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Abstract: Increased population necessitates an expansion of infrastructure and urbanization, resulting
in growth in the construction industry. A rise in population also results in an increased plastic waste,
globally. Recycling plastic waste is a global concern. Utilization of plastic waste in concrete can be
an optimal solution from recycling perspective in construction industry. As environmental issues
continue to grow, the development of predictive machine learning models is critical. Thus, this study
aims to create modelling tools for estimating the compressive and tensile strengths of plastic concrete.
For predicting the strength of concrete produced with plastic waste, this research integrates machine
learning algorithms (individual and ensemble techniques), including bagging and adaptive boosting
by including weak learners. For predicting the mechanical properties, 80 cylinders for compressive
strength and 80 cylinders for split tensile strength were casted and tested with varying percentages
of irradiated plastic waste, either as of cement or fine aggregate replacement. In addition, a thorough
and reliable database, including 320 compressive strength tests and 320 split tensile strength tests, was
generated from existing literature. Individual, bagging and adaptive boosting models of decision tree,
multilayer perceptron neural network, and support vector machines were developed and compared
with modified learner model of random forest. The results implied that individual model response
was enriched by utilizing bagging and boosting learners. A random forest with a modified learner
algorithm provided the robust performance of the models with coefficient correlation of 0.932 for
compressive strength and 0.86 for split tensile strength with the least errors. Sensitivity analyses
showed that tensile strength models were least sensitive to water and coarse aggregates, while cement,
silica fume, coarse aggregate, and age have a substantial effect on compressive strength models.
To minimize overfitting errors and corroborate the generalized modelling result, a cross-validation
K-Fold technique was used. Machine learning algorithms are used to predict mechanical properties
of plastic concrete to promote sustainability in construction industry.

Keywords: plastic concrete; irradiated plastic waste; ensemble techniques; bagging; boosting;
predictive modeling; correlation coefficient; sensitivity analysis; cross-validation; machine learning
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1. Introduction

With the rise in population and growing urbanization, infrastructure planning is
increasing day by day. This demand has resulted in a significant increase in the construction
industry’s growth. Concrete is a common building material that is composed of cement,
fine aggregate, coarse aggregate, and water [1]. Because of its durability, increased strength,
ease of use, and other advantageous features, concrete is widely employed as a construction
material [2]. It has served as the foundation of modern existence. A rise in population
can cause an increase in urbanization demand which results in high concrete demand in
construction industry [3]. Humanity has been willing to overlook concrete’s environmental
disadvantages for many years in exchange for concrete’s obvious advantages. Having a
strong foundation is appealing in these times of rapid change, but it may also create more
problems than it solves if used to its full potential.

After water, concrete is the second most commonly used substance on the earth [4].
There are numerous environmental and human health hazards associated with concrete.
Carbon dioxide emissions from concrete-making accounted for 7% of worldwide carbon
dioxide emissions in 2018, which is a major contributor to climate change, as it destroys the
ozone layer, which raises the global temperature [5]. Calcination, the process of heating
raw materials, such as limestone and clay, to temperatures greater than 1500 ◦C, results
in the release of CO2 [6]. Cement production releases around 0.9 pounds of CO2 into the
environment for every pound of cement produced [7]. Since the cement is only a fraction
of the constituents in concrete, manufacturing a cubic yard of concrete is responsible for
emitting about 400 lbs of CO2. The focus of reductions in CO2 emissions during cement
manufacturing is on energy use, and the cement industry is striving to continuously reduce
its CO2 contribution.

Consequently, each year, around 0.28 billion tonnes of plastic waste is produced world-
wide [8]. A lot of it ends up in landfills, contaminating the environment and endangering
aquatic life. Because of its durability and inexpensive cost, plastic is widely used but it
has major environmental effects [9]. New ways for recycling plastic waste are being used
nowadays. Plastic recycling saves 7.4 cubic yards of landfill area every tonne [10]. Recycling
is on the rise because of greater environmental awareness and financial reasons. As a result
of rapid industrial growth and urbanization, the amount of waste plastics produced each
year has expanded uncontrolled. The environment suffers greatly as a result of this plastic
waste. To reduce pollution, many products are produced from reusable waste plastics.
Plastic waste is now recycled, but only a small percentage of it is recycled in comparison to
manufacturing; the rest ends up in landfills, causing major environmental dangers. After
being buried, plastic might take up to 1000 years to decompose. When it is burned to get
rid of it, toxic chemicals like sulphur dioxide and carbon dioxide are emitted, harming both
the environment and human health [11]. Plastic waste has become a major environmental
concern in modern society. The increased use of numerous types of plastic objects is one
of the most major environmental concerns. Plastic waste in large quantities, as well as
its low biodegradability, has a negative influence on the environment [12]. To store such
large influxes of plastic garbage, which demand vast tracts of land, and which cannot be
recycled in their entirety, humans use a variety of plastic products throughout their daily
lives. Plastic recycling is an environmentally friendly approach to limit the amount of waste
burnt in landfills in the materials sector. As a result, adopting a strategy for utilizing plastic
in the construction industry could be quite advantageous in the current situation. Concrete
is a crucial input in the construction industry, and it is made up of cement, fine aggregates,
and coarse aggregates. Due to high demand and limited supply, these basic resources are
becoming increasingly difficult to obtain. As a result, using waste plastics as raw material
in concrete may partially resolve both concerns. To accomplish sustainable development,
plastic can be crushed and used as a concrete component, this sort of material has become a
significant research topic in recent years. Some positive aspects of using plastic in concrete
includes enhanced tensile and compressive strengths. Plastic in concrete also provides
dense packing, thus reducing the deal weight of concrete. It also provides better resistance
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against chemical attack. Utilizing plastic in concrete is associated with less cement demand,
resulting in less cement production. Moreover, plastic is recycled instead of being dumped
in land-fills or being burnt. Hence, emission of harmful gases will be reduced.

Many laboratory tests have been conducted to examine the effect of partial replacement
of concrete inputs by plastic waste on various properties of concrete. From the literature
review, it is observed that using the plastic waste in concrete as an additive reduces
the carbon emission but a decrease in some of the mechanical properties of concrete is
also examined [13–16]. A detailed literature review is performed to discover the best
grade polymer and its optimal quantities and additives for enhanced high strength [13].
We attempted to replace the fine aggregate with granulated plastic waste at different
percentages. The test conducted on hardened concrete revealed a steady decrease in
concrete strength as more plastic granules were added to the concrete mix [14]. The effects
of replacing natural aggregate with non-biodegradable plastic aggregate made consisting
of mixed plastic waste in concrete were studied. In the range of 9 to 17% at all curing ages,
the decline in compressive strength (fc’) is mainly attributable to the weak adhesion of
waste plastic to the cement paste. Compressive strength was increased by 23% when fine
aggregate was replaced with irradiated plastic waste up to 5% [17]. Similarly, with a water–
cement ratio of 0.52 and a water–cement ratio of 0.42, the fc’ increased by 8.86% and 11.97%,
respectively, using fine aggregate as a 5% replacement for polyethylene terephthalate
waste [15]. Similarly, it was studied that by replacing the natural coarse aggregate from 0 to
15% with waste plastic bottle caps, an increasing trend in fc’ was noticed but the course was
reversed when the percentage was increased beyond 15% [16]. At varied mix ratios, the
mechanical properties of plastic concrete display aberrant behaviour. A correlation among
the properties of plastic waste and quantity of constituents used in concrete is necessary
for altering this behaviour and promoting the widespread use of plastic in concrete. To
achieve this, several artificial intelligence (AI) modelling techniques are utilized, as well as
empirical models to support long progress. For plastic concrete design, basic mechanical
parameters including fc’ and split tensile strength (fsts) should be considered.

Computational modelling approaches could be a viable alternative to the time-
consuming complexity of laboratory-based mixture optimization [18]. To establish the
optimal concrete mixes, these methods create objective functions from the concrete ele-
ments and their attributes and then identify the ideal concrete mixes using optimization
methods. In the past, objective functions for linear and nonlinear models were designed
separately. However, because of the considerably nonlinear correlations among concrete
attributes and input parameters, the relations of such models cannot be established ac-
curately. Consequently, researchers are utilizing machine learning (ML) techniques for
forecasting concrete characteristics. Previously, a variety of ML techniques were utilized to
forecast properties of concrete including fc’, elasticity modulus, and fsts. The most often
used machine learning approaches were multi-layer perceptron neural networks (MLPNN),
artificial neural networks (ANN), support vector machines (SVM), decision trees (DT),
and genetic engineering programming (GEP) [19–21]. Researchers have used supervised
machine learning and its algorithm to handle complicated issues in a variety of domains,
including the prediction of concrete’s mechanical properties.

