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Abstract: Hydrothermal and chemical aging tests on a 230 kV cross-linked polyethylene (XLPE)
insulation cable were carried out in the present study to evaluate the degradation and aging levels
qualitatively. The samples were subjected to water aging at a temperature of 80 ◦C, and in an aqueous
ionic solution of CuSO4 at room temperature. The diffusion coefficient results indicated that the
ion migration was not at the same rate in the aging conditions. The diffusion coefficient–D–of the
sample immersed in an aqueous CuSO4 solution was lower than the hydrothermally aged specimens.
The hydrophobicity of aged specimens decreased considerably compared to unaged samples. The
distribution of trapped charges was quantitatively characterized. The presence of shallow trap energy
states were observed in unaged XLPE, whereas the deep trap sites were noticed in aged specimens.
In addition, the charge trap characteristics were different for positive and negative charge deposition.
Various material characterization techniques, viz. dynamic mechanical analysis (DMA), tensile,
contact angle, and LIBS, were further employed on the aged and virgin specimens. The tensile
behavior of the hydrothermally aged specimen was degraded due to the oxidised regions, which
had formed a weak spot against the mechanical stress. Reduced glass transition temperature and
increased loss tangent measurements were noticed for aged specimens over their unaged counterparts.
Machine learning techniques, such as the principal component analysis (PCA) and the artificial neural
network (ANN) analysis, were performed on LIBS spectral data of the samples to classify the aging
mechanisms qualitatively.

Keywords: aging; diffusion coefficient; trap depth; LIBS; XLPE; machine learning; PCA; neural networks

1. Introduction

Cross-linked polyethylene (XLPE) cables are critical components of contemporary
electrical power networks. Their dependability and endurance are heavily influenced by the
level of aging of the cable insulation. Under normal working conditions, the deterioration of
insulating materials is the most serious issue for underground power cables [1,2]. The cable
is prone to thermal aging, which can cause permanent damage to the insulation during
operation. Phillips indicated that the thermal aging of XLPE at operating temperatures
causes a considerable increase in the nucleation density and growth rates of bow-tie trees [3].
Thermal aging can cause XLPE insulation’s crystal structure to alter, resulting in severe loss
of its thermal, mechanical, and dielectric characteristics [4,5]. To address these concerns,
several researchers have focused on physicochemical studies to analyze the morphological
changes in XLPE insulation due to aging.

Garton et al. discovered that ionic impurities in cable insulation increase water tree
initiation [6]. These pollutants in the insulation material may migrate from the shield
material or be introduced from the outside environment [7]. Qureshi discussed the existence
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of salts in soils such as sulfide, chlorides, and nitrates [8]. Since the cables are buried directly
in soils that may contain a wide range of chemical species, diffused ions can contaminate
the cable insulation.

Furthermore, the copper sulfate solution was discovered in the location of the elec-
trochemical tree. Copper sulfate solution is formed when a copper conductor corrodes
in the presence of water [9]. The greater acidity strength caused by CuSO4 at 50 ◦C was
shown to be more effective in spreading water treeing over the XLPE insulation [10]. Elec-
trical, thermal, mechanical, and environmental stresses all substantially influence the life
of an insulation system. Thus, cable life predictions are frequently unexpected, owing to
multi-stress aging.

Mechanical stresses in polymeric cable insulation can be caused by residual inter-
nal tension present during manufacturing and locked in as the cable cools, or thermo-
mechanical stresses caused by differential thermal expansion between conductor and
insulation [10]. Thus, it is worthwhile to investigate the viscoelastic characteristics of cable
polyethylene in order to have a better understanding of its microstructure. As a result, it is
necessary to investigate how mechanical stress and strain affect the electrical performance
of XLPE insulation. The link between the microstructure and physicochemical parameters
of XLPE insulation during hydrothermal and CuSO4 aging must be investigated further,
especially for higher voltage insulation cables. The contact angle, which determines surface
wetting, is the most prominent technique because it provides information on microscopic
chemical inhomogeneity along the polymer’s surface after aging [11].

Moreover, the charge accumulated on the insulating material surface due to steady con-
tact with the current-carrying conductor may alter the surface trap distribution. Therefore,
the resultant stresses lead to the degradation of the insulating material. The surface poten-
tial and charge trap characteristics of the insulating material give a quantitative description
to ensure its reliability and service life [12]. The DMA method accurately examines the
relaxation of molecular chains under temperature variation. DMA tests as well as tensile
studies are to be studied prior to the usage of the materials in real-time conditions.

