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Abstract: Strengthening of reinforced concrete (RC) beams subjected to significant torsion is an
ongoing area of research. In addition, fiber-reinforced polymer (FRP) is the most popular choice as
a strengthening material due to its superior properties. Moreover, machine learning models have
successfully modeled complex behavior affected by many parameters. This study will introduce a
machine learning model for calculating the ultimate torsion strength of concrete beams strengthened
using externally bonded (EB) FRP. An experimental dataset from published literature was collected.
Available models were outlined. Several machine learning models were developed and evaluated.
The best model was the wide neural network, which had the most accurate results with a coefficient
of determination, root mean square error, mean average error, an average safety factor, and coefficient
of variation values of 0.93, 1.66, 0.98, 1.11, and 45%. It was selected and further compared with the
models from the existing literature. The model showed an improved agreement and consistency
with the experimental results compared to the available models from the literature. In addition, the
effect of each parameter on the strength was identified and discussed. The most dominant input
parameter is effective depth, followed by FRP-reinforcement ratio and strengthening scheme, while
fiber orientation has proven to have the least effect on the prediction output accuracy.

Keywords: torsion; FRP; strengthening; machine learning

1. Introduction

In recent years, there have been more reports of structural failures attributed to
torsion [1]. Whittle identified several reasons for failure, which included but were not
limited to the following: (1) design errors; (2) structural modeling errors; (3) inappropriate
extrapolation of the code of practice; (4) inadequate assessment of critical forces paths. In
addition, failure could be because of aging and lack of maintenance. Reinforced concrete
(RC) members subjected to large torsion may fail quite suddenly, which is undesirable and
needs to be avoided. Thus, analysis of damage to engineering structures, rehabilitation,
and strengthening is becoming a necessity. The choice of material used for that purpose is
of paramount importance. FRP has many advantages in engineering applications [2–6].

During the last few decades, rehabilitation and strengthening of structures using
externally bonded fiber-reinforced polymer (EB-FRP) have been an important research
topic worldwide [7–10]. Although many reinforced concrete (RC) members are subjected
to significant torsion, most of the available research investigates concrete-strengthened
members’ flexure and shear behavior. The high cost of infrastructure replacement has
prompted research into various strengthening and rehabilitation techniques. Torsion
strengthening is required in many projects [11]. Structural elements subjected to torsion
experience diagonal tension and compression, thus failing in an undesirable brittle manner,
leading to inadequate behavior during earthquakes [12–17]. Therefore, a simple yet accurate
torsion design of concrete structural elements is essential. Much more research studies
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are required to give physical significance to the torsion design of concrete beams with
FRP [18–20].

Although most of the early research efforts focused on beams strengthened using
EB-FRP subjected to moments or shear, more recently, starting in the year 2001, the torsion
behavior of concrete beams with EB-FRP has gained much attention. Over the last few
years, several experimental investigations worldwide have been conducted to study the
torsional behavior of strengthened concrete beams, as shown in Figure 1 [21–26]. However,
much more work is required to give physical significance to the torsion design of concrete
beams strengthened using EB-FRP.
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Figure 1. Torsion strengthening schemes using FRP (a) Entire beam for rectangular beam; (b) U entire
beam for rectangular beam; (c) 90 strips for rectangular beam; (d) U strips for rectangular beam;
(e) Longitudinal strips for rectangular beam; (f) 90 strips and longitudinal strips for rectangular
beam; (g) 45 strips one side for rectangular beam; (h) 45 strips spiral around beam for rectangular
beam; (i) 90 strips for box beam; (j) U anchorage strips and longitudinal strips for box beam; (k) U
anchorage strips for box beam; (l) Extended U entire beam for spandrel beam (with multiple FRP
orientations); (m) U entire beam for T beam; (n) Extended U entire beam for T beam; (o) Entire beam
for T beam.