The multi-layer perceptron neural network (MLPNN) is a class of artificial neural
network (ANN), which is a non-linear computer modelling method capable of establish-
ing input–output relations for complex issues. SVM models are trained to find a global
solution during training because model complexity is considered a structural risk in SVM
training [22]. Classification problems are best solved using the decision tree, a supervised
learning technique. In a tree-structured classifier, each leaf node represents a classification
result, with internal nodes corresponding to dataset features, branching corresponding to
decision rules. In the field of computational intelligence, the GEP is one of the most recent
methodologies. Advanced genetic algorithms use an expression tree to express non-linear
relationships. The robust architecture of deep learning (DL) algorithms, in contrast to pre-
vious ML techniques, allows researchers to better predict results. Because of the enormous
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amount of data collected over the past decade, DL is becoming increasingly popular. Thus,
neural networks have been able to demonstrate their potential since they improve with an
increasing amount of input data. When compared to typical machine learning techniques,
more data will not necessarily lead to better results. When it comes to machine learning
algorithms, ensemble approaches have a significant advantage over the competition [23].
Due to its capacity to tackle complicated and tough issues with exceptional precision, the
DL technique has helped to promote the use of machine learning algorithms across a wide
range of industries. The random forest (RF) technique was utilized to predict the mechan-
ical properties of high-strength concrete, and statistical analyses, such as mean absolute
error (MAE), relative root mean squared error (RRMSE), root mean square error (RMSE),
and were employed to evaluate the models’ performance. This model outperformed all
others since it relies on a weak base learner decision tree and provides a more accurate
coefficient of determination (R2) = 0.96 [24]. A study was conducted by [20] for estimating
the uniaxial fc’ of rubberized concrete by using RF with an optimization technique. The
authors claimed that the model was accurate and had a high correlation. Moreover, fc’ was
predicted using SVM, ANN, DT, and linear regression approaches by [25]. The DT approach
was found to predict fc’ with minimum error and to perform better than other methods,
the correlation coefficient (R2) was 0.86, and the best mean absolute error was 2.59 using
the DT algorithm. For the purpose of forecasting the strength of self-compacting geopoly-
mer concrete generated from raw ingredients, ANN and GEP models were developed.
Using empirical relationships to predict output parameters, the authors observed that the
GEP model performed better than the ANN model [26]. MLPNN, SVM, DT, and random
forest (RF) algorithms were used to evaluate the performance of ensemble techniques
in predicting the fc’ of high-performance concrete. The results suggested that using the
bagging and boosting learners improved the individual model performance. In general, the
random forest and decision tree with bagging models performed quite well, with R2 = 0.92.
On average, the ensemble model in machine learning enhanced the performance of the
model [24]. Ref. [25] declared that GEP and ANN are effective and efficient methodologies
for estimating swell pressure and unconfined compression strength of expansive soils,
according to the comparison results. The mathematical GP-based equations that were
created represent the uniqueness of the GEP model and are relatively simple and efficient.
The R2 values for both swell pressure and unconfined compression strength of expansive
soils lie in the acceptable range of 0.80. In terms of accuracy, the order followed by the
techniques is ANN > GEP > ANFIS. The GEP model outperformed the other two models
in terms of closeness of training, validation, and testing dataset with the ideal fit slope.

An effort has been made in this study to encourage plastic waste use in concrete,
and studies have been undertaken to focus on carbon footprint reduction by employing
ensemble ML techniques to use plastic waste as an additive or a replacement in concrete
for greater long-term sustainability. The purpose of this research is to evaluate and use
ensemble learning methodologies over individual learning models to predict the strength
of PC. According to the authors, there is no previous study that employs ensemble machine
learning modelling for plastic concrete.

2. Experimental Investigation
2.1. Selection of Materials

Plastic debris made of high-density polyethylene (HDPE) was separated from scrap
gathered at a local scrap market. HDPE is a material that is frequently utilized in the
production of shampoo bottles, mobile oil canisters, and containers for storing water.
Table 1 summarises the features of HDPE [27]. Gamma-radiation was used to detoxify
waste plastic. It was crushed into flakes ranging in size from 2 mm to 4 mm prior to
treatment. So that fine aggregate and cement could be used instead of it, it was mechanically
processed. After that, the powdered waste plastic was sent to sieve analysis for quality
assurance. Cement with an average particle size of 75–100 microns has been substituted for
the plastic that would have gone through mesh number 200. Fine aggregate was used to fill
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up the gap left by the removal of the other. ASTM C150/150M specifies the use of Type-1
cement as a binding medium. In all its fresh and hardened forms, fine aggregate makes
up 70% to 80% of the concrete’s volume. Lawrencepur sand from Pakistan was employed
in this study, and its fineness modulus was determined to be 2.47 using sieve analysis
following ASTM C136. Additionally, the specific gravity of 2.60 was determined using the
pycnometer apparatus following ASTM C128. In this investigation, coarse aggregate with
a fineness modulus of 7.52 and a maximum aggregate size of 19 mm was used following
ASTM C33. The silica fume utilized in the research was acquired from a chemical store in
Rawalpindi and met the ASTM C 1240 standard specification, containing 87% SiO2 and
having a specific area of 15 m2/g.

Table 1. High-density polyethylene (HDPE) properties.

Attribute Value Unit

Compressive strength 2.9 ksi
Split tensile strength 4.05 ksi

Impact strength 247.2 kJ/m2

Percent elongation 213.1 %
Modulus of elasticity 1.0103 MPa

Life of service >50 years
Thermal conductivity 0.29 kcal/m.hr.c

2.2. Treatment Using Gamma Radiation

Treatment of gamma radiation of polymeric polymers alters their chemical and physi-
cal properties. This approach is becoming increasingly used for sterilizing medical devices
and irradiating foods for preservation. Worldwide, the most often utilized source of gamma
radiation is cobalt-60 (radioactive isotope) [28]. Rays are generated using electron beams
with energy between 1.173 and 1.332 MeV (Mega Electron Volts) [29]. Co-60 has a half-life
of approximately 5.27 years [30]. Gamma radiations as a source of Co-60 radionuclide were
utilized to cure HDPE. The under-consideration plastic polymer was dosed at a rate of
50 Gray/min, resulting in a cumulative dose of 100 kGY. The 60 kg sample was divided
into four 20 kg bags and packed in a plastic bag by machine to ensure it was airtight.
Radiation induces crosslinking between the polymer’s chain structure and increases the
polymer’s crystallinity. X-ray diffraction was used to investigate the influence of radiation.
This cross-linking technique enhances the crystallinity of the polymer chain, which results
in enhanced HDPE characteristics [31]. After cross-linking, the resulting HDPE offers a
20-fold increase in environmental stress crack resistance and a tenfold increase in molecular
weight over standard HDPE. Additionally, the impact and fsts of treated HDPE are boosted
by fivefold [32].

2.3. Diffraction Analysis of Conventional and Irradiated Plastic Waste

The X-ray diffraction (XRD) technique can be used to investigate the material’s struc-
tural information and forecast its mechanical response under various stress circumstances.
XRD analysis was used to examine the effects of gamma radiation on RPW and IPW in this
work. Flakes of 2–4 mm in diameter were fed into an X-ray diffractometer with a voltage of
20–40 Kev (Kilo Electron Volts). Using rays with a wavelength of 1.5418 (Angstrom), the
sample spun in the apparatus, ensuring that each particle of the material was exposed to
the radiation. The crystallinity of the sample was determined by plotting the intensities
and rotation angle on a graph. The peak area is directly related to the degree of crystallinity.
Integrating the areas of all of the curves yields a precise degree of crystallinity [33]. Gamma
radiation has been shown to improve waste plastic’s mechanical qualities by enhancing
its microstructure and making it crystallized. Table 2 shows the XRF analysis results for
chemical composition. Figures 1 and 2 refer to XRD analysis of radiated and irradiated
plastic, respectively.
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Table 2. Chemical composition of constituents of plastic concrete.

