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Abstract: Sulfonated poly(phthalazinone ether ketones) (SPPEK) with ion exchange capacities from
0.77 to 1.82 mmol·g−1 are synthesized via an electrophilic substitution reaction. Nuclear magnetic
resonance and infrared absorption spectroscopy are used to characterize the chemical structure of
the obtained polymers for confirming the successful introduction of sulfonic groups. SPPEKs show
excellent thermal stability; their temperature required to achieve 5% weight loss is about 360 ◦C.
Accordingly, the obtained membranes possess high ion perm-selectivity, proton conductivity, and low
area resistance. Regarding the electrodialysis-related performance of the membranes, the SPPEK-4
membrane has the highest limiting current density (39.8 mA·cm2), resulting from its high content
of sulfonic groups. In a desalination test of standard solution, SPPEK-3 and SPPEK-4 membranes
exhibit both better salt removal rate and acceptable energy consumption than commercial membrane.
Additionally, SPPEK-3 membrane shows outstanding performance in terms of high concentration
rate and low energy consumption during saline water treatment, which indicates the feasibility of
novel membranes in electrodialysis application.

Keywords: sulfonated poly(aryl ether ketone)s; cation exchange membranes; electrodialysis;
concentration; desalination

1. Introduction

The electrodialysis (ED) process is the selective transport of ion to treatment feeding
streams under applied electric fields [1]. The ED process has been applied in several fields,
including food production, wastewater treatment, acid recovery, and desalination, due
to its low cost, easy maintenance, and convenient operation [2–17]. A conventional ED
stack mainly includes cation and anion exchange membranes which were alternatingly
set between cathode and anode. Thus, as a key part of the equipment, the ion exchange
membrane (IEM) is the research hotspot for the ED process, and their improvement has
certainly promoted the development of electrodialysis, along with the progress in operation
methods in the industrial field [18–21]. IEMs include cation exchange membranes (CEMs)
and anion exchange membranes (AEMs), which are functionalized with negative and
positive ionic groups (i.e., -SO3

− and -N(CH3)3
+), respectively. At present, cation exchange

membranes have been successfully commercialized (i.e., Nafion, Neospeta, and Fumapem),
but the high cost resulting from the complex preparation of commercial CEMs is unable to
be extensively applied in practical production [22–24]. Therefore, many researchers direct
their efforts towards the preparation of CEMs with high perm-selectivity, good mechanical
property and excellent electrochemical stability with acceptable price.

Perfluorosulfonic acid membranes (Dupont Co. Nafion®, Wilmington, NC, USA)
exhibit low area resistance and excellent chemical stability in the electrodialysis system
owing to their phase-separation structure and fluorocarbon frameworks [25]. However, the
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high cost, low dimensional stability, and serious water transmission result in low current
efficiency and limit further application in industry. Su et al. [26] prepared graphene oxide
(GO)/Nafion composite membranes with orientated GO nanosheets by a spin-coating
method. The ion selectivity was greatly improved and the vanadium-ion permeability
of the composite membranes was only 2.64% of the pristine Nafion. However, the spin-
coating method determined that it could not prepare a large area of Nafion membrane
for industry. Over the past decade, a large number of sulfonated polymers, such as
sulfonated polysulfone (PES) [27–29], sulfonated poly(ether ether ketone)s (SPEEK) [30],
and sulfonated polyvinylidene fluoride (SPVDF) [31], have been developed in order to
replace Nafion. These membranes are required to have high ion exchange capacity (IEC) to
achieve high ionic conductivity for decreasing energy consumption, which often causes
serious swelling behaviors or even dissolution of the membranes in water. Therefore, many
researchers directed their efforts towards increasing the conductivity of sulfonated polymer
and maintaining a reasonable swelling ratio. Zhou et al. [32] prepared UV-crosslinked
sulfonated polysulfone to enhance mechanical properties, to suppress the membrane
swelling ratio, and to improve the membrane durability. The water uptake and swelling
ratio of these crosslinking membranes decreased by over 50%, but their area resistance
increased by about 100%. Farrokhzad et al. [33] made SPVDF and PVDF blend membranes.
The water uptake of the membranes was lower than 15% but the ionic conductivity was
only 10% of Nafion, which made the membranes unsuitable for practical application due
to their high energy consumption. Shukla et al. [34] prepared sulfonated poly(ether ether
ketone) (SPK)/imidized graphene oxide (IGO) composite cation exchange membrane. The
water uptake of the membranes was effectively suppressed. Moreover, the counterion
selectivity and limiting current density was relatively lower than commercial membranes.