In the case of torsion strengthening, de-bonding failure is the most common failure
mode, which is usually accompanied by excessive concrete cracking or bond slippage at
the fiber-reinforced polymer (FRP) and concrete interface [27–31]. Available bond models
developed based on simple shear testing of FRP sheets bonded to concrete blocks have
shown that the FRP ultimate strain will probably not be reached, regardless of how large the
interface length between the FRP and the concrete is. Existing models for torsion strength
lack accuracy, and thus, a need for reliable and accurate strength models is a mandate.

Machine learning-based models have proven to be reliable in predicting the strength of
many problems, including, but not limited to, punching shear and shear of beams [32–34].
However, very limited machine learning models were developed for torsion, especially
for the torsion of beams strengthened with FRP. Thus, this research study focused on
developing a machine learning model for the torsion strength of EB-FRP beams. In this
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regard, an experimental database was assembled, and the effects of various parameters
were investigated. In addition, selected parameters such as FRP reinforcement ratio, fiber
orientation, and concrete compression strength were implemented to develop a machine
learning model. Moreover, several ML models were created, and their strength was
compared with that of the experimental database results and that from the available design
models. Finally, the importance of the various variables on the strength was found and
discussed. This study could help further design code development.

2. Experimental Database Profiles

Since 2001, FRP has been studied as an externally reinforcing material for beams under
torsion. Table 1 shows the statistical measures for the collected experimental database.
For the case of concrete beams strengthened using EB-FRP, the following parameters were
investigated: (1) beam width (b); (2) beam effective depth (d); (3) FRP Young’s modulus
(E) as an indication of the type of fiber used, carbon FRP (CFRP) and glass FRP (GFRP);
(4) FRP reinforcement ratio (ρ) taken as ntw

tcs , where n is the number of layers, t is the
thickness of FRP sheets, and w is the width, s is the center to center spacing, and tc
is the concrete tube thickness, taken as, Ao f/Pf , Ao f is the concrete area enclosed inside
the centerline of the FRP jacket, and Pf is the perimeter of the area enclosed inside the
centerline of the FRP jacket; (5) strengthening scheme; (6) concrete compressive strength;
(7) fiber orientation.

Table 1. Statistical analysis of experimental database.

b d E ρf f
′

c β
Torsion

Gain
(mm) (mm) (MPa) (%) (MPa) (Degrees) (kN m)

Overall
Min. 150 90 61 0.09 25 0 1.04
Max. 400 500 287 1.67 80.56 90 31.05
Avg. 288 155 178 0.42 37.48 85 8
SD 74.6 48.6 80 0.39 15.70 15 6

C.O.V. 26% 31% 45% 92% 42% 18% 85%

A careful examination of the profile of the experimental database presented in Table 2
showed the following remarks: (1) the total number of beams strengthened using EB-FRP
tested under significant torsion was 157 beam; (2) although beams are usually connected
to a flange (i.e., a floor slab or inverted flanged beam) and the cross section shape have a
significant effect on the behavior and design [17,22,35], only 22% of the tested beams had a
flanged cross section while 77% investigated rectangular beams; (3) although the full jacket
technique is not practical and the U-jacket performs poorly while the usage of anchorage
systems for beams with EB-FRP under shear and torsion is gaining a lot of attention [36],
less than 20% of the conducted studies investigated using an anchorage; (4) Although FRP
continuous jackets can be uneconomic, in most cases, compared to FRP strip jacket, 61%
and 37% investigated continuous and strip jackets, respectively; (5) although 45◦ inclined
FRP jackets were found to be the most effective in torsion, only 10% of the experiments
examined 45◦ inclined FRP jackets. In total, the number of tested beams strengthened using
fully wrapped strips, continuous fully wrapped, U-jacket, extended U-jacket, and anchored
U-jacket were 65, 36, 38, 11, and 13, respectively. Clearly, more work is needed to utilize
anchorage devices and extended schemes.
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Table 2. Profile of previous experimental results.
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[38] 4 4 - - - 4 - 4 4 4 - - - - 4 - - 4