Chemical
Composition

(Mass % of Oxide)
CaO SiO2 Al2O3 MgO SO3 TiO2 K2O Fe2O3 Na2O Zn H2O

Binder Type

OPC 65.2% 19.2% 5.2% 3.4% 1.5% - 0.62% 2.4% 0.3% - -

Silica Fume 0.25 96% 0.25% 0.56% 0.12% 0.56% 0.5% 0.25% 0.02% 0.6%

Regular Plastic 4.87% 64.3% <0.01% <0.01% 14.76% 5.0% 1.89% 4.12% <0.01% 1.7% -

Irradiated Plastic 5.24% 68.6% <0.01% <0.01% 13.47% 5.91% 2.02% 3.26% <0.01% 0.71% -
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2.4. Mix Proportioning

The constituents utilized in the investigation were readily obtainable in the area, and
their attributes are listed above. Calculations for the mix design of concrete with a 3 ksi fc’
were conducted using water to cement ratio of 0.50 to 0.55 to ensure a three-inch slump
value. This investigation employed a concrete mix mixture of 1:1.86:2.45 by mass. Two
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distinct mixtures were created. In the initial mix, cement was replaced with RPW and
IPW in various quantities, including 1%, 2%, 3%, 5%, and 7% by weight of cement. The
fine aggregate was replaced with RPW and IPW in the same quantities in the second
mix. Six × twelve-inch concrete cylinders were cast and tested after three, seven, and
twenty-eight days of curing.

3. Modelling Dataset

Experimental tests, i.e., fc’ test and fsts test have been performed on 160 cylinders at
different percentages. It has been customary for laboratories to prepare test cylinders to
meet these requirements and adhere to building specifications. The trained models were
put to the test using data from experiments. A model that is solely based on experimental
data performs admirably, yet it cannot be called the best-performing model. The plastic
concrete database containing 320 tests for each outcome, i.e., fc’ and fsts was compiled
using data from internationally published studies [14,34–46]. Tables 3 and 4 illustrate
the maximum and minimum ranges of input parameters that are functions of outputs.
Tables 5 and 6 also includes the frequency distribution and statistical description of the
measure, including the mean, standard deviation, median, and skewness. Prior to building
a model, the input factors affecting the mechanical characteristics of plastic concrete must
be chosen. The major constituents impacting concrete’s characteristics are identified and a
generalized function is devised. The function is defined as follows:

fc, fst (MPa) = (C, FA, CA, W, SF, PW, SP, Age)

Table 3. The range of input and output variables for developing the compressive strength model of
plastic concrete.

Parameters Unit Abbreviation Min Max

Input parameters

Cement kg/m3 C 100 550
Fine-aggregate kg/m3 FA 80 957

Coarse-aggregate kg/m3 CA 100 1867
Water kg/m3 W 100 238

Silica-fume kg/m3 SF 0 127.9
Plastic kg/m3 P 0 637

Superplasticizer kg/m3 SP 0 8
Age Days Age 3 28

Output parameters

Compressive strength MPa fc’ 2.69 66.89

Table 4. The range of input and output variables for developing the split tensile strength model of
plastic concrete.

Parameters Unit Abbreviation Min Max

Input parameters

Cement kg/m3 C 100 1015
Fine-aggregate kg/m3 FA 80 909

Coarse-aggregate kg/m3 CA 100 1335
Water kg/m3 W 100 260

Silica-fume kg/m3 SF 0 254
Plastic kg/m3 P 0 637

Superplasticizer kg/m3 SP 0 49.5
Age Days Age 3 28

Output variable

Tensile strength MPa fsts 0.45 8.21
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Table 5. Data statistical description for compressive strength model’s parameters (kg/m3).

Parameters Cement Fine
Aggregate

Coarse
Aggregate Water Silica

Fume Plastic Superplasticizer Age

Statistical
description

Mean 376.90 642.87 938.56 185.46 8.82 93.77 1.42 20.67
Std error 3.75 9.24 17.21 1.44 1.11 6.79 0.13 0.52
Median 375 671.8 928 191.58 0 25.955 0 28
variance 5639.22 34,182.90 118,510.56 825.83 489.12 18,448.57 6.41 109.24
Std. dev 75.09 184.89 344.25 28.74 22.12 135.83 2.53 10.45
Kurtosis 5.18 1.50 1.19 1.26 12.94 3.17 0.52 −1.40

Skewness −1.40 −1.22 0.04 −0.89 3.41 1.87 1.47 −0.75
Range 450 877 1767 138 127.9 637 8 25
Min 100 80 100 100 0 0 0 3
Max 550 957 1867 238 127.9 637 8 28
Sum 150,760.35 257,146.50 375,423.84 74,185.07 3528.34 37,509.57 567.45 8267

Count 400 400 400 400 400 400 400 400

Training dataset

Mean 374.01 643.20 933.46 185.24 9.35 94.45 1.48 20.77
Std error 4.20 10.27 19.52 1.61 1.27 7.76 0.14 0.58
Median 375 672.3 928 191.58 0 25.58 0 28
variance 5651.64 33,748.12 121,956.35 834.10 515.71 19,246.67 6.54 108.32
Std. dev 75.18 183.71 349.22 28.88 22.71 138.73 2.56 10.41
Kurtosis 5.40 1.56 1.03 1.34 11.78 3.08 0.32 −1.37

Skewness −1.51 −1.22 −0.06 −0.93 3.26 1.87 1.40 −0.77
Range 450 877 1767 138 127.9 637 8 25
Min 100 80 100 100 0 0 0 3
Max 550 957 1867 238 127.9 637 8 28
Sum 119,681.85 205,823.42 298,708.42 59,276.27 2991.81 30,224.74 474.4 6647

Count 320 320 320 320 320 320 320 320

Testing Dataset

Mean 388.48 641.54 958.94 186.36 6.71 91.06 1.16 20.25
Std error 8.28 21.32 36.33 3.17 2.19 13.90 0.27 1.19
Median 375.50 663.32 928.00 191.58 0.00 28.42 0.00 28.00
variance 5490.71 36,368.97 105,570.79 801.85 382.24 15,450.08 5.88 114.11
Std. dev 74.10 190.71 324.92 28.32 19.55 124.30 2.43 10.68
Kurtosis 4.59 1.46 2.01 1.00 21.42 3.68 1.72 −1.53

Skewness −1.02 −1.25 0.57 −0.73 4.28 1.82 1.82 −0.68
Range 450 871.6 1767 138 127.9 609 8 25
Min 100 85.4 100 100 0 0 0 3
Max 550 957 1867 238 127.9 609 8 28
Sum 31,078.5 51,323.08 76,715.42 14,908.8 536.53 7284.826 93.05 1620

Count 80 80 80 80 80 80 80 80
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Table 6. Data statistical description for tensile strength model’s parameters (kg/m3).

Parameters Cement Fine
Aggregate

Coarse
Aggregate Water Silica

Fume Plastic Superplasticizer Age

Statistical
description

Mean 388.89 674.16 874.46 188.65 11.66 81.67 2.08 21.28
Std error 5.15 8.53 14.20 1.72 1.65 6.75 0.30 0.51
Median 376 702 928 197 0 18.5 0 28
variance 10,589.82 29,114.93 80,600.92 1178.76 1089.41 18,216.78 35.26 102.70
Std. dev 102.91 170.63 283.90 34.33 33.01 134.97 5.94 10.13
Kurtosis 13.67 3.40 0.95 0.46 29.44 4.62 48.80 −1.21

Skewness 1.60 −1.65 −0.80 −0.52 4.90 2.20 6.47 −0.87
Range 915 829 1235 160 254 637 49.5 25
Min 100 80 100 100 0 0 0 3
Max 1015 909 1335 260 254 637 49.5 28
Sum 155,555.73 269,662.81 349,782.84 75,459.18 4662.44 32,669.14 833.80 8513.00

Count 400 400 400 400 400 400 400 400

Training dataset

Mean 390.42 673.89 872.62 190.16 12.54 82.56 2.25 21.04
Std error 5.95 9.59 15.58 1.89 1.98 7.67 0.36 0.57
Median 376 702 928 197 0 19.2 0 28
variance 11,329.68 29,404.05 77,697.30 1142.59 1259.42 18,800.92 42.22 104.58
Std. dev 106.44 171.48 278.74 33.80 35.49 137.12 6.50 10.23
Kurtosis 14.41 3.10 1.09 0.60 26.55 4.60 41.67 −1.31