Water or OH groups in a polymer, as well as metal oxidation, play an important role
in insulation deterioration. LIBS (Laser Induced Breakdown Spectroscopy) is an advanced
technique for determining the elemental analysis and has the advantage of remote analysis
as well as multi-elemental detection [13]. Many soft computing approaches have been used
for the LIBS spectral data for plastic identification [14,15]. Boueri et al. recently assessed
the effective plastic identification rates ranging from 81 to 100% by employing artificial
neural networks (ANNs) with LIBS [15]. The majority of the work documented in the
literature utilizing LIBS has mostly focused on identifying various types of polymers and
ionic species present in the damaged cable. To the best of our knowledge, there are very
few studies concerning the application of LIBS for electrical cable degradation examination.
Thus, the study proposes to investigate the level of aging qualitatively, which might lead
to a better understanding of aging and degradation mechanisms, which is a significant
contribution of the current work.

The present study is focused on the XLPE aging scenario and subsequently investi-
gated their electrical and mechanical characteristics suitable for insulation. Specifically,
methodical experimental studies were carried out to understand the following impor-
tant aspects: (i) experimental investigation on the contact angle of virgin and aged XLPE,
(ii) variation in contact angle on the specimen due to water droplet, (iii) the surface charge
and trap characteristics under DC voltage, (iv) the characteristic variation in mechanical
properties over the different aged through DMA studies, and (v) ranking the performance
of aged XLPE specimen through the LIBS technique.

2. Materials and Methods
2.1. Materials

The samples for this investigation were cut from 230 kV, 1200 mm2 XLPE cable insula-
tion from TANGEDCO Porur (GIS) site, Chennai, with a cable cutting tool. For the aging
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studies, copper sulfate (CuSO4) solution and water were used. For XLPE aging investiga-
tions, a 1 M solution of copper sulfate was added to distilled water, and the samples were
immersed in the resultant solution at room temperature. Hydrothermal aging involves
submerging XLPE specimens in distilled water and heating them to 80 ◦C. The weight of
test specimens was checked on a regular basis until the weight gain remained unchanged
for fluid diffusion studies.

2.2. Contact Angle Analysis

The contact angle of XLPE samples was measured using the goniometer through
the half-angle approach. The contact angle was measured at ten different places and
averaged by placing a water droplet of 20 µL on the XLPE sample surface. The half-angle
approach was employed to measure the contact angle. Equation (1) specifies the contact
angle measurement based on the drop’s height (H) and the base radius (R) [16].

θ = 2 tan−1
(

H
R

)
(1)

2.3. Mechanical Analysis

The tensile test was conducted at room temperature with a 4 mm/min strain rate
on dumbbell-shaped specimens using a universal testing machine (KIC-2-0200-C) with
a loading capacity of 20 kN. The results of five samples were averaged for accuracy and
reliability. The storage modulus (E’), loss modulus (E”), and damping factor (tan δ) of the
investigated materials were measured using a dynamic mechanical analyzer (DMA 242 D
(NETZSCH)). The DMA test was employed on rectangular-shaped (50 mm × 11.5 mm)
samples. The three-point bending method was used to step the temperature from room
temperature to 120 ◦C at a rate of 5 ◦C/min at varied frequencies (1 Hz, 5 Hz, and 10 Hz).

2.4. Surface Potential and Charge Trap Characteristics

Figure 1 depicts the surface potential decay system schematically. The charging process
uses a needle electrode (0.3 mm tip radius) and a bottom-plane ground electrode (sliding Al
sheet). The needle tip is positioned at 3 mm from the sample surface. The needle electrode
injects the corona with a 10 kV DC voltage. The charging time is maintained for 3 min. An
electrostatic voltmeter (Trek model 341B) continually monitors the surface potential decay
after charge injection. Data are then recorded in a real-time digital storage oscilloscope (DSO).
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2.5. Laser-Induced Breakdown Spectroscopy Experimental Setup