[39] 8 8 - - - 8 - 8 2 6 8 - 1 - 5 2 - - 6

[40] 7 7 - - - 7 - 7 7 - 4 3 - - 4 3 5 - 2

[41] 7 7 - - - 7 - 7 - 7 5 2 - - 5 2 4 - 5

[42] 1 1 - - - - - 1 - 1 1 - - - - 1 - -

[43] 4 - - 4 - 4 - 4 - - - 4 - - - 4 2 1 3

[44] 6 6 - - - 6 - 6 3 3 2 - 4 - 6 2 5
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[50] 10 10 - - - 10 10 - 10 8 2 - - 2 8 - - 10

[51] 2 2 - - - 2 2 2 - - 2 - - 2 - - 2

[52] 7 7 - - - - 7 7 - 7 6 1 - - 2 5 - - 7

[53] 8 8 - - - 8 - 8 - 8 6 2 - - 3 5 - - 8

[54] 4 - 4 - - 3 - 3 4 - 4 - - 4 - - 1 3
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[55] 8 8 - - 8 - 8 8 8 - - - 6 2 - 2 6

[22] 8 2 2 4 8 - 8 - 8 3 5 - - 8 - - 3 5

[56] 7 - - 7 7 - 7 - 7 2 5 - - 7 - - - 7

[57] 1 1 - - - 1 - 1 1 - 1 - - - 1 - - - 1

[58] 6 6 - - - 6 - 6 6 - 6 - - - 4 2 1 2 3

Number of
tested
beams

157 121 15 18 3 136 19 156 52 97 105 46 7 1 96 58 18 17 124

Percentage (%) 77 10 11 2 87 12 99 33 67 67 29 4 1 61 37 11 11 79

Table 3 shows the parameters investigated by the previous experimental studies. For
the case of concrete beams strengthened using EB-FRP, the following parameters were
investigated: (1) strengthening scheme that varied depending on the practical application
(i.e., access to 3 or 4 faces of the beam); (2) the type of fiber used (CFRP; GFRP, . . . etc.);
(3) fiber orientation (β); (4) original loading and condition before strengthening; (5) number
of plies; (6) center to center spacing between strips (s); (7) influence of anchor in U-wrapped
test beams; (8) continuous wrap or strips.
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Table 3. Parameters investigated by various researchers.

Study Anchors Spacing Preloading Plies Size Effect
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

[23,27,29]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[22]
[56]
[57]
[58]

Number of
studies 7 9 4 12 2

Percentage
(%) 28% 36% 16% 48% 8%

3. Brief Summaries of Previous Models
3.1. FIB

The model developed by FIB [8] adapted the principle of superposition; the total
torsion strength is the additive of both the steel and the FRP contribution to the torsion
strength of the beam. In other words, the FRP and steel contributions are independent;
thus, the FRP torsion contribution (Tf ) was as follows: Where E is Young’s Modulus of the
FRP, t is the thickness of the FRP, b and h are the width and depth of the concrete section,
respectively, w is the width of the FRP strip, s is the center-to-center spacing between strips,
θ is the angle of inclination of the diagonal cracks to the longitudinal axis [7] of the beam.
The effective FRP strain ε is being calculated using the following formulas:

ε = 0.17

 f
2/3
cm

Eρ

0.3

ε f u for CFRP (1)

ε = 0.048

 f
2/3
cm

Eρ

0.3

ε f u for GFRP (2)
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where ε f u is the ultimate strain in the FRP and ρ is FRP reinforcement ratio with respect to
concrete calculated as follows:

ρ =
2tw
bs

(3)

3.2. Deifalla

Deifalla and co-workers [27,28] developed a simple model where the torsion contribu-
tion of the FRP contribution (Tf ) can be calculated by the following:

Tf =
2Ao f f f A f [cot β + cot θ] sin β

s
, for full wrapping (4)

where Ao f is the area enclosed inside the critical shear flow path due to the strengthening,
f is the stress in the FRP sheets at failure, β is the angle of orientation of the fiber direction
to the longitudinal axis of the beam, s is the spacing between the centerline of the FRP
strips, and A f is the effective area of the FRP-resisting torsion calculated using the follows:

