growth density increased by two times in comparison to control. The
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pronounced difference between structured and unstructured samples was that in case of
structured arrays, cells were distributed more evenly than in the case of unstructured arrays,
where cells tended to form clusters. In general, the ability of CNTs mixed with albumin to
improve the cell adhesion is not novel [88]. However, our research is very interesting since it
suggests that MWCNT-based composites on SiO2 are forming some sort of artificial docking
sites for the better cell adhesion. It occurs since each CNT is a biocompatible defect on the
surface preferable for cells to grow on [93]. Therefore, when the interface has a clustered
array of MWCNTs, cells grow in a clustered form. On the other hand, when MWCNTs are
distributed evenly via the laser structuring, homogeneous guided cell growth is observed.
This underlines the significance of this work, because the MWCNT-based composites do
not only seem to enable a tailoring of surface properties in terms of increasing the electrical
conductivity, but also provide the ability to guide the cell distribution on the surface to use
these properties in bioelectronics and biomedicine applications.
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Figure 6. Examples of fluorescence microscope images of fibroblast cell cultures on Si substrates 24 h
in vitro with unstructured (a,e) and laser-structured (b,c,f,g) MWCNT arrays with BSA immobilized
with (e–g) and without (a–c) electrical stimulation and control samples (d,h). The scale bar for
(a,b,d–f,h) is 200 µm, for (c,g) it is 50 µm. Schematic of fibroblasts grown on Si substrates with various
conditions used in the experiment (i). The values on the bars in (j) represent the total number of
live cells averaged over several areas of size 850 µm × 850 µm (0.7225 mm2). The results from three
images on three different samples for each type of the condition were averaged for the statistics; n = 9.
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For structured arrays without electrical stimulation, there was not much difference
in comparison to unstructured arrays with stimulation. The only observed distinction
was an increase in the cell density for up to ~1150 mm−2. However, the major difference
occurred in case of structured and electrically stimulated samples. In this case, the cell
growth density increased up to ~3150 mm−2.

The ability of biocomposites to improve the cell adhesion and the influence of electrical
stimulation are not novel [94,95]. However, this research suggests that structured MWCNT
arrays on SiO2 allow forming highly conductive paths of aligned MWCNTs that result in
enhanced influence of the electrical stimulation.

In other words, laser structuring distributed nanotubes evenly on the surface; due to
this, cells were grown homogeneously and were more efficiently affected by stimulation
currents. This underlines the significance of this work because cell stimulation on the
structured CNT arrays provides the ability to use these properties in bioelectronics and
biomedicine applications. Moreover, it is of great importance that MWCNT composites
have a potential translatability into clinical applications.

3.4. Cardiomyocytes Cell Growth on CNT Arrays

The growth of cardiomyocytes cells on laser-structured and unstructured samples with
and without electrical stimulation was analyzed similar to the previous experiment. This
was performed to prove the influence of the CNT structuring and the electrical stimulation
effect on the cell growth.

Previously, it was found that electrostimulation of cardiomyocytes was able to provide
their synchronous beating instead of spontaneous. At the same time, the frequency of
synchronous beat can also vary when the stimulation parameters change [96]. Each type of
electrogenic cell (neurons, cardiomyocytes, etc.) has its own electrical signature in terms of
amplitude and duration of the action potential. Moreover, due to its own impedance, the
cell membrane allows both signal production and signal shielding [97].

For comparison, Si substrates (only chemically cleaned) were added as a control.
Figure 7 shows the density of living cardiomyocytes cells obtained on Si substrate with
MWCNT arrays, and the reference samples after 24 h in vitro (schematic image is given
in Figure 7i). Figure 7a–h show examples of fluorescence images obtained after live cell
staining, whereas in Figure 7j, the statistics derived from these images are presented. The
main results of this experiment were as follows:

• Cardiomyocytes growth rate was slower than in the case of fibroblasts; therefore,
the initial cultivation period was increased to 4 days, and the time of electrical
stimulation was reduced to 24 h, due to the high sensitivity of this type of cells
to external influences.