Skewness 1.99 −1.59 −0.81 −0.58 4.72 2.21 6.09 −0.81
Range 915 829 1235 160 254 637 49.5 25
Min 100 80 100 100 0 0 0 3
Max 1015 909 1335 260 254 637 49.5 28
Sum 124,933.32 215,644.78 279,238.98 60,852.38 4013.86 26,420.02 721.45 6734.00

Count 320 320 320 320 320 320 320 320

Testing Dataset

Mean 382.78 675.23 881.80 182.59 8.11 78.11 1.40 22.24
Std error 9.80 18.81 34.15 4.02 2.24 14.17 0.30 1.09
Median 376 700 928 191.58 0 15.05 0 28
variance 7689.11 28,314.56 93,277.73 1293.20 400.80 16,072.59 7.00 95.25
Std. dev 87.69 168.27 305.41 35.96 20.02 126.78 2.64 9.76
Kurtosis 3.52 5.11 0.58 0.22 18.19 4.84 0.86 −0.69

Skewness −1.39 −1.96 −0.81 −0.28 3.87 2.16 1.58 −1.13
Range 450 829 1235 160 127.9 618 8 25
Min 100 80 100 100 0 0 0 3
Max 550 909 1335 260 127.9 618 8 28
Sum 30,622.41 54,018.03 70,543.86 14,606.80 648.58 6249.12 112.35 1779.00

Count 80 80 80 80 80 80 80 80

The model’s performance is strongly impacted by its variables. The correlations
between their distributions and the input factors affecting their compressive and tensile
strength are shown in Figures 3 and 4, respectively. It illustrates the link between the data
points by including the relative frequency distribution with them. Additionally, it assists
us in doing statistical analysis by displaying the database, as seen in Figures 3 and 4.
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4. Methodology
4.1. Machine Learning as an Approach to Artificial Intelligence

Artificial intelligence (AI) is proven to be a more efficient modelling technique than
more conventional ways. AI offers several benefits when it comes to dealing with unclear
challenges and is an effective tool for resolving such complex scenarios. When testing
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is not feasible, AI-based solutions are a viable choice for identifying engineering design
parameters, resulting in considerable time and effort savings for human testers. Addi-
tionally, AI can accelerate decision-making, reduce mistake rates, and increase computing
efficiency [47]. There has been a surge in interest in the application of AI to all disci-
plines of engineering in recent years, igniting a variety of objectives and dreams. The
civil engineering community has witnessed a substantial surge in the use of various AI
branches/methods throughout its many areas. ML, pattern recognition (PR), and deep
learning (DL) are three techniques to artificial intelligence that have lately garnered con-
siderable interest and are establishing themselves as a new class of intelligent structural
engineering solutions. ML is a rapidly growing area of artificial intelligence AI, and it is
generally used in the construction industry for predicting material behaviour. The purpose
of this study is to examine how social variables are included In multi-criteria infrastructure
evaluation approaches. By including social elements into the evaluation of infrastructure
sustainability through the use of multi-criteria assessment methodologies [48]. Compre-
hensive research of evolutionary computation, a subfield of artificial intelligence, was
undertaken in the context of structural design [49]. Similarly, cutting-edge techniques
in civil engineering, construction, and building technology were surveyed to make envi-
ronmentally friendly solutions [50]. Ref. [51] studied applications of AI in geotechnical
engineering. A survey was conducted to see how high-rise building optimization was
progressing [52]. The research was conducted to synthesize ideas in the emerging direction
of AI applications in civil engineering. A wide range of techniques are included in this list:
evolutionary computation (EC), neural networks (NN), fuzzy systems (FS), expert systems
(ES), reasoning (RS), classification (CL), and learning (CL), among others [53].

Although the cited review articles addressed AI applications in civil engineering,
they primarily focused on old methodologies and did not address newer methods having
ensemble algorithms. This study is employed to use machine learning techniques, such
as DT, MLPNN, SVM, and RF to estimate the fc’ and fsts of plastic concrete as depicted
in Figure 5. These algorithms are considered best for data prediction, and the choice
of selection of these techniques was based on their extensive use in relevant studies.
Furthermore, ensemble learners are used to predicting the modelling strength of concrete.
In terms of computing performance and time required for processing, ML models are quite
important. In comparison with standard models, the error rate is almost non-existent. In
this research, a comparative study is drawn between individual models and ensemble
models. The next section provides a quick overview of the various modelling approaches
used in this research.
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To begin, DT, MLPNN SVM, and RF were used to estimate the fc’ and fsts of plastic
concrete as a single separate model. After that, for each outcome new ensemble learning
algorithms techniques, such as boosting, bagging, and modified learner are used for
forecasting. The individual model is compared with each other and was then compared to
ensemble approaches. The outcomes indicate that newly designed ensemble techniques
outperform the typical individual machine learning model [54]. ML ensemble approaches
were evaluated for prediction accuracy using a variety of statistical markers. Indeed, recent
prediction modelling research has found that ensemble approaches are gaining favour, as
they typically generate better findings than individual base learners [54].

4.1.1. Decision Tree

For regression and classification issues, DT is a method for predictive modelling that
is used in AI. DT is a categorization scheme comprised of a series of if-else expressions. As
seen in Figure 6, it is made up of several nodes, also known as leaves. Each leaf is subjected
to a test, which sends a query to the node’s branches. The query will be looped until it
reaches the terminal leaf. Each leaf node is correlated with the value returned as the tree’s
contribution. This should be performed to construct the shortest feasible tree by prioritizing
the most essential qualities. Division of learners after the first attribute, other learners come
to be DT problems in their own right, although with fewer samples and fewer attributes.
The complexity can be solved by using subtrees with fewer but more important properties.
A node with a larger number of samples has a higher level of complexity. The complexity
of a homogenous node is reduced because it has a sample of only one type. The objective is
to create trees by repeatedly reducing the sample’s classes to achieve as pure leaf nodes as
possible [55].
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4.1.2. Multilayer Perceptron Neural Network (MLPNN)

One of the most effective machine learning models is the ANN model. It has been
frequently used in environmental, hydrological, and engineering investigations due to
its potential to address nonlinear problems. The multi-layer perceptron ANN is the most
extensively utilized of the many types of ANN models (MLPNN). The MLPNN model’s
basic architecture consists of three layers: the input layer, one or more hidden layers, and
the output layer. Purelin, logsig, and tansig are three typical activation functions. Weights,
bias, and activations functions are the most significant components in the hidden and
output layers. Model training determines the weights or model parameters. All of the
hidden layers employed the tansig activation function, but the output layer used purelin.
Fivefold cross-validation was used to find the best structure. The best ANN model was
found to have three hidden layers, with the optimal number of neurons for each hidden
layer being 9, 3, and 2, respectively [56]. Figure 7 shows a typical neural network. These
networks are composed of three stages: the forward-pass transmits the input and multiplies
it by weight, and the model output is predicted. The anticipated outputs are compared
to the provided inputs. The output of the model predicts the results by considering the
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input parameters into account. Depending on our performance and objectives, we employ
a variety of loss functions. Backward propagation generates partial-derivatives of the
cost-function relating to the individual parameters back into the function. Back propagate
loss and update the model’s weights using gradient descent during this process.
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4.1.3. Support Vector Machine

SVM is an input–output mapping supervised learning method provided by the dataset.
Classification and regression problems are solved using SVM models. SVM, on the other
hand, is mostly used to solve classification difficulties. In SVM, classification is accom-
plished by using a hyperplane to distinguish between two classes. Each data point is
represented as an n-dimensional space point where n is the number of features you have
with the value of each feature being the coordinate value. Following that, categorization is
completed by analysing the hyper-plane, which clearly distinguishes the two classes [57].
Figure 8 illustrates the SVM flow chart.
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4.1.4. Random Forest

Random forest regression is a supervised learning regression technique that makes
use of the ensemble learning method. Random forest is a bagging technique, not a boosting
technique. In random forests, trees grow parallel to one another. There is no contact
between the trees throughout their construction. It works by training a large number of
decision trees and then determining the class that corresponds to the mode of the classes or
mean forecast of each tree. The random forest algorithm was developed in 2001 [58].