A f = ntw (5)

where n is the number of FRP layers and the FRP effective strain is taken as follows:

ε = minmum of



0.33w
Les

0.2α f

Le
0.1ε f u(

E f uρ
)0.86

(6)

where the development length (Le) is calculated using the following:

Le = 2

√
Et

2
√

f ′c
(7)

Moreover, α f is a constant to consider the difference in the stress distribution between
the continuous FRP sheets and the strips, which is calculated as follows:

α f =
2

√√√√√√√
(

2− w
s sin β

)
(

1 +
w

s sin β

) (8)

where ρ is FRP reinforcement ratio with respect to concrete calculated as follows:

ρ =
A f

tcs
(9)

where tc is the thickness of the equivalent hollow tube section taken as Ao f/Pf , Ao f is the
concrete area enclosed inside the centerline of the FRP jacket and Pf is the perimeter of the
area enclosed inside the centerline of the FRP jacket.

3.3. ACI

The ACI [10,47] proposed a new design model, where the effective strain for FRP
strips in shear is being adapted for this study as follows:
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ε f max = minimum of


0.004 ≤ 0.75ε f ult for full wrapping

K1K2Le

11, 900ε
0.004 ≤ 0.75ε f ult for U or side jack

(10)

K1 =

(
fc
27

)2/3
(11)

K2 =


d f v − Le

d f v
for U−jacket

d f v − 2Le

d f v
for side jacket

(12)

Le =
23, 300

(ntE)0.58 (13)

The selected models are quite similar in the approach used to calculate the torsion
capacity, which is based on the hollow tube analogy. However, models vary significantly
in the approach used to calculate the design strain and that used to consider different
strengthening schemes (i.e., U-jacket, side bond).

4. Effects of Significant Parameters on Torsion Gain

In this section, the experimental results from the collected database were implemented
to investigate the effects of FRP axial rigidity, strengthening scheme, and failure mode. The
axial rigidity of the FRP was calculated as ntE(

Pc/Ac

) , where n is the number of sheet layers, t

is the thickness of the FRP sheet, E is the young’s modulus of FRP, Ac is the concrete beam
cross-section area, and Pc is the concrete beam cross-section perimeter. The torsion gain
was calculated as the ratio between the torsion contribution of the FRP and the torsion
strength of the control beam without FRP. The influence of the FRP axial rigidity on the
torsion strength gain is discussed with respect to strengthening schemes used and the
observed failure mode. The torsion strength gain is plotted versus the FRP axial rigidity
with respect to the failure mode and the strengthening scheme in Figure 2a,b, respectively.
In general, the torsion gain increases with the increase in the FRP axial rigidity. The rate of
increase is larger for FRP axial rigidity below 1000 compared to that for FRP axial rigidity
above 1000. From Figure 2a, at the same FRP axial rigidity and using the same scheme, the
percentage of the torsion gain varied significantly, indicating that maybe other parameters
might have influenced it. From Figure 2b, it can be seen that data is scattered, which
indicates that other parameters have a significant influence. Parameters include but are not
limited to the beam dimensions and cross-section shape, and the concrete’s compressive
strength and mechanical properties [17,23,29]. Thus, for the machine learning development,
the following parameters were selected as follows: (1) X1, is a discrete variable, which
represents full wrapping or U wrapping; (2) X2, which represents continuous or strip
strengthening; (3) X3 is a discrete variable, which β with 90-, 45-, and 0-degree values; X4 is
a discrete variable, which n with a value of 1, 2, and 3; X5 is a continuous variable, which
represents the ρ; X6 is a continuous variable, which represents d.



Polymers 2022, 14, 1824 8 of 19Polymers 2022, 14, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 2. Torsion gain versus FRP axial rigidity (a) failure modes and (b) strengthening schemes. 