As shown in Figure 2, the LIBS setup was employed to assess the elemental and
chemical composition of aged and unaged samples. The LASER beam from the pulsed
laser source (Nd3+: YAG laser (LAB-150-10-S2K, Quanta-Ray LAB series, Spectra-Physics))
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is allowed to focus on the sample kept on a controlled motorized stage using a lens of
25 cm focal length to get a plasma plume. The fundamental mode of this laser is at 1064 nm
with a pulse duration of 10 ns. The plasma emitted radiation is focused through a lens of
100 cm focal length, and collimated into a spectrometer (Ocean Optics USB2000+UV-VIS-
ES) through an optical fiber of core diameter of 400 µm, 0.22 NA. The spectral data were
then analyzed in the 200–800 nm wide spectral range. All measurements were performed
in air atmosphere.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. Schematic representation of surface potential decay system. 

2.5. Laser-Induced Breakdown Spectroscopy Experimental Setup 
As shown in Figure 2, the LIBS setup was employed to assess the elemental and 

chemical composition of aged and unaged samples. The LASER beam from the pulsed 
laser source (Nd3+: YAG laser (LAB-150-10-S2K, Quanta-Ray LAB series, Spectra-Physics)) 
is allowed to focus on the sample kept on a controlled motorized stage using a lens of 25 
cm focal length to get a plasma plume. The fundamental mode of this laser is at 1064 nm 
with a pulse duration of 10 ns. The plasma emitted radiation is focused through a lens of 
100 cm focal length, and collimated into a spectrometer (Ocean Optics USB2000+UV-VIS-
ES) through an optical fiber of core diameter of 400 µm, 0.22 NA. The spectral data were 
then analyzed in the 200–800 nm wide spectral range. All measurements were performed 
in air atmosphere. 

 
Figure 2. Laser-induced breakdown spectroscopy setup. 

3. Results and Discussion 
3.1. Water Diffusion Studies 

Figure 2. Laser-induced breakdown spectroscopy setup.

3. Results and Discussion
3.1. Water Diffusion Studies

The aqueous solution will diffuse into the sample until equilibrium is achieved.
Figure 3 depicts XLPE weight growth changes due to hydrothermal and CuSO4 aging
methods. In order to estimate the diffusion coefficients, weight increase was measured in
the test chamber after each aging exposure. The weight gain formula is given as follows:

Wr% =
(W2 − W1)

W1
× 100 (2)

where W2 and W1 are the wet and dry sample weights, respectively. Hydrothermal and
CuSO4 aged specimens attained equilibrium after 132 and 165 h, respectively. As seen in
Figure 3, the initial rate of weight growth was fast, but slowed with time. The proportion of
weight growth was directly related to the ion concentration in the material. The diffusion
coefficient (D) was calculated by using Equation (3), i.e., [17].

D =
πL2

0.5
64t0.5

(3)

where L0.5 is the thickness of the specimen and t0.5 is the time of absorption.
The hydrothermal specimen has a higher diffusion coefficient (6.23 × 10−13 m2 s−1)

than the CuSO4 specimen (3.37 × 10−13 m2 s−1). The ion-conductive clusters operate
as polymer diffusion sites. Diffusion is sluggish if the ion-conductive sites are few. The
hydrothermally aged specimen’s oxidised (carbonyl) ion clusters are more polar than the
unaged specimen’s hydrocarbons alone [18]. As a result, the hydrothermal specimen
diffuses more ions than the CuSO4 specimen. Thus, the ion diffusion through an oxidized
hydrothermal specimen is faster than that of the specimen that has not been oxidized
with CuSO4.
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3.2. Contact Angle Investigation

Water that is repelled by a substance is said to be hydrophobic. Minimal hydropho-
bicity consequences the increased leakage current, flashover risk, and material degrada-
tion [16]. The wettability of solid surfaces is governed by two elements: chemical and
geometrical considerations [16]. Figure 4a–c depict typical water droplet position on un-
aged and aged XLPE specimen surfaces. Figure 4a shows an unaged XLPE specimen with a
nearly spherical form and an average contact angle of 88◦ ± 3.73◦. The droplet’s geometric
form was flattened for aged specimens, increasing hydrophobicity.
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The contact angle for CuSO4 aging is 78◦ ± 6.22◦, resulting in an 11% decrease due to
the acidic influence of dilute H2SO4 on hydration. On the other hand, the contact angle of
hydrothermally aged specimens drops considerably to 56◦ ± 6.22◦ indicating a hydrophilic
nature of the specimen. Because of the cumulative impacts of water and temperature
influences, hydrothermal aging affects polymer chain re-orientation and increases oxidized
(carbonyl) ion clusters, resulting in hydrophobicity loss [18]. LIBS spectroscopic tests,
which are described in the next section, are used to determine the concentration of element
existence due to diffusion.