The RF method consists of three main steps. It is used to gather trained regression
trees using the training set, then to calculate the average of each regression tree’s output,
and, finally, to perform cross-validation on the predicted data using the validation set [19].
A recent study by [59] concluded about the random forest that in RF the average of the
learners on the nodes and the mean square error (MSE) produced among each learner were
determined at each branching of the regression tree. The regression tree will stop growing
if the minimal leaf node MSE is used as a branching condition until no more features are
available or the total MSE is optimal. The number of regression trees and the number of
random variables of nodes are two crucial custom factors. Figure 9 depicts how RF works
based on classes and trees.
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4.2. Techniques for Ensembles including Bagging and Bossing

The idea behind ensemble approaches is that by merging multiple models, you can
create a far more powerful model. Multiple models, sometimes known as weak learners,
are taught to tackle the same problem and then combined to obtain better results. A
strong model can be created by merging all of the weak learners in a perfect configuration.
Machine learning approaches use ensemble techniques to improve their recognition and
prediction accuracy. By integrating and aggregating numerous weak predictive models,
these methods can often assist to decrease the overfitting problems of the training set.
Bagging is a subclass of ensemble modelling that is taught to minimize prediction variance
by generating new data for training from a dataset using combinations and repetitions
to build multiple sets of the original data. The final outcome is obtained by averaging
the outputs of the component models. Boosting, like bagging, adjusts the weight of an
observation based on the previous categorization. Boosting generates generally accurate
prediction models. Base learners, such as MLPNNs, SVMs, decision trees, and random
forests are combined with boosting and bagging in this study to predict the strength of
typical concrete.
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Ensemble Learner Parameter Calibration

Features linked to the total number of sample learners and the rate at which they
learn, as well as other comparable parameters that uniquely affect ensemble algorithms,
may be represented using tuning parameters utilized in ensemble processes. To find the
optimal sub-model range, bagging and boosting ensemble models (20 each) with 10, 20,
30, . . . , 200 component sub-models were generated for each base learner, and the best
structures were picked based on high correlation coefficient values. Figure 10 depicts the
relation among ensemble model performance and the different sub-models for fc’, whereas
Figure 11 illustrates the relationship for fsts. As seen in Figure 10, the ensemble model with
Adaboost generates a high value of R2 in the prediction aspect, where DT prevails over
other boosting models. Ensemble model with highest R2 is selected for each ML technique.
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5. Model Evaluation Criteria

A model’s performance for training or testing dataset may be evaluated using statisti-
cal errors, such as MAE, R2, RMSLE, and RMSE. Among them, the R2 value is considered
an excellent parameter for model evaluation since it is the most accurate. The models are
evaluated in this study utilizing statistical study and error measures. When combined,
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these metrics may offer you a wealth of information about the problems in your design. The
coefficient of determination is used in this study to demonstrate the accuracy and validity
of the model in question. When the model produces good results, the R2 value should be
between 0.65 and 0.75; when the model produces poor results, the R2 value should be less
than 0.50. The value of R2 may be calculated with the help of Equation (1).

R2 =
∑n

i=1
(
Mi −Mi

)
(Pi − Pi)√

∑n
i=1 (Mi −Mi)

2
∑n

i=1 (Pi − Pi)
2

(1)

MAE stands for average absolute error; it is the difference between predicted and
observed values when all input entities are equally weighted. The absolute value is used to
eliminate the negative sign. Absolute error size is determined, and the units are identical
to the output units. A model with an MAE value inside a range can occasionally have
extraordinarily high errors. Equation (2) is used to compute it.

MAE =
1
n ∑n

i=1|Pi −Mi| (2)

RMSLE considers the relative inaccuracy between the anticipated and actual values.
It is the difference between the logarithm of the predicted and actual values. RMSLE
is computed as follows, where yi represents the anticipated value and yj represents the
actual value.

RMSLE =

√
1
N ∑N

i=1 (log(yi + 1)− log(yj + 1))2 (3)

RMSE is the square-root of the mean of the squared discrepancies between predicted
and actual measurement. It determines the mean square value of the error. It shows
standard deviation of the anticipated inaccuracy. The root mean square error is a statistic
that indicates the average prediction error of model while anticipating the results. The
model is more accurate if the root mean square error is less. The model’s ability to effectively
forecast the data is reflected by the RMSE score of 0.5. The following Equation (4) can be
used to determine the RMSE.

RMSE =

√
∑n

i=1 (Pi −Mi)
2

N
(4)

6. Model Outcomes for Compressive Strength and Tensile Strength
6.1. Decision Tree Outcomes

The accuracy of nonlinear regression or supervised learning predictions is rather high,
as seen in Figure 12. DT individual model provides precise and reliable performance with
R2 = 0.779 as seen in Figure 12a. However, as seen in Figures 12c and 13e, respectively, the
ensemble model with boosting and bagging outperforms the individual model. Table 7
shows the comparison of individual algorithms and ensemble algorithms for all models.
Table 8 shows error ranges for statistical parameters. The ensemble model’s resilient perfor-
mance can also be connected to its error distribution, as seen in Figure 12d,f. As shown in
Figure 12b, an average error of 4.32 MPa is observed with the maximum error of 27.09 MPa
and minimum error of 0.0088 MPa, for the individual algorithm using DT approach. These
attributes are enhanced using an ensemble algorithm to average, maximum, and minimum
error of 3.39 MPa, 17.71 MPa, and 0.04 MPa, respectively, for a DT-adaBoost ensemble
model as seen in Figure 12d and 3.87 MPa, 18.23 MPa, and 0.0057 MPa, respectively, for
bagging ensemble DT model, as shown in Figure 12f. Furthermore, 70% of the data of
individual DT models indicate an imprecision under 5 MPa, whereas 23.75 and 2.5% of
the data indicates an error from 5 to 10 MPa and 10 to 15 MPa, respectively. Furthermore,
no error is observed in the range of 15 to 20 MPa, while 3.75% of the error lies in between
20 to 30 MPa. Contrarily, the ensemble DT-adaboost algorithm’s data demonstrates no
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error beyond 20 MPa. Data from the ensemble DT-adaboost model displays that the error is
80% under 5 MPa, whereas 15 and 1.25% of the error is from 5 to 10 MPa and 10 to 15 MPa,
respectively. Only 3.75% of the data displays that error lie from 15 to 20 MPa. Similarly, the
ensemble bagging DT model for fc’ shows no error above 20 MPa. Data from the bagging
DT model depicts an error of 70% under 5 MPa, 23.75% from 5 to 10 MPa, and 5% from
10 to 15 MPa, respectively. Only 1.25% error from bagging DT model data illustrates the
error in the range of 15–20 MPa.
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Table 7. R2 values of models.

Approaches Employed Output Parameter Machine Learning
Methods Ensemble Models Optimum

Estimator R Value

Individual algorithm

Compressive
Strength

DT - - 0.779
MLPNN - - 0.780

SVM - - 0.752

Tensile Strength
DT - - 0.767

MLPNN - - 0.736
SVM - - 0.723

Ensemble boosting

Compressive
strength

DT-Adaboost (10, 20, 30 . . . 200) 150 0.875
MLPNN-Adaboost (10, 20, 30 . . . 200) 10 0.814

SVM-Adaboost (10, 20, 30 . . . 200) 120 0.817

Tensile Strength
DT-Adaboost (10, 20, 30 . . . 200) 30 0.862

MLPNN-Adaboost (10, 20, 30 . . . 200) 140 0.814
SVM-Adaboost (10, 20, 30 . . . 200) 150 0.809

Ensemble bagging

Compressive
strength

DT-Bagging (10, 20, 30 . . . 200) 180 0.856
MLPNN-Bagging (10, 20, 30 . . . 200) 80 0.850

SVM-Bagging (10, 20, 30 . . . 200) 30 0.807

Tensile Strength
DT-Bagging (10, 20, 30 . . . 200) 10 0.829

MLPNN-Bagging (10, 20, 30 . . . 200) 110 0.803
SVM-Bagging (10, 20, 30 . . . 200) 130 0.804

Modified learner Compressive
strength RF (10, 20, 30 . . . 200) 20 0.932

Modified learner Tensile Strength RF (10, 20, 30 . . . 200) 130 0.864

Table 8. Error ranges associated with statistical factors.