5. Machine Learning Models 

In recent years, artificial intelligence (AI) has been showing superior results in many 

applications, such as [59–62]. It has also shown to have accurate and promising results in 

structural engineering [63]. From these applications, machine learning (ML) has received 

exceptional attention from researchers [64,65]. In this paper, 11 machine learning models 

were implemented. Their performance is evaluated by comparing the accuracy and effi-

ciency of their predictions to the experimentally measured strength. These comparisons 

are essential for the assessment of such models. All models have been trained using the 

experimental database, as shown in Section 2. Using 80% of the dataset for training with 

holdout validation of 15% and testing with the rest of 20%, as shown in Table 4. All models 

were trained using the same six inputs, and the output was the predicted value of torsion 

gain. To train an ML model, there are the following four main stages: 

• Dividing the database into training and test sets. 

a)

b)

0

20

40

60

80

100

120

140

160

180

200

0 250 500 750 1000 1250 1500 1750 2000 2250

T
o
rs

io
n

 g
a

in
 (

%
)

FRP axial rigidity

DF

ED

ID

R

0

20

40

60

80

100

120

140

160

180

200

0 250 500 750 1000 1250 1500 1750 2000 2250

T
o

rs
io

n
 g

a
in

 (
%

)

FRP axial rigidity

Anchored

Extended

Full cont.

Full strips

U-jacket

Figure 2. Torsion gain versus FRP axial rigidity (a) failure modes and (b) strengthening schemes.

5. Machine Learning Models

In recent years, artificial intelligence (AI) has been showing superior results in many
applications, such as [59–62]. It has also shown to have accurate and promising results in
structural engineering [63]. From these applications, machine learning (ML) has received
exceptional attention from researchers [64,65]. In this paper, 11 machine learning models
were implemented. Their performance is evaluated by comparing the accuracy and effi-
ciency of their predictions to the experimentally measured strength. These comparisons
are essential for the assessment of such models. All models have been trained using the
experimental database, as shown in Section 2. Using 80% of the dataset for training with
holdout validation of 15% and testing with the rest of 20%, as shown in Table 4. All models
were trained using the same six inputs, and the output was the predicted value of torsion
gain. To train an ML model, there are the following four main stages:

• Dividing the database into training and test sets.
• Applying the training methodology for the training set.
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• Checking the accuracy requirements.
• Output the predicted values.

Table 4. Statistical analysis of training and validating set.

b d E ρf f
′

c β
Torsion

Gain
mm mm MPa (%) MPa Degrees kN m

Training set
Min. 150 90 61 0.1 45 25 1.04
Max. 400 500 287 1.7 90 80.56 30.9
Avg. 297 160 182 0.5 87 40 8
SD 74 53 80 0.4 11 17 6

C.O.V. 25% 33% 44% 91% 13% 42% 76%
Validation set

Min. 150 90 61.58 0.09 0 25 1.67
Max. 400 150 232 0.86 90 32 31.05
Avg. 258 139 165 0.29 79 28 8
SD 69 17 80 0.24 24 3 8

C.O.V. 27% 12% 49% 82% 30% 11% 111%

A total of 11 machine learning models were developed and used.

5.1. Ensembled Trees

An ensemble tree methodology is a weighted combination of multiple regression trees
that can provide a strong and accurate prediction. This is because the combining of multiple
trees improves the prediction efficiency. Two types of ensemble trees are used, boosted,
and bagged, respectively. The boosted tree works as a two-step approach. In the first step,
the training dataset is divided into subsets in order to obtain several average-preforming
models. Then, in the second step, the maximum performance is obtained by joining all
of the models in Step 1 using a defined cost function [66]. The bagged trees create many
distinct models by forming bootstraps in a single tree and then integrating them all into
one tree. The final decision is obtained as the average of the final trees [67].

5.2. Gaussian Process Regression

The Gaussian process regression (GPR) is a Bayesian nonparametric methodology
used in solving complex problems. This approach has the ability to provide uncertainty
measurements on the predictions. The main advantage of GPR is that the probability
distribution is computed over all admissible functions that fit the data in the training set.
It also defines a process that which the random variables are tolerated using a Gaussian
distribution. Examining squared exponential, Marten 5\2, Exponential and Rational GPR.