3.3. Tensile Analysis

In harsh environments, the mechanical characteristics of insulating polymers degrade
before their dielectric properties. As a consequence, in the cable industry, fracture property,
tensile strength, and 50% elongation-at-break (EAB) become key metrics for cable eval-
uation [19]. During wet-aging, moisture penetrates into the cable insulation. As seen in
Figure 5, all specimens examined suffered plastic deformation. In the plastic deformation
region, the unaged sample exhibited flat stress-strain variation, whereas the aged XLPE
showed a linear stress variation against the strain. According to the findings of the tests, ten-
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sile strength and EAB seem to be higher for CuSO4 aged material than for hydrothermally
aged material.
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The tensile characteristics retrieved from the stress-strain curves of different XLPE
specimens are shown in Table 1. When the material crosslinks with CuSO4, a reinforcing
effect occurs, and a significant increase in the force needed to cause a rupture compared
to the unaged material can be observed; hence, the ultimate tensile strength is higher
(9.55 MPa). The CuSO4 specimen (9.55 MPa) has the highest ultimate tensile strength,
followed by unaged (9.14 MPa) and hydrothermally aged (8.73 MPa). According to the
findings, a concurrent decrease in Young’s modulus (51.25 MPa) was also noted as the
crosslink density was moderately increased with CuSO4 aging compared to the unaged
specimen. Unaged samples have a higher Young’s modulus than aged specimens. The
increased Young’s modulus for hydrothermally aged specimen may be due to higher
crystallinity than the CuSO4 aged XLPE.

Table 1. Variation of tensile properties of XLPE.

Sample P (N) Q (MPa) R (MPa) S T U (MPa) V (mm/sec)

Unaged 253.37 69.53 9.14 112.4 187.74 8.85 0.209
CuSO4 233.24 51.25 9.55 108.6 114.06 8.77 0.048

Hydrothermal 221.78 54.13 8.73 92.11 100.2 8.49 0.257
P—Load at maximum tensile stress. Q—Young’s modulus, R—Ultimate tensile strength (UTS). S—% Strain
corresponds to UTS; T—% Elongation at break; U—Fracture strength; V—% Creep rate.

Highly crystalline materials experience less plastic deformation. When the sample
undergoes hydrothermal aging, the materials are more crosslinked, and the polymer chains
become restrained, resulting in a decrease in the EAB. The EAB was moderately affected
in CuSO4 at very low crosslink densities since the few crosslinks present have little effect
on the ability of the chains to align in the stress direction. The fracture strength parameter
shows no evident difference between the unaged and aged specimens.
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Hydrothermal aged samples had a higher creep rate than CuSO4 samples. These
results influence the tensile properties of the samples, which modifies the internal character-
istic of the XLPE material. XLPE insulation’s amorphous cross-linking by-products would
disrupt the alignment of macromolecular chains along the stretch direction, reducing tensile
strength. However, improving the crystalline structure would enhance XLPE insulation’s
mechanical performance [20]. The amount of C–C bonds on the XLPE molecular chains in
the amorphous regions determines the elongation at the break of XLPE [18].

3.4. Influence of Aging on Trap Parameters of XLPE

Corona charging produces electrons and positive ions on the surface. Charge carriers
enter the material and become trapped in the localized surface states. Localized states in
the material strongly affect charge transfer properties [21]. As detrapping occurs in the
absence of applied electric force from the needle electrode, the surface potential of the
sample decreases. As shown in Figure 6, the initial potential is more significant under
+DC than −DC corona injection. The cause may be ascribed to XLPE’s affinity towards
the positive charges. The surface potential decay characteristics are then fitted using an
exponentially decaying function given by Equation (4),

V(t) = V0 ∗ e−
t
τ (4)

where, V0 and τ are initial potential and decay time, respectively. The decay rate (λ = 1/τ)
of XLPE specimens decreased with the aging condition. Table 2 shows the decay time
of different specimens under ±DC charging conditions. Furthermore, the faster charge
decay rate is noticed for the unaged specimen over its aged counterparts. In addition, the
decay rate of charges for the hydrothermally aged specimen is slightly slower than CuSO4
indicating that electron and hole traps inside this specimen are associated with charge
detrap from deep traps.
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Table 2. Mean lifetime and trap parameters of XLPE under DC voltage.