Obviously, traditional CEMs cannot make the balance between cost, performance,
and service life due to their molecular structure. Therefore, the development of novel
cation exchange membranes for electrodialysis has been investigated extensively in recent
years. To address the trade-off relationship between the ion conductivity, selectivity, and
dimensional stability of conventional cation exchange membranes for electrodialysis, we
propose to improve the dimensional stability and selectivity of the membranes through
the intermolecular chain entanglement and the interaction between sulfonic acid ions and
heterocycles; moreover, the interaction between heterocyclic structures and sulfonic acid
groups is used to promote the enhancement of ion conductivity [35–38]. Poly(phthalazinone
ether ketone) (PPEK) is a kind of high performance material with excellent mechanical and
thermal properties due to its developed entanglement and heterocyclic structure, which
possess the Tg of 265 ◦C [39]. Sulfonated poly(phthalazinone ether ketone) is a kind of
membrane material. The membrane has excellent thermal stability, and good conductivity
and ion selectivity for its structure [35]. It can be used in flow batteries, fuel cells, and
gas separation [36,38]. However, a systematic study of sulfonated poly(phthalazinone
ether ketone) for electrodialysis had not yet been undertaken. In this work, sulfonation
modification for PPEK was conducted and its molecular structure was characterized.
The sulfonated poly(phthalazinone ether ketone) with different ion exchange capacities
membranes were prepared, and the electronical-chemical performance was evaluated. An
electrodialysis test was carried out for selected membranes to confirm their feasibility of
practical electrodialysis application compared with commercial cation exchange membrane.

2. Materials and Methods
2.1. Materials

Poly(phthalazinone ether ketone) (PPEK, η = 0.81 dL·g−1) was dried under a vacuum
at 120 ◦C for 24 h before utilization. The vacuum was supplied by Dalian Baoli New
Materials Co., Ltd., (Dalian, China). Chlorosulfonic acid (99.0%) was purchased from
Energy Chemical Co., Ltd., (Shanghai, China). The commercial AEMs (TWEDA1S) and
CEMs (TWEDC1S) were obtained from Shandong Tianwei Membrane Technology Co., Ltd.,
(Weifang, China). Other chemicals, such as sodium chloride (NaCl), sodium sulfate
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(Na2SO4), N-Methyl pyrrolidone (NMP), and concentrated sulfuric acid, were of ana-
lytical purity and used without further purification. Deionized water was used throughout
all experiments. Deuterated dimethyl sulfoxide (DMSO-d6) and deuterated chloroform
(CDCl3) was supplied by Energy Chemical Co., Ltd.

2.2. Preparation of SPPEK

The sulfonated poly(phthalazinone ether ketone) (SPPEK) was obtained by an elec-
trophilic substitution reaction from previous reported works [37,40], as shown in Figure 1.
Firstly, 5.0 g PPEK was dissolved in 70 mL concentrated sulfuric acid with mechanical
stirring. Then, 10 mL chlorosulfonic acid was slowly added into the mixture under vigorous
agitation for 1 h. The reaction was carried out at 90 ◦C for 2 h and the polymer solution was
poured into deionized water with continuous stirring. Finally, the precipitate was washed
with deionized water several times until the wasted water was neutral. The product was
labeled as SPPEK-1 and dried at 80 ◦C. Other polymers, such as SPPEK-2, SPPEK-3, and
SPPEK-4, were synthesized by controlling reaction time of 3, 5, and 7 h, respectively.
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Figure 1. Reaction scheme for the synthesis of SPPEK.