5.3. Neural Networks

The Artificial Neural Network (ANN) is a supervised learning technique; it was
initially inspired by the human biological nervous system. It is a computational black
box composed of neurons [68]. ANN is a widely used approach. These methods typically
have good predictive accuracy. However, they are not easy to interpret. Model flexibility
increases with the size and number of fully connected layers in the neural network. We
examined several types of NN model flexibility, narrow, medium, wide, bi-layered, and
tri-layered NN, respectively. Each model is a feed-forward, fully connected neural network
for classification. The first fully connected layer of the neural network has a connection
between the network input, and each subsequent layer has a connection with the previous
layer. Each fully connected layer multiplies the input by a weight matrix and then adds
a bias vector. An activation function follows each fully connected layer. The final fully
connected layer and the subsequent Soft Max activation function produce the network’s
output, namely, classification scores and predicted labels.
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5.4. Results and Discussions

All proposed models were tested using a testing set composed of 20% of the experi-
mental dataset. To evaluate the effectiveness of the proposed models that were reported by
comparing the coefficient of determination (R2), the root mean square error (RMSE), and
the mean square error (MAE) for the randomly assigned test set. The three used statistical
measures are computed as follows:

R2 = 1− ∑m
i=1
(
Yp −Yo

)2

∑m
i=1 Yo − 1

m ∑m
i=1 Yo

(14)

RMSE =

√
1
m

m

∑
i=1

(
Yp −Yo

)2 (15)

MAE =
1
m

m

∑
i=1

∣∣Yp −Yo
∣∣ (16)

where, Yp is the predicted output and Yo is the real output. While the overfitting potential of
the selected models is handled in the following two ways: (1) the dataset random splitting
into a training set and a test set; (2) the performance evaluation of the model on the test
data, as the model has not been trained on the test data before; therefore, the accuracy of
the machine learning models in the training set is an indication of the actual performance
of the model on the unseen data. All trained models were trained using a 15-fold cross-
validation on the training set using the cross-validated parameters as the hyperparameters
of the machine learning model. The optimal parameter for each model is obtained using
a 15-fold cross-validation. The results of the proposed models are provided in Table 5.
From Table 5, the model that produced the most accurate predictions was the wide neural
network model, which reported the highest R2, lowest RMSE, and MAE of values 0.93,
1.6634, and 0.98591, respectively. However, it had the longest training time. All proposed
models were trained on Intel(R) Core (TM) i5-7200U CPU @ 2.50 GHz, 2.71 GHz, and 16 GB
RAM using MATLAB 2021a Statistical and Machine learning toolbox.

Table 5. Results comparison between ML methods.

Models R-Squared RMSE MAE Training Time (s)

Ensemble Trees

Boosted 0.71 3.4274 2.1631 2.7569

Bagged 0.47 4.6322 3.3205 3.1841

Gaussian Process Regression

Squared
Exponential 0.93 1.6854 1.1702 5.2342

Marten 5/2 0.93 1.6778 2.8149 1.175

Exponential 0.93 1.7447 1.1914 1.9939

Rational
Quadratic 0.93 1.6863 1.1523 4.8316

Neural Network

Narrow 0.56 1.6854 2.8724 3.1006

Medium 0.92 1.6778 1.1643 1.175

Wide 0.93 1.6634 0.98591 7.7472

Bi-layered 0.71 3.4655 2.2849 2.7611

Tri-layered 0.92 1.8611 3.4636 3.7419
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Moreover, GPR methods reported the same highest value of R2. However, it was not
optimal in RMSE and MAE, but generally, it produces acceptable predictions. Figure 3
depicts the scatter distribution of the predictions of the 11 developed ML models. Each
model represents the residual plot, where it maps the difference between the observed
predicted output and the real output value. The ideal residual plot is also called the null
residual plot, where all the data points form an approximately constant width band around
the identity horizontal line. The ideal case is to have all points in the linear line, i.e., to have
zero error between the predicted and the real output values. The distance between data
points and the horizontal line is the error in predictions. In Figure 3, model 1.22 (Wide NN)
provides the most accurate predictions with respect to the other ML models developed.
Model 1.22 also has the maximum R2 and the least RMSE and MAE among the other
developed ML models, as depicted in Table 5.
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Figure 3. The model predictions for the test set.