Sample
Positive Polarity Negative Polarity

Decay Time (s) Trap Depth, (eV) Decay Time (s) Trap Depth, (eV)

Unaged 76.00 0.80 12.60 0.76
CuSO4 119.60 0.83 47.20 0.80

Hydrothermal 155.80 0.84 52.80 0.84

Figure 6 shows that the energy distribution of charge carrier traps in the material
is incongruent. It is therefore necessary to analyze the energy of charge carriers trapped
in a specimen. Using surface potential decay (SPD) measurements, trap characteristics,
including energy level of carrier trap (Et), and trap density N(Et) were shown to be strongly
connected to decay behavior through the following Equations (5) and (6) [22].

Et = Ec − Ed = kBT ln(vt) (5)

N(Et) =
4ε0εr

qL2kBT

∣∣∣∣tdV
dt

∣∣∣∣ (6)

where N(Et) is the trap density occupied by carriers at trap level Et in m−3 eV−1, ε0 is the
permittivity of vacuum in F/m, εr is the relative permittivity of the material; q is the unit
electron charge (1.6 × 10−19 C); kB is the Boltzmann’s constant (1.38 × 10−23 J/K); T is
the absolute temperature (298 K); L is the thickness of the sample (1.2 × 10−3 m), t is the
decay time in s, V is the surface potential of the sample in V; v is the escape frequency of
the trapped charge carriers, 4.17 × 1013 s−1.

Figure 7 shows electron-type and hole-type traps in the specimens with negative and
positive DC inputs. The trap distribution energy ranges from 0.67 to 0.95 eV. Unaged
XLPE has two trap centres (∆E): shallow (0.76 eV) and deep (0.82 eV) traps. Impurities and
crosslinking by-products cause shallow traps and space charge buildup [23]. According
to unaged XLPE data, electron (0.76 eV) and hole (0.80 eV) trapped energies are bigger
than hole-type trapped charges [24]. Table 2 shows the trap properties of the various XLPE
samples under study.
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hydrothermal aging in comparison with the unaged specimens. Ouyang et al. demon-
strated that the rupture of XLPE molecular chains during ageing causes alteration in the
crystallinity and increased trap densities [25]. Thus, higher trap energy levels are noticed
for aged specimens over the unaged sample. Further, the right shift (increased) in trap
depth correlates with the rise in surface potential decay time.

3.5. Influence of Aging on Viscoelastic Properties

Figure 8a–c shows the DMA thermograms for several XLPE materials with storage
modulus (E’), loss modulus (E”), and tan δ values. The E’ values decrease with increasing
temperature regardless of the specimen type, which is probably connected to crankshaft
chain motion [26]. The material’s stiffness diminishes as the temperature increases due to
the kinetic motion of molecular chains [27]. The E’ curve varies below 50 ◦C. In this range,
hydrothermally aged specimens have greater E’ values than CuSO4 and unaged specimens.
A connection exists between crosslinking and crystallinity [26]; aging causes change in
cross-linking or crystallinity degree. The aged specimen’s oxidized (carbonyl) ion clusters
are more polar than the unaged specimen’s hydrocarbons alone. Because oxidised ion
diffusion reduces crosslinking, the storage modulus of hydrothermally aged specimens
increases. The storage modulus of CuSO4 and unaged specimens has decreased due to
reduced crystallinity [26]. In Table 3, E’ for hydrothermal is greater than CuSO4, indicating
a change in micro-crystalline structure size and alignment.

Table 3. Mechanical loss factor and storage modulus of various XLPE samples.