2.3. Membrane Preparation

The SPPEK membranes were fabricated by the solution casting method [41]. Take the
preparation of SPPEK-1 membrane, for example. A homogenous solution was prepared
from 10 wt.% solutions of SPPEK-1 dissolved in NMP. The solution was uniformly poured
on to a clean and slick glass plate and evaporated at 60 ◦C for 4 h. Then, the glass was
immersed into deionized water and membranes stripped from glass plate. The membranes
were immersed in deionized water. Before the performance examination, an ion exchange
was conducted through the membranes with NaCl solution of 0.5 mol·L−1 for 24 h.

2.4. Characterization
2.4.1. Polymer Characterization

The Hydrogen Nuclear Magnetic Resonance (1H-NMR spectra) of PPEK and prepared
SPPEKs were measured by a Bruker AVANCE III spectrometer (500 MHz). CDCl3 and
DMSO-d6 were employed as solvents, respectively. The sulfonation degree (DS), which
reflects the average number of sulfonic acid groups on each repeating unit, was specially
calculated by Equation (1) as following [42]:

DS =
hs

ha
, (1)

where DS was the degree of sulfonation, hs was the integral area of the characteristic peak
of proton nearing sulfonic groups, and ha was the integral area of H-8 proton (peri-proton
of carbonyl).

The transformation of DS to ion exchange capacity (IEC) was calculated by Equation (2):

IEC =
1000× DS

M + 80× DS
, (2)

where M was molecular weight of repeated unit of PPEK.
The Fourier transform infrared (FT-IR) analysis of products was conducted on a Nicolet

6700 FTIR spectrometer with a method of attenuated total reflection and a total spectral
range of 600–4000 cm−1.
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2.4.2. Thermal Stability of Polymer

The thermogravimetric analysis (TGA) was conducted on a Mettler TGA/SDTA851
instrument from 25 to 800 ◦C under nitrogen, with a heating rate of 10 ◦C min−1.

2.4.3. Ion Exchange Capacity (IEC)

The membrane samples were equilibrated in 1.0 mol·L−1 NaCl for 24 h to ensure that
-SO3H was completely converted to -SO3Na. The IEC of the membranes was evaluated by
titrating soaking NaCl solution with standard NaOH solution using phenolphthalein as an
indicator [10]. The ion exchange capacity was calculated by following Equation (3):

IEC =
VNaOH × CNaOH

m
, (3)

where VNaOH was the volume of consumed NaOH solution; CNaOH was the concentration
of NaOH solution; and m was the weight of dry membrane, which was produced by drying
the membrane at 60 ◦C for 48 h.

2.4.4. Water Uptake and Swelling Rate

The membranes were immersed in deionized water at 25 ◦C for 24 h to ensure complete
swelling. Then, excess water on the surface was removed by filter paper. The weights
and lengths of samples were noted carefully and quickly [38]. Afterward, the membrane
samples were dried at 100 ◦C under vacuum for 24 h. Their weights and lengths were
accurately recorded. Water uptake and swelling rate were calculated by the following
Equations (4) and (5):

WU =
mwet −mdry

mdry
× 100%, (4)

SR =
lwet − ldry

ldry
× 100%, (5)

where mdry and ldry were dry weight and length of the membrane; mwet and lwet were wet
weight and length of the membrane.

2.4.5. Mechanical Properties

The mechanical properties of membranes were measured out by INSTRON 5567A in-
strument. The membrane samples were prepared into 0.6× 4 cm rectangles and completely
dried, before being tested at a stretch rate of 2 cm·min−1 [11].