• Laser structuring and electrical stimulation of cells together introduced a significant
increase in the cell growth ratio similar to the previous experiment, which proved the
efficacy of the combination of these methods for various biomedical applications.

In general, these results clearly follow the tendency for the fibroblasts experiments.
The fluorescence images (Figure 7a–h) show exemplary images of living cardiomy-

ocytes cultured directly on the MWCNT arrays within 4 days. For the control (Figure 7d,h)
samples, cell densities of ~2500 mm−2 were obtained. For unstructured arrays (Figure 7a,e),
the density of cells increased for both nonstimulated (~3200 mm−2) and stimulated (~3700 mm−2)
samples in comparison to the control. For structured arrays without electrical stimula-
tion (~3900 mm−2), there was no significant difference in comparison to unstructured
arrays with stimulation. A significant increase in the cell growth ratio was observed in
the case of structured and electrically stimulated samples. It is known that nanoparticles
increase the strength of the material, while the conductive nanoparticles give the materials
the specific electrical conductivity necessary for the regeneration of conductive tissues,
such as the heart and nerves. It was shown that electrically conductive composites with
carbon nanotubes can be used for the proliferation of cardiac myoblasts [98] and for the
promotion of myofibroblast transdifferentiation [99]. The cell growth density increased
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up to ~5000 mm−2. This proved the viability of using the combination of two methods:
laser structuring of CNT arrays and electrical stimulation during cell growth. It is possible
to suggest that this technology could represent a great tool for engineering surfaces for
bioelectronics and biomedical purposes, such as improving cell adhesion or proliferation.
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Figure 7. Examples of fluorescence microscope images of cardiomyocytes cell cultures on Si substrates
24 h in vitro with unstructured (a,e) and laser-structured (b,c,f,g) MWCNT arrays with BSA grown
with (e–g) and without (a–c) electrical stimulation, and control samples (d,h). The scale bar for (a–h)
is 50 µm. Schematic of cardiomyocytes grown on a Si substrate with various conditions used in the
experiment (i). The values on the bars in (j) represent the total number of live cells averaged over
several areas of size 350 µm × 350 µm (0.1225 mm2). The results from three images on three different
samples for each type of the condition were averaged for the statistics; n = 9.

A similar relationship between the viability of fibroblasts and cardiomyocytes was
obtained using MTT assay (Figure 8). For both types of cells, it was found that their
maximum number was on laser-structured interfaces during electrical stimulation.
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Figure 8. MTT assay of fibroblasts (a) and cardiomyocytes (b) cultures on Si substrates 24 h in vitro
with unstructured and laser-structured MWCNT arrays with BSA grown with and without electrical
stimulation compared to the control sample.

4. Conclusions

This study describes a way to tailor biocompatible nanostructures from arrays of multi-
walled carbon nanotubes (MWCNTs) synthesized by the method of plasma-enhanced
chemical vapor deposition from the gas phase on a silicon substrate. Nanostructures
were created by changing the morphology of the MWCNT array in the albumin matrix
simultaneously with the binding of nanotubes to each other using nanosecond pulsed
laser radiation in the near-IR region of the spectrum (1064 nm). By applying the laser
treatment, it was possible to decrease the defectiveness of the tubes, which was confirmed
by Raman spectroscopy data. Using SEM, it was found that at a radiation energy density
of 0.015 J/cm2, the optimal ratio of albumin and nanotubes in the samples was achieved,
as well as the formation of a cellular structure and joints between nanotubes. Such a
structure was characterized by a more than twofold increase in electrical conductivity
(215.8 ± 10 S/m), as compared to the initial MWCNT array (100.7 ± 2 S/m).

Additionally, a setup that provides an electrical stimulation of cells was engineered.
Using this setup, an effect of the electrical stimulation on variously tailored surfaces
for fibroblasts and cardiomyocytes was stimulated and investigated. Finally, significant
increase in the cell proliferation rate was achieved on structured arrays with electrical
stimulation for both type of cell cultures.

This study indicates that laser-structured MWCNT arrays with biopolymer albumin
coating might be a powerful tool for the improvement of cell experiments, bioelectronics
devices, and even biomedical applications, ranging from biosensors to heart implants.
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