Sample/
Parameters

Storage Modulus
(E’) (MPa)

Loss Modulus
(E”) (MPa) Tanδ Transition Temperature,

Tg (K) at Different Frequencies Activation
Energy Ea (eV)RT

(25 ◦C)
HT

(75 ◦C)
RT

(25 ◦C)
HT

(75 ◦C)
RT

(25 ◦C)
HT

(75 ◦C) 1 Hz 5 Hz 10 Hz

Unaged 968 321 202.09 81.49 0.21 0.25 334.14 344.46 344.46 1.88 eV
CuSO4 1218 374 550.33 159.42 0.46 0.43 321.03 322.27 321.03 3.29 eV

Hydrothermal 1469 437 766.88 240.59 0.52 0.53 320.49 323.01 321.74 5.68 eV

The transition phase between polyethylene lamellae creates the loss modulus peak
for water-aged and CuSO4 aged specimens. The most prominent temperature peak in
Figure 8c curves describes the twisting and slip of polyethylene folded lamellae crystal
molecular chains. The unaged XLPE tan δ curve reveals transitions at 73.9 ◦C (α relaxation)
and 60.9 ◦C (α’ relaxation). The crystalline segments have a high peak loss factor at 60.9 ◦C
(relaxation). Unaged now displays more significant variations in crystalline segments.
CuSO4 specimens (Figure 8c) show two transitions at 48 ◦C (α) and 63 ◦C (α’), with the
relaxation occurring at 48 ◦C. The ionic solutions caused higher instability in the chain
segments of CuSO4 aged samples. Significant hydrothermal relaxation occurs at 47 ◦C.
Hydrothermal aging of specimens quickly alters the crystalline segments.

Tiny and defective crystals melt readily even at lower temperatures [27]. Chemicals
permeate into the molecular chain during hydrothermal age, removing backbone chain
homogeneity and reducing micro-crystalline dimensional changes. The loss modulus
peak E” is greater in hydrothermal specimens. The internal friction (tan δ) is measured
at 25 ◦C and 75 ◦C temperature zones. Unaged and hydrothermal measurements are
increased in the RT zone compared to the HT zone in CuSO4. A decrease in crystallinity
occurs during laboratory ageing of hydrothermal and CuSO4, resulting in an increase in
crosslinking degree.
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The transition temperatures (T) presented in Table 3 at different frequencies, and
activation energies of (Ea) of fresh and aged XLPE samples are related by the Arrhenius
Equation (7):

f = f0 ∗ exp
[
−Ea
RT

]
(7)

where f is the applied vibrational frequency, R is gas constant, and f0 is proportionality
constant. To determine activation energy, all samples were fitted with an Arrhenius plot
between ln(f) and 1000/T, and the plots are shown in Figure 9. The usual value of bond
energy for C-H and C-C polymer is 4.0 eV [28]. CuSO4 aging has an activation energy of
3.85 eV, which is slightly less than 4.0 eV. Minor charge carriers are found in deep traps
from the surface potential studies. Understandably, increasing the activation energy of
5.68 eV would increase the crystallinity.
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3.6. LIBS Qualitative Analysis

In this study, the LIBS was used to analyze the composition of aged XLPE samples
and classify them based on the intensity of inorganic and organic components in the LIBS
spectra. Figure 10 shows the spectral peaks for the elements Si, Na, H, N, and O for the
specimens under study at 594.85 nm, 589.50 nm, 656.27 nm, 746.9 nm, and 777.41 nm,
respectively. This NIST database was used to assign spectral lines to all XLPE obtained
using the LIBS setup. The identification of constituents is dependent on spectral wavelength
and intensity [29]. Based on the spectra, the temperature of the plasma (Te) formed by laser
ablation can be calculated as per the Boltzmann Saha Equation (8) [14],

Te =
(E2 − E1)

kB

[
ln
(

I1λ1g2A2

I2λ2g1A1

)]−1
(8)

where E1 and E2 are the excited energy levels, g1 and g2 are the statistical weights of excited
energy levels 1 and 2, respectively, A1 and A2 are transition probabilities of states, I1 and I2
are the intensities of particular atomic species at λ1 and λ2 wavelengths, respectively under
the condition of local thermodynamic equilibrium [30]. In an insulating material, laser
ablation is analogous to localized thermal stress. Unaged, CuSO4 and hydrothermally aged
XLPE plasma temperatures are 19,300 K, 33,700 K, and 33,300 K, respectively. Principal
Component Analysis (PCA) and ANN algorithms were further used to classify the XLPE
samples based on the spectral intensity data.
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3.6.1. Principal Component Analysis of LIBS Data

In the present study, PCA is used—a feature extraction approach used to categorize
LIBS spectral information of different XLPE samples at the first step. It does so by finding
larger eigenvectors computed from the data matrix with spectral wavelength as obser-
vations (rows) and intensity as a variable (columns). By reducing the dimensions of the
original data, PCA can help identify the components with the highest variance. Modified
components are sorted by reduced variance. Thus, the first few components describe the
entire dataset [31,32]. To identify CuSO4 aging from hydrothermal, a dataset of 70 spectra
for each sample, constituting a total of 210 spectra, is created, containing 2048 features, and
used PCA to separate them.