2.4.6. Scanning Electron Microscopy (SEM)

The membranes were treated with liquid nitrogen for brittle fracture. Cross-section
morphologies of the SPPEK membranes were observed by a field-emission SEM 8200
(Hitachi Ltd., Tokyo, Japan).

2.4.7. Membrane Area Resistance

The area resistance of the SPPEK membranes was measured by a commercial stack
obtained from Shandong Tianwei Membrane Technology Co., Ltd. under constant current
mode. The instrument used in the process was depicted in Figure 2. The unit consists of
two electrode chambers which were separated by two pieces of Nafion 117, respectively,
and two intermediate chambers. Intermediate cells were equipped with two reference
electrodes (Ag/AgCl) obtained from Shandong Tianwei Membrane Technology Co., Ltd.,
which were used to measure the potential difference between two sides of tested mem-
brane [43,44]. During the experiment, electrode compartments were fed by 0.3 mol·L−1

Na2SO4 solution and intermediate cells were fed by 0.5 mol·L−1 NaCl solution with iden-
tical flow rate of 60 mL·min−1. A constant current of 0.05 A was supplied by the direct
current power source (GPS-X303/C, Good Will Instrument Co., Ltd., Shanghai, China), and
the potential between two electrodes was recorded by an electrochemical station (Zennium
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E4, ZAHNER-elektrik GmbH & Co., Kronach, Germany). The membrane area resistance
was calculated by Equation (6) given below:

R =
U −U0

I
× S, (6)

where, R was area resistance of tested membranes; U and U0 were potential of experiment
stack with and without membranes; I was constant current of 0.05 A; S was effective
membrane area (7 cm2).
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2.4.8. Transport Number

The instrument, shown in Figure 2, was also used to evaluate transport number
without external current and feeding electrode solution into electrode chambers at 25 ◦C.
According to the reported method [42,43], 0.5 mol·L−1 NaCl solution and 0.1 mol·L−1

NaCl solution were pumped into intermediate cells, respectively. The potential between
two sides of membrane was measured by reference electrode. The transport number was
calculated by Equation (7) listed below:

τ =
Em + E0

2E0
, (7)

where Em was trans-membrane potential and E0 was standard potential between two
feeding solution.

2.4.9. Electrodialysis Experiment

The desalination performance of the membranes was evaluated by electrodialysis. The
ED stack was purchased from Shandong Tianwei membrane Technology Co., Ltd. (Weifang,
China). The stack of electrodialysis consisted of alternating CEM and AEM (3 CEMs and
2 AEMs) with an effective area of 7 cm2, and the electrodes were titanium electrodes coated
with ruthenium, as demonstrated in Figure 3. TWEDA1S was used as AEM. Electrode
chambers were fed with 0.3 mol·L−1 Na2SO4 solution (250 mL) and were connected to
avoid pH fluctuation. Diluted chambers and concentrated chambers were both fed with
0.1 mol·L−1 NaCl solution (250 mL) [43]. Before ED process, the stack was circulated for
30 min in order to remove visible bubbles. Next, a constant current of 0.14 A was supplied
by direct current power source (GPS-X303/C, Good Will Instrument Co., Ltd., Shanghai,
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China). The experiment was conducted for 180 min. The change of conductivity in the
concentrated cell and the diluted cell was recorded by a conductivity meter (DDS-307,
INESA Scientific Instrument Co., Ltd., Shanghai, China) during the test every 15 min. To
compare desalination performance, the ED experiment of commercial CEM TWEDC1S
(polystyrene cation exchange membrane, labeled as CMX in the following) was carried out
under the same conditions. The desalination and concentration rates, current efficiency,
and energy consumption were calculated as following Equations (8)–(11) [31,32]:

Rd =
C0 − Ct

C0
, (8)

Rc =
C′t − C′0

C′0
, (9)

CE =
F(C0 − Ct)V0

NIt
, (10)