Moreover, a study of the influence of each of the input parameters on the prediction
accuracy is shown in Figure 4. It can be concluded that the most dominant input parameter
is X6, followed by X5, then X2, while X3 has proven to have the least effect on the prediction
output accuracy. X6 also has the highest factor value of R2, and the lowest RMSE and MAE
in training and testing, respectively.
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Another good visualization for the optimized model is Wide NN; Figure 5 shows
how the error decreases as different combinations of hyperparameters are evaluated. The
proposed model convergence in the 30th training iteration with the best performance
reached in the 16th training iteration and the minimum error hyperparameters. The
proposed model is composed of three fully connected layers with sizes equal to 107, 96, and
256 and activation functions ReLU, Tanh, and Sigmoid, respectively, with a regularization
strength (Lambda) of value 9.009× 10−8 and 900.9009.
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6. Comparison between Proposed Model and Existing Design Models

The strength was calculated using the available models and a wide neural network
model. The angle (8) was taken at 45 degrees to simplify the analysis for the purpose of
this study. The ratios between the calculated strength, using the four different models, and
the measured strength were graphed as shown in Figure 6. In addition, Table 6 shows the
overall average, standard deviation, maximum, minimum, and 95% confidence interval.
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The proposed model showed a better agreement with the experimental results compared
to the other models. Although the ACI (2008) had a comparable average with the wide
neural network model, the proposed model predictions were remarkably consistent, having
a significantly lower standard deviation compared to the other models. This is due to
the ability of the wide neural network to model the true behavior in an accurate and
reliable manner.
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Table 6. Comparing ratio of measured and predicted torsion strength from various models.

Models FIB (2001) Deifalla and
Ghobarah (2005) ACI (2008)

Wide Neural
NetWork

Model

Average 8.50 2.31 1.22 1.11

Standard
Deviation 9.48 3.58 1.53 0.40

Maximum 42.29 22.62 8.25 2.32

Minimum 0.89 0.21 0.07 0.23

Lower 95% 6.47 1.55 0.89 1.02

Upper 95% 10.52 3.08 1.54 1.20

7. Summary and Conclusions

It is clear that the available design models are over-conservative, which is due to
the brittle nature of the torsion and FRP. However, the refinement of such models or
the development of more accurate and consistent models is the mandate of the research
community in order to achieve an economical and safe design.

A total of 11 ML models were developed and tested for the prediction of the torsion
gain, including ensembled trees and Gaussian process regression. The selected ML tech-
niques have been widely used in previous studies and are known to effectively analyze
different types of datasets. Performance measures were used to evaluate the accuracy of
the selected models using R2, RMSE, and MAE and model training time. The ensembled
trees, boosted and bagged, had the worst model performance, with an R2 of 0.71 and
0.47, respectively.

The most accurate model was the wide neural network model for predicting the
torsion strength of concrete beams strengthened using EB-FRP. The models reported the
best performance using R2, RMSE, and MAE with values of 0.93, 16,634 KN, and 0.98 KN,
respectively; however, it had the longest training time.

The model was based on an extensive experimental database in order to capture the
variation in the following parameters: (1) the strengthening technique; (2) the number and
thickness of FRP layers; (3) the spacing between FRP strips; (4) the cross-section dimensions;
(5) the FRP type and mechanical properties. The model was verified using an extensive
experimental database from various sources and compared with the models available in
the literature. In addition, the effect of each parameter on the strength was identified and
discussed. Thus, the following conclusions were reached:

- The proposed model based on wide neural networks provides good accuracy and
reliable representation of the behavior.

- The most dominant input parameter is effective depth, followed by an FRP reinforce-
ment ratio and then strengthening scheme, while fiber orientation has proven to have
the least effect on the prediction output accuracy.

- This study could help further design code development.
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