The Principal Component (PC) coefficients, or loadings, indicate the spectral data
variances. Figure 11a–c show PCA classification of XLPE utilizing 70 spectral data per
specimen. PCA data categorization uses a transformation or score plot. In Figure 12, each
spectrum of the specimen is represented by a marker. PC1 (88%), PC2 (5.78%), and PC3
(3.93%) explain the total variance (97.91%) across the data sets (3 × 2048 matrix). The PCA
derived from the LIBS spectra of all observed peaks revealed the presence of clusters. The
LIBS spectra of unaged XLPE and aged specimens were distinguished; however, the LIBS
spectra of CuSO4 and hydrothermal specimens had some overlaps. Statistical approaches
like PCA are incompatible with LIBS spectra analysis to categorize aged materials. Thus,
ANNs were considered for data categorization [31].
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3.6.2. Artificial Neural Network Study of LIBS Data

ANN was used on LIBS data to characterize aged XLPE based on aging type. The
neural network has two layers, one input, one output, and a hidden layer. The input matrix
for classifying XLPE specimens depending on aging type consists of 2048 dimensions,
whereas 70 samples from each of the three categories constitute a target matrix with a size
of 70 × 3. The data matrix is divided into three parts: training, validation, and testing.
The present network is trained to utilize a scaled conjugate gradient backpropagation
algorithm [31]. Figure 13 shows a visual depiction of the classification model’s performance.
Green cells in the confusion matrix represent correctly classified samples, whereas red cells
represent misclassified samples [31].
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Table 4 shows the superlative cross-entropy performance and epoch for sample cat-
egorization based on the aging scenario. The receiver operating characteristic (ROC) is
another helpful indicator for assessing sample categorization using a neural network [31].
With 100% accuracy, the ROC of water-aged and CuSO4 samples is concentrated on the
left-upper half [31]. Thus, it is noticed that the ANN correctly categorizes unaged and aged
XLPE in all aging situations with great accuracy.

Table 4. Cross-entropy performance of classified samples.

Process No. of Samples Cross-Entropy
Error (CE)

Minimum Error
during Validation

Epoch at
Minimum Error

Training 146 1.389
Validation 32 4.127 7.446 × 10−3 31

Testing 32 4.082

4. Conclusions

This paper investigates the electromechanical and physiochemical characteristics of
XLPE material under various aging situations. The following are the key findings from the
current study:
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• The diffusion coefficient was shown to be more accelerated under hydrothermal
conditions than in salt concentrated conditions. The contact angle measurements
indicated the increased surface wettability with aging. The diffusion coefficient and
contact angle measurements of aged specimens showed an inverse relation.

• Despite a decrease in tensile strength and EAB for aged specimens compared to
unaged samples, the CuSO4 aged material exhibited improved properties over the
hydrothermally aged materials.

• On charge deposition over the surface of the insulating material, irrespective of polarity,
the surface potential variation exhibited exponential decay behaviour. The range
of trap energy distribution for an XLPE material lies in the region of 0.67 eV to
0.95 eV. Also, it was observed that the trapped energy levels are different for positive
and negative deposited charges. Surface potential measurements for CuSO4 and
hydrothermally aged specimens showed decreased decay rates when compared to
unaged samples. The deep trap energy sites of both electron and hole-type grew
dramatically in the aging scenario.

• The DMA results revealed that aged specimens had a lower glass transition tempera-
ture and higher loss tangent than unaged counterparts.

• Hydrothermal specimens had the highest level of oxidation and hydrophilicity levels,
which contributed to the low life of the XLPE insulation. The LIBS method was used
for the qualitative analysis of the materials used in the manufacture of cable insulation.
The level of aging was qualitatively classified with a higher accuracy using ANN
compared to the principal component analysis.

Therefore, there is a strong prerequisite to address these problems for the benefit of
cable utilities in addition to the cable manufacturers.
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