E =
∫ t

0

UI
(C0V0 − CtVt)M

dt, (11)

where C0 and Ct were initial conductivity and conductivity at t min in desalination cell
(DC), C′0 and C′t were initial conductivity and conductivity at t min in concentration cell
(CC), F was Faraday constant; I was current of 0.14 A, U was applied voltage, M was
molecular weight of NaCl, N was the number of ED module unit, t was consumed time
and V0 and Vt were initial volume and volume at t of NaCl solution.
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2.4.10. Current–Voltage Curves Measurement

The current–voltage (I-V) curves of the membranes were measured using the same
unit mentioned above. The tested cell was recirculated with 0.5 mol·L−1 NaCl at a flow
rate of 60 mL·min−1, and 0.5 mol·L−1 Na2SO4 was used as an electrode rinse solution and
circulated at the same flow rate [45]. For I-V curves measurement, a stepwise current was
applied by direct current power source (GPS-X303/C, Good Will Instrument Co., Ltd.) and
the corresponding potential difference across the membrane was recorded from the direct
current power source.

2.4.11. Saline Water Treatment

The operation of saline water concentration was similar to standard electrodialysis
measurement. The electrodialysis device used for high concentration brine treatment is the
same as the standard electrodialysis device. Electrode chambers were fed with 0.3 mol·L−1

Na2SO4 solution (250 mL). The diluted cell and concentrated cell were each fed with higher
concentration 50 mL NaCl solution (0.6 mol·L−1), and the operation current was 0.18 A.



Polymers 2022, 14, 1723 7 of 15

3. Results and Discussion
3.1. Synthesis of SPPEK and Chemical Structure Characterization

The chemical reaction of SPPEK was illustrated in Figure 1. The chlorosulfonic acid
was able to substitute hydrogen the atom which was near the ether bond. By controlling
the reaction time, SPPEKs with different IEC were prepared. The reaction conditions of
SPPEKs and their IECs were exhibited in Table 1. By increasing the reaction time from
2 to 7 h, the IEC of SPPEK increased from 0.77 to 1.82 mmol·g−1. The IECs characterized
by titration were consistent with the results of 1H-NMR spectra in Figure 4 (normalized the
area of H-8 peak and calculated the peak of H-3′ signal).

Table 1. The conditions and results of sulfonation reaction.

Sulfonated
Polymer

PPEK
(g)

Chlorosulfonic Acid
(mL)

Reaction
Time (h)

IEC a

(mmol·g−1)
IEC b

(mmol·g−1)

SPPEK-1 5 10 2 0.77 0.76
SPPEK-2 5 10 3 1.02 1.04
SPPEK-3 5 10 5 1.45 1.40
SPPEK-4 5 10 7 1.82 1.88

a IEC was calculated by titration; b IEC was calculated by 1H-NMR spectra.
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The chemical structures of SPPEKs were confirmed by 1H-NMR and FT-IR, which are
presented in Figures 4 and 5. As shown in Figure 4, the new proton signals found around
8.12–8.20 ppm were protons nearing sulfonate groups. This is attributable to electron
withdrawing effect of adjacent -SO3H and the signals moved to higher chemical shift
region. The difference in this characteristic peak was ascribed to the content of sulfonic
groups. In addition, the integral area of characteristic signal could be used to calculate
ion exchange capacity, the values of which were listed and compared with the titration
method in Table 1. The ion exchange capacities calculated from the 1H-NMR spectra were
in general agreement with the titration values. The initial signal at 8.62 ppm of PPEK shifted
to around 8.45 ppm, which was due to the different deuterated solvents (PPEK with CDCl3
and SPPEKs with DMSO-d6). Other proton signals were assigned to according groups.
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Figure 5. FT-IR spectra of PPEK and SPPEK.