Evaluation Criteria Range Model Accuracy

MAE [0, ∞) Smaller value > better result
RMSE [0, ∞) Smaller value > better result
MSLE [0, ∞) Smaller value > better result

R2 value (0, 1] Larger value > better result

Figure 13a,c,e depicts the model performance versus actual fsts results, while
Figure 13b,d,f depicts the error between actual and predicted values. Boosting ensem-
ble algorithm improved individual DT model of fsts from R2 = 0.767 to R2 = 0.862. The
average, maximum and minimum values of individual DT models for fsts are 0.4 MPa,
1.92 MPa, and 0.013 MPa, respectively. The average, maximum, and minimum values are
observed to be 0.30 MPa, 1.69 MPa, and 0.002 MPa, respectively, for the best ensemble
DT-adaboost model and 0.35 MPa, 1.25 MPa, and 0.001 MPa for best ensemble DT bagging
model. This shows an enhancement of 25, 12, and 84.62% in average, maximum, and
minimum errors, respectively, using adaboost ensemble algorithm for fsts. Similarly, there
is an improvement of 12.5, 34.9, and 92.3% in average, maximum, and minimum errors,
respectively, using the bagging ensemble algorithm for fsts. Moreover, individual DT model
data shows an error of 90% below 1 MPa, and 10% error between 1–2 MPa. Similarly, DT-
adaboost model data illustrates an error of 98.75% below 1 MPa and 1.25% error between
1 and 2 MPa. For the bagging ensemble DT model, data depicts an error of 96.25 below
1 MPa, and 3.75 between 1 and 2 MPa.
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The DT boosting ensemble model in comparison to the individual model improves
R2 by 12.32% for fc’ and 12.39% for fsts. Similarly, DT-bagging ensemble model enhances
R2 by 9.88% for fc’ and 8.03% for fsts. The values of the DT metrics are acceptable, and
this approach may be used to reliably forecast the fc’ of the model. A model’s accuracy
is greatly reliant on the number of databases used. This model consists of 400 databases
for the prediction of fc’ and fsts. Tables 9 and 10 show the statistical description for DT fc’
and fsts models, respectively. The average, minimum, and maximum compressive strength
obtained from individual DT model are 28.37 MPa, 7.59 MPa, and 64.09 MPa, respectively,
as depicted in Table 9. DT-adaboost compressive strength model shows a deviation of 1.37,
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1.85, and 7.27% in average, minimum, and maximum values, respectively. Similarly, the
average, minimum, and maximum values deviated by 0.4, 5.14, and 6.71% for DT-bagging
model when compared with individual DT compressive strength model. Table 10 shows
an average value of 3.14 MPa, with 1.32 MPa, and 4.97 MPa as minimum and maximum
value for DT split tensile strength model. A variance of 0.64, 9.1, and 0.61% is observed
in average, minimum, and maximum values of DT adaboost split tensile strength model
when compared to individual DT model. DT bagging model shows a deflection of 0, 6.82,
and 11.67% in average, minimum, and maximum values, respectively, when compared
with the individual split tensile strength DT model.

Table 9. Statistical analysis of compressive strength decision tree model.

Statistical Analysis DT DT-Adaboost DT-Bagging

Average 28.37 27.98 28.50

Minimum 7.59 7.45 7.98

Maximum 64.09 59.43 59.79

No of entries below 10 MPa 3 6 5

No of entries from 10 to 20 MPa 22 15 17

No of entries from 20 to 30 MPa 21 23 20

No of entries from 30 to 40 MPa 14 26 25

No of entries from 40 to 50 MPa 14 5 8

No of entries from 50 to 60 MPa 2 5 5

No of entries from 60 to 70 MPa 4 0 0

Total testing data points 80 80 80

Mean below 10 MPa 0.29 0.58 0.51

Mean in range of 10 to 20 MPa 3.89 3.09 3.40

Mean in range of 20 to 30 MPa 6.45 6.90 6.07

Mean in range of 30 to 40 MPa 5.87 11.25 10.67

Mean in range of 40 to 50 MPa 7.53 2.61 4.30

Mean in range of 50 to 60 MPa 1.28 3.56 3.55

Mean in range of 60 to 70 MPa 3.07 0.00 0.00

Table 10. Statistical analysis of tensile strength decision tree model.

Statistical Analysis DT DT-Adaboost DT-Bagging

Average 3.14 3.12 3.14

Minimum 1.32 1.44 1.41

Maximum 4.97 4.94 5.55

No. of entries below 1 MPa 0 0 0

No. of entries from 1 to 2 MPa 20 15 16

No. of entries from 2 to 3 MPa 13 18 20

No. of entries from 3 to 4 MPa 26 30 28

No. of entries from 4 to 5 MPa 21 17 11

No. of entries from 5 to 6 MPa 0 0 5

No. of entries from 6 to 7 MPa 0 0 0

Total testing data points 80 80 80

Mean below 1 MPa 0.00 0.00 0.00

Mean in range of 1 to 2 MPa 0.43 0.33 0.35

Mean in range of 2 to 3 MPa 0.41 0.56 0.63

Mean in range of 3 to 4 MPa 1.10 1.26 1.23

Mean in range of 4 to 5 MPa 1.20 0.97 0.60

Mean in range of 5 to 6 MPa 0.00 0.00 0.33

Mean in range of 6 to 7 MPa 0 0 0
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6.2. MLPNN Outcomes

MLPNN is modelled in the same way as the decision tree, adopting ensemble learner’s
methods, as shown in Figure 14. Figure 14a illustrates the relation among predicted and
experimental values for individual MLPNN model of plastic concrete having R2 = 0.78,
along with its error-distribution, illustrated in Figure 14b. Best boosting and bagging
ensemble algorithm MLPNN sub-model is selected, analysed, and compared with indi-
vidual MLPNN model. The individual MLPNN model demonstrates a maximum error
of 18.97 MPa and minimum error of 0.029 MPa, indicating an average error of 4.89 MPa.
Furthermore, data illustrates error of 63.75% below 5 MPa, 20% from 5 to 10 MPa, 13.75%
from 10 to 15 MPa, and 2.5% from 15 to 20 MPa. Moreover, this model is enhanced by
an ensemble adaboost algorithm that depicts R2 of about 0.81, as illustrated in Figure 15c.
Additionally, Figure 14d shows an average, maximum and minimum values of error of
4.61 MPa, 17.66 MPa, and 0.07 MPa, respectively, for MLPNN best ensemble adaboost fc’
model. Moreover, 68.75% of the data depict error below 5 MPa, 22.5% from 5 to 10 MPa,
7.5% from 10 to 15 MPa, and 1.25% from 15 to 20 MPa. The bagging algorithm enhanced fc’
MLPNN model with R2 = 0.85. Figure 14f for bagging ensemble MLPNN model illustrates
an average, maximum, and minimum values of error of 4.17 MPa, 16.45 MPa, and 0.04 MPa,
respectively. Furthermore, 66.25% of the data show the error below 5 MPa, 26.25% from
5 to 10 MPa, 6.25% from 10 to 15 MPa, and 1.25% from 15 to 20 MPa.

The value of R2 is found to be 0.736 for the individual MLPNN model, as seen in
Figure 15a. Boosting and bagging ensemble fsts model improved R2 to 0.814 and 0.803, as
shown in Figures 15c and 15e, respectively. Figure 15b,d,f displays error distribution of
fsts MLPNN individual and ensemble models. An average error of 0.46 MPa is observed
for individual fsts MLPNN model, with 1.98 MPa and 0.012 MPa as the maximum and
minimum error, respectively. Moreover, data depicted errors of 88.75% below 1 MPa, and
11.25% error between 1 and 2 MPa, respectively, whereas these statistics are enhanced in the
ensemble MLPNN fsts models. The ensemble boosting model depicts that an average error
of 0.39 MPa is observed with an improvement of 15.22%. Maximum and minimum errors
are enhanced by 42.93 and 50%, respectively, with values of 1.13 and 0.006, respectively.
Moreover, adaboost MLPNN fsts model data show that 96.25% of error is less than 1 MPa,
and 3.75% of the error is from 1 to 2 MPa. The bagging ensemble model enhances the
average, maximum, and minimum error values by 19.56, 0, and 98.08%, respectively, with
the value of 0.37 MPa,1.98 MPa, and 0.00023 MPa for average, maximum, and minimum
errors, respectively. Furthermore, the bagging ensemble model for fsts data shows an error
of 98.75% is less than 1 MPa and just 1.25 of the error is from 1–2 MPa.