As shown in Figure 5, the characteristic bands at 1654 cm−1 and 1588 cm−1 were
assigned to stretching vibration of C=O and benzene rings in polymer backbone, respec-
tively. Compared with the spectroscopy of PPEK, the new absorption peaks at 1020 cm−1

and 1075 cm−1 found in spectrum of SPPEK were symmetric and asymmetric stretching
vibrations of aromatic -SO3H, respectively [35]. Moreover, the intensity of absorption peaks
increased with an increase of IEC, which confirmed that sulfonic groups were successfully
grafted onto the PPEK chemical structure.

3.2. Thermal Analysis

The thermal stability of PPEK and SPPEK were measured by thermogravimetric anal-
ysis (TGA). As shown in Figure 6, PPEK exhibited a main degradation process while all
SPPEKs had two stages of weight loss. The first degradation stage of SPPEKs appeared
from 260 to 400 ◦C, which was attributed to the degradation of sulfonate groups [9,41].
During this stage, the weight loss of SPPEKs were about 7.3, 9.6, 12.0, and 16.4%, respec-
tively, which was approximately equal to the weight of sulfonate groups, indicating the
completely degradation of functional groups. A 5% weight loss of SPPEKs was about
360 ◦C, suggesting their good thermal stability. The last degradation region of SPPEK
samples and PPEK presented at 500 ◦C, which was recognized as the decomposition of
polymer main chain [9,41].
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3.3. Morphology and Mechanical Properties of the Membranes

As shown in Figure 7, the cross-section image of SPPEK-1 was dense and smooth,
but SPPEK-2 had some grid structure. With the increase of IEC, their morphologies were
getting rougher, which resulted from the interaction of sulfonic groups [38]. Mechanical
properties of SPPEK membranes, including tensile strength and elongation at break, were
measured, and their results were shown in Table 2. The tensile strength of CEMs was found
to decrease from 84.0 to 68.5 MPa with an increase in IEC. The mechanical performance of
the membranes was eroded with IEC improvement. This resulted from the sulfonic groups
in SPPEK membranes inducing phase separation [38], and the rougher microstructure
damaged the uniformity of membranes in Figure 7 and decreased tensile strength [38]. The
SPPEK-4 possessed the lowest tensile strength (68.5 MPa) but the highest elongation at
break (63.6%), which could avoid breaking during ED process. Herein, the mechanical
properties being experimented indicated that the SPPEK membranes can be applied in the
electrodialysis process and other electrochemical applications.
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Table 2. Mechanical properties of SPPEK membranes.

Membranes Tensile Strength (MPa) Elongation at Break (%)

SPPEK-1 84.9 18.2
SPPEK-2 80.8 30.0
SPPEK-3 78.7 52.6
SPPEK-4 68.5 63.6

3.4. Electrochemical Properties of the Membranes

The content of sulfonic groups played an important role in ion transport, which
directly influenced the efficiency of ion migration and energy consumption in the ED
process. As shown in Table 3, the area resistance greatly decreased from 51.29 to 0.62 Ω·cm2

with the IEC increasing from 0.77 to 1.82 mmol·g−1, which was due to higher contents of
ion exchange groups, with wider and continuous ion transport channels. In addition, the
increase of the IEC also improved ion selectivity, which was due to strong Donnan effects
of ion exchange groups (-SO3

−) [38,46], resulting in a weak transmembrane transport
of anions such as Cl-, so the transport number increased from 0.90 to 0.97. However,
compared with SPPEK-3 (IEC = 1.45 mmol·g−1) and SPPEK-4 (IEC = 1.82 mmol·g−1), the
ion selective transport property did not enhance, which was attributed to high water uptake
and swelling rate of SPPEK-4 [38,46].

Table 3. The electrochemical properties and dimensional stability of prepared membranes and
commercial CMX.

Membranes IEC
(mmol·g−1)

Area Resistance
(Ω·cm2)

Transport
Number

Water
Uptake (%)

Swelling
Rate (%)

SPPEK-1 0.77 51.29 ± 0.27 0.90 4.7 ± 0.8 2.9 ± 0.1
SPPEK-2 1.02 15.41 ± 0.23 0.93 9.0 ± 0.9 4.1 ± 0.3
SPPEK-3 1.45 1.13 ± 0.18 0.97 23.0 ± 0.8 7.3 ± 0.8
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Table 3. Cont.