MLPNN boosting ensemble technique shows an enhancement of 4.36% for fc’ and
10.6% for fsts in terms of R2 when compared with the individual MLPNN model. Similarly,
the bagging ensemble technique depicts an improvement of 8.97% and 9.1% for fc’ and
fsts, respectively. The MLPNN can accurately forecast the compressive and fsts based
on the following statistics. Tables 11 and 12 show statistical values for testing used in
MLPNN models of fc’ and fsts, respectively. Individual MLPNN models yield an average
compressive strength of 28.88 MPa, a minimum of 2.50 MPa, and a maximum of 58.23 MPa,
as shown in Table 11. Compressive strength of the MLPNN model exhibits a variance of
1.98%, 43.68%, and 3.25% in the average, minimum, and maximum values accordingly.
Similarly, the average, maximum, and minimum values for the MLPNN-bagging model
differed from the individual MLPNN compressive strength model by 0.1%, 5.14%, and
1.66 times, respectively. MLPNN split tensile strength model has an average value of
3.29 MPa, with 0.81 MPA as the minimum and 6.14 MPA as the maximum. The average,
minimum, and maximum values of the MLPNN-adaboost split tensile strength model vary
by 3.65, 49.38, and 18.24%, respectively, as compared to the individual MLPNN model.
When compared to the individual split tensile strength MLPNN model, the MLPNN-
bagging model exhibits a deflection of 0.91, 61.73, and 18.57 in average, minimum, and
maximum values, respectively.
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MLPNN boosting ensemble technique shows an enhancement of 4.36% for fc’ and 
10.6% for fsts in terms of R2 when compared with the individual MLPNN model. Similarly, 
the bagging ensemble technique depicts an improvement of 8.97% and 9.1% for fc’ and fsts, 
respectively. The MLPNN can accurately forecast the compressive and fsts based on the 
following statistics. Tables 11 and 12 show statistical values for testing used in MLPNN 
models of fc’ and fsts, respectively. Individual MLPNN models yield an average compres-
sive strength of 28.88 MPa, a minimum of 2.50 MPa, and a maximum of 58.23 MPa, as 
shown in Table 11. Compressive strength of the MLPNN model exhibits a variance of 
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Table 11. Statistical analysis of compressive strength MLPNN model.

Statistical Analysis MLPNN MLPNN-Adaboost MLPNN-Bagging

Average 28.88 28.31 28.85

Minimum 2.50 3.59 6.66

Maximum 58.23 56.34 57.56

No. of entries below 10 MPa 8 4 3

No. of entries from 10 to 20 MPa 10 16 15

No. of entries from 20 to 30 MPa 24 24 27

No. of entries from 30 to 40 MPa 23 26 21

No. of entries from 40 to 50 MPa 12 5 9

No. of entries from 50 to 60 MPa 3 5 5

No. of entries from 60 to 70 MPa 0 0 0

Total testing data points 80 80 80

Mean below 10 MPa 0.84 0.35 0.32

Mean in range of 10 to 20 MPa 1.67 2.89 2.55

Mean in range of 20 to 30 MPa 7.35 7.31 8.34

Mean in range of 30 to 40 MPa 10.30 11.65 9.44

Mean in range of 40 to 50 MPa 6.56 2.68 4.73

Mean in range of 50 to 60 MPa 2.16 3.43 3.45

Mean in range of 60 to 70 MPa 0.00 0.00 0.00

Table 12. Statistical analysis of tensile strength MLPNN model.

Statistical Analysis MLPNN MLPNN-Adaboost MLPNN-Bagging

Average 3.29 3.17 3.26

Minimum 0.81 1.21 1.31

Maximum 6.14 5.02 5.00

No. of entries below 1 MPa 1 0 0

No. of entries from 1 to 2 MPa 7 6 3

No. of entries from 2 to 3 MPa 21 27 29

No. of entries from 3 to 4 MPa 36 30 29

No. of entries from 4 to 5 MPa 6 16 19

No. of entries from 5 to 6 MPa 8 1 0

No. of entries from 6 to 7 MPa 1 0 0

Total testing data points 80 80 80

Mean below 1 MPa 0.01 0.00 0.00

Mean in range of 1 to 2 MPa 0.12 0.13 0.06

Mean in range of 2 to 3 MPa 0.65 0.80 0.88

Mean in range of 3 to 4 MPa 1.57 1.31 1.25

Mean in range of 4 to 5 MPa 0.33 0.87 1.08

Mean in range of 5 to 6 MPa 0.53 0.06 0.00

Mean in range of 6 to 7 MPa 0.08 0.00 0.00
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Table 12. Cont.

Statistical Analysis MLPNN MLPNN-Adaboost MLPNN-Bagging

Average 3.29 3.17 3.26

Minimum 0.81 1.21 1.31

Maximum 6.14 5.02 5.00

No. of entries below 1 MPa 1 0 0

No. of entries from 1 to 2 MPa 7 6 3

No. of entries from 2 to 3 MPa 21 27 29

No. of entries from 3 to 4 MPa 36 30 29

No. of entries from 4 to 5 MPa 6 16 19

No. of entries from 5 to 6 MPa 8 1 0

No. of entries from 6 to 7 MPa 1 0 0

Total testing data points 80 80 80

Mean below 1 MPa 0.01 0.00 0.00

Mean in range of 1 to 2 MPa 0.12 0.13 0.06

Mean in range of 2 to 3 MPa 0.65 0.80 0.88

Mean in range of 3 to 4 MPa 1.57 1.31 1.25

Mean in range of 4 to 5 MPa 0.33 0.87 1.08

Mean in range of 5 to 6 MPa 0.53 0.06 0.00

Mean in range of 6 to 7 MPa 0.08 0.00 0.00

6.3. SVM Outcomes

Figure 16 depicts the prediction outcome of fc’ with and without ensemble modelling
via SVM. It is clear that all supervised machine learning algorithms produce a good correla-
tion between prediction and output. The SVM model yields an R2 = 0.752 correlation, as
shown in Figure 16a, whereas boosting and bagging yield relationships of approximately
0.817 and 0.807, respectively, as shown in Figures 16c and 16e, respectively. As shown
in Figure 16b, an average, maximum, and minimum error of 4.28 MPa, 31.82 MPa, and
0.023 MPa, respectively, for individual SVM model is observed. Furthermore, data illus-
trates that 70% of the error lies below 5 MPa, 23.75% from 5 to 10 MPa, 1.25% from 10 to
15 MPa, 2.5% from 15 to 20 MPa, and 2.5% above 20 MPa. As shown in Figure 16d, the
error distribution of the best fc’ SVM ensemble adaboost model has a minimum and maxi-
mum error of 0.029 MPa and 22.17 MPa, respectively, with 4.38 MPa as an average error.
Moreover, data show that 61.25% of error lies below 5 MPa, 32.5% between 5 and 10 MPa,
3.75% from 10 to 15 MPa, only 1.25% from 15 to 20 MPa, and 20 to 25 MPa, respectively.
Figure 16e shows an average, maximum, and minimum error of 4.11 MPa, 28.90 MPa, and
0.0027 MPa, respectively, for the ensemble SVM bagging model for fc’. Moreover, bagging
ensemble model data depict an error of 72.5% below 5 MPa, 20% from 5 to 10 MPa, 5%
from 10 to 15 MPa, 1.25% from 15 to 20 MPa and 1.25% above 20 MPa.
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Figure 17a shows R2 = 0.723 for individual SVM fsts model. R2 value of 0.809 and
0.804 is observed for boosting and bagging ensemble SVM models, respectively, as seen in
Figure 17c,e. The average, minimum, and maximum errors observed from Figure 17b are
0.40 MPa, 0.0024 MPa, and 2.167 MPa, respectively, for individual SVM models while 0.35,
1.60, and 0.0097 MPa, respectively, for SVM best fsts ensemble adaboost model, as shown in
Figure 17d. Figure 17f illustrates the average, maximum, and minimum error of 0.35, 1.92,
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and 0.00084 for SVM best ensemble bagging model. An enhancement of 12.5 and 26.16%
is observed for average and maximum error values for the SVM best ensemble adaboost
model in comparison to the individual SVM fsts model. Similarly, the individual SVM
model compared with bagging SVM model depicts an improvement of 12.5, 11.39, and
65% in average, maximum, and minimum errors, respectively. Data of individual SVM
model depict an inaccuracy of 91.25% below 1 MPa, 7.5% error between 1 and 2 MPa,
and 1.25% error between 2 and 3 MPa. In total, 95% of data of the SVM ensemble models
(both bagging and boosting) shows an error of less than 1 MPa, while only 5% of error
from 1 to 2 MPa. SVM model can predict the targeted results with an ignorable deviation
observed by the value of errors. Moreover, the SVM-boosting ensemble model enhances
the R2 value by 8.64% and 11.89% for fc’ and fsts in comparison to the individual SVM
model. Likewise, the SVM bagging ensemble model enhances R2 by 7.31% and 11.20% for
fc’ and fsts, respectively. Tables 13 and 14 illustrate the statistical value of SVM fc’ and SVM
fsts model, respectively. As illustrated in Table 13, the average, minimum, and maximum
compressive strengths obtained from individual SVM models are 27.96 MPa, 5.50 MPa, and
58.89 MPa, respectively. The SVM-adaboost compressive strength model has an average,
minimum, and maximum value variation of 2.11, 61.64, and 6.81%, respectively. Similarly,
when comparing the SVM bagging model to the individual SVM compressive strength
model, the average, minimum, and maximum values diverged by 1.86, 48.73, and 2.43%,
respectively. The average result for the SVM split tensile strength model is 3.19 MPa, with
the minimum and maximum values being 0.92 MPa and 5.43 MPa, respectively. When
compared to individual SVM models, a variance of 2.19%, 0.18%, and 1.01 times is seen in
the average, maximum, and minimum values of the SVM-adaboost split tensile strength
model. When compared to the individual split tensile strength SVM model, the SVM
bagging model exhibits a deflection of 1.57, 1.09, and 0.37% in average, minimum, and
maximum values, respectively.