Membranes IEC
(mmol·g−1)

Area Resistance
(Ω·cm2)

Transport
Number

Water
Uptake (%)

Swelling
Rate (%)

SPPEK-4 1.82 0.62 ± 0.10 0.97 40.2 ± 1.3 10.4 ± 1.3
CMX 1.08 2.35 ± 0.13 0.93 18.4 ± 2.3 6.4 ± 0.6

3.5. Limiting Current Density of the Membrane

Limiting current density (LCD) was an important parameter in the practical ED process.
The ED process involves a boundary between membranes and solution. Ions should
migrate across the boundary and transport across membranes. In general, the transport of
ions across membranes was faster than that across the boundary between membrane and
stream [45,47]. Ion migration velocity increased with an increase of applied current, and
the counterions stayed in the boundary. The number of counterions leaving the boundary
layer was equal to the number of transmembrane conduction ions under a low current
density, and the ions in the boundary showed an equilibrium diffusion process. Meanwhile,
the number of transmembrane conduction ions was more than the number of counterions,
and a counter potential was formed in the boundary under the excessive current density,
resulting in an increase in mass transfer resistance and a decrease in current efficiency,
which was called a polarization. The current density corresponding to the transition of
the ion conduction process within the boundary layer from the equilibrium diffusion
state to the polarization state was defined as the limiting current density. In practical ED
operation, the applied current was commonly lower than LCD in order to protect equipment
and avoid unnecessary energy consumption resulting from the electrolysis of water. For
investigating the LCD of novel membranes, current-voltage curves were measured with
linear sweep voltammetry (LSV) method and shown in Figure 8. A traditional curve of
the tested sample exhibited three typical stages. Initially, the potential increased linearly
with the current density, which was known as an ohmic region due to the balance between
boundary and membrane surface. Next, a flat stage appeared when the current increased to
a certain value as a result of the counter potential generated by the concentration difference
between membrane surface and solution boundary. The LCD was commonly defined as the
intersection of ohmic region and flat stage. Finally, the current rapidly increased following
a potential slight increase. Table 4 listed the precise LCD value of all membranes. LCD
exhibited a positive correlation with ion exchange capacity; SPPEK-4 membrane, which
had the highest IEC, had an LCD up to 39.8 mA·cm2, which was superior to other SPPEK
membranes and commercial CMX membrane (28.3 mA·cm2). Obviously, the content of
sulfonic groups could explain this result. The hydrophilic groups in membranes tightly
capture water so as to increase the mixture of solution and boundary, which enhances the
mass transfer across boundary and achieved higher balance between membrane surface
and this boundary [45,47]. Therefore, SPPEK-4 had excellent LCD performance.
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Table 4. Characteristic values from I–V curves.

Membranes LCD (mA·cm2) Rohm
a (Ω·cm2)

SPPEK-1 17.0 6.75
SPPEK-2 23.2 3.03
SPPEK-3 34.3 1.35
SPPEK-4 39.8 1.23

CMX 28.3 2.06
a the resistance of ohmic region.