Table 13. Statistical analysis of compressive strength SVM model.

Statistical Analysis SVM SVM-Adaboost SVM-Bagging

Average 27.96 28.55 28.48

Minimum 5.50 2.11 8.18

Maximum 58.89 62.90 60.32

No. of entries below 10 MPa 5 1 3

No. of entries from 10 to 20 MPa 15 16 16

No. of entries from 20 to30 MPa 27 34 29

No. of entries from 30 to 40 MPa 24 19 20

No. of entries from 40 to 50 MPa 7 6 9

No. of entries from 50 to 60 MPa 2 2 1

No. of entries from 60 to 70 MPa 0 2 2

Total testing data points 80 80 80

Mean below 10 MPa 0.54 0.03 0.35

Mean in range of 10 to 20 MPa 2.71 2.69 2.78

Mean in range of 20 to 30 MPa 8.90 11.06 9.33

Mean in range of 30 to 40 MPa 10.46 8.53 8.76

Mean in range of 40 to 50 MPa 3.92 3.32 5.07

Mean in range of 50 to 60 MPa 1.42 1.38 0.69

Mean in range of 60 to 70 MPa 0.00 1.54 1.50
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Table 14. Statistical analysis of tensile strength SVM model.

Statistical Analysis SVM SVM-Adaboost SVM-Bagging

Average 3.19 3.26 3.14

Minimum 0.92 1.85 0.91

Maximum 5.43 5.42 5.45

No. of entries below 1 MPa 1 0 1

No. of entries from 1 to 2 MPa 7 6 9

No. of entries from 2 to 3 MPa 20 23 24

No. of entries from 3 to 4 MPa 39 36 33

No. of entries from 4 to 5 MPa 7 11 6

No. of entries from 5 to 6 MPa 6 4 7

No. of entries from 6 to 7 MPa 0 0 0

Total testing data points 80 80 80

Mean below 1 MPa 0.01 0.00 0.01

Mean in range of 1 to 2 MPa 0.16 0.15 0.18

Mean in range of 2 to 3 MPa 0.60 0.71 0.73

Mean in range of 3 to 4 MPa 1.63 1.52 1.40

Mean in range of 4 to 5 MPa 0.40 0.63 0.36

Mean in range of 5 to 6 MPa 0.39 0.26 0.46

Mean in range of 6 to 7 MPa 0.00 0.00 0.00

6.4. Random Forest Outcomes

Random forests are a type of ensemble machine learning technique that combines
bagging and random feature selection to generate prediction models. It is an efficient and
user-friendly approach. Figure 18 shows the supervised learning approach’s prediction
accuracy for fc’ of plastic concrete. It is an ensemble model, with a strong correlation to
the target values of R2 = 0.9327 with an average error distribution, as shown in Figure 18a,
demonstrating its precision in the non-linear projection of normal concretes’ strength.
Figure 18b demonstrates an average, minimum error of 2.71 MPa and maximum error of
0.0036 MPa, and 10.12 MPa, respectively. Moreover, data show an inaccuracy of 81.25%
below 5 MPa, 17.5% between 5 and 10 MPa, and 1.25% between 10 and 15 MPa, respectively.
The data show no error above 15 MPa.
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Figure 19a shows the RF prediction accuracy of tensile strength of plastic concrete.
It is an ensemble with a strong correlation to the target values of R2 = 0.8639. Figure 19b
shows an average, maximum, and minimum error of 0.27 MPa, 1.88 MPa, and 0.00073 MPa,
respectively, for RF model of tensile strength. Moreover, data depict that 96.25% of the
error lies below 1 MPa and 3.75% of the error is in between 1 and 2 MPa, respectively.
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7. Evaluation of Models

The results of individual, ensemble bagging, ensemble boosting, and modified ensem-
ble models are evaluated by different errors including correlation coefficient (R2), RMSLE,
MAE, and RMSE, as shown in Figure 20 for fc’ models and Figure 21 and fsts models, and
their values are tabulated in Table 15.
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Figure 21. Statistical analysis of tensile strength model.

Table 15. Statistical errors for the models.

Approach
Used

Output
Parameter ML Methods MAE RMSE RMSLE R2

Individual
Learner

Compressive
Strength

DT 4.317 6.678 0.113 0.779

MLPNN 4.887 6.501 0.133 0.780

SVM 4.276 6.902 0.101 0.752

Tensile Strength
DT 0.400 0.542 0.059 0.767

MLPNN 0.458 0.594 0.065 0.737

SVM 0.397 0.575 0.064 0.723

Ensemble
Learning
Boosting

Compressive
Strength

DT-Adaboost 3.391 4.962 0.087 0.875

MLPNN-
Adaboost 4.613 5.940 0.116 0.814

SVM-Adaboost 4.376 5.921 0.119 0.817

Tensile Strength
DT-Adaboost 0.304 0.409 0.047 0.862

MLPNN-
Adaboost 0.386 0.478 0.053 0.814

SVM-Adaboost 0.351 0.488 0.060 0.809

Ensemble
Learning
Bagging

Compressive
Strength

DT-Bagging 3.865 5.244 0.096 0.856

MLPNN-Bagging 4.170 5.367 0.100 0.850

SVM-Bagging 4.113 6.066 0.099 0.807

Tensile Strength
DT-Bagging 0.350 0.453 0.048 0.829

MLPNN-Bagging 0.379 0.496 0.057 0.803

SVM-Bagging 0.354 0.493 0.056 0.804

Modified
Ensemble

Compressive
Strength Random Forest 2.712 3.613 0.084 0.933

Tensile Strength Random Forest 0.268 0.402 0.048 0.864
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A comparison was conducted between the ensemble algorithm and the other individ-
ual machine learning algorithms to further demonstrate the ensemble algorithm’s capacity.
The model parameter determinations are comparable to ensemble models, for example,
setting initial values and then optimizing these values using ensemble algorithm. En-
semble algorithms are widely recognised to contain multiple weak-learners created by
individual learning algorithms, weak-learners with excellent performance gain weight,
while weak-learners with poor performance lose weight. As a result, it can provide exact
projections. As indicated in Table 15, individual learners have higher error-values than
ensemble learners with boosting and bagging. This demonstrates that ensemble algorithms
besides minimizing the range of error between experimental and predicted results provide
precise forecasts.

Among Individual