3.6. Electrodialysis Experiment

SPPEK-3 and SPPEK-4 membranes were fabricated under the optimal conditions
and their ED performance was evaluated in a laboratory-scale stack operated under the
constant current method, along with commercial membrane for comparison. As shown
in Figure 9a, during the ED process, the desalination and concentration performance of
different membranes shared a similar trend: in the beginning stage, a linear relationship ap-
peared between conductivity of solution and time, before the rate of change of conductivity
became gradually smaller with time due to the polarization phenomenon between DC and
CC after ED operation for 90 min. The result was consistent with their current efficiency
experiment in Figure 9b. The current efficiency of the SPPEK-4 membrane was close to
97% at first, and then decreased to 79% as the time of this process increased, while the
CMX membrane performed the initial current efficiency of 92% and the current efficiency
gradually reduced to 71% at the end of test. Furthermore, the SPPEK-4 membrane exhibited
the highest salt removal rate of 99%, which was superior to the commercial membrane (de-
salination rate of 90%). All of the above results were due to the favorable cation conduction
performance and ion selectivity of the SPPEK-4 membrane, which possesses the highest
ion transport number [42]. In addition, the energy consumption of all membranes initially
changed slightly and then rapidly increased after 120 min due to current carrier reduction in
DC. In the beginning stage, the energy consumption for SPPEK-3 and SPPEK-4 membranes
(1.72 kWh·kg−1) was lower than the commercial membrane, CMX (1.83 kWh·kg−1), which
was caused by the low resistance of SPPEK-3 and SPPEK-4 membranes. However, after
150 min, the energy consumption of SPPEK-3 and SPPEK-4 membranes increased rapidly,
even exceeding the CMX membrane, which resulted from the much lower conductivity
(salt concentration) in DC. Thus, considering their excellent desalination performance and
energy consumption, the SPPEK-4 and SPPEK-3 membranes can still be expected to be
applied in practical electrodialysis.
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Figure 9. The ED performance of SPPEK-3, SPPEK-4, and CMX membranes; (a) ion conductivity
of standard solution in DC and CC; (b) the final salt removal rate; (c) current efficiency; (d) energy
consumption of ED equipment.

3.7. Saline Water Treatment

ED can treat the effluent of concentrated brine from industrial applications of reverse
osmosis (RO) for avoiding damage to marine ecosystems. As shown in similar standard
solution, the ion conductivity of feeding streams in CC increased, while conductivities in DC
decreased. Initially, the solution concentrations in CC were similar between SPPEK-3 and
SPPEK-4. However, SPPEK-3 membrane showed better performance after 75 min. The final
desalination and concentration rates of SPPEK-3 were 94% within 180 min, while 72% for
SPPEK-4 membranes in Figure 10b. The results in this study were attributed to a higher back
diffusion of counterions appearing in the SPPEK-4 membrane, which resulted from this
membrane possessing a higher water-swelling behavior than the SPPEK-3 membrane [42].
During the ED process, water transport was in line with ion migration. The membrane
with lower water uptake easily allowed slight water transportation under concentration
difference and external potential [34,46]. Therefore, the higher water transport of SPPEK-4
negatively influenced its performance for treating saline water. In addition, the energy
consumption and current efficiency were 3.59 kWh·kg−1 and 68%, respectively, for the
SPPEK-3 membrane, which was 34% higher in current efficiency and 7% lower in energy
consumption compared to the CMX membrane. In conclusion, the SPPEK-3 membrane had
the best properties for treating high salinity wastewater.
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higher back diffusion of counterions appearing in the SPPEK-4 membrane, which resulted 

from this membrane possessing a higher water-swelling behavior than the SPPEK-3 mem-
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centration difference and external potential [34,46]. Therefore, the higher water transport 

of SPPEK-4 negatively influenced its performance for treating saline water. In addition, 
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for the SPPEK-3 membrane, which was 34% higher in current efficiency and 7% lower in 

energy consumption compared to the CMX membrane. In conclusion, the SPPEK-3 mem-

brane had the best properties for treating high salinity wastewater. 
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4. Conclusions

A series of sulfonated poly(phthalazinone ether ketone) (SPPEKs) with different IEC
(0.77 to 1.82 mmol·g−1) were synthesized via electrophilic substitution reaction by chloro-
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removal rate of 99% than the CMX, indicating its potential in ED application. Additionally,
the SPPEK-3 membrane showed outstanding performance in concentration rate (94%)
and low energy consumption (4.33 kWh·kg−1), which indicated the feasibility of novel
membranes in ED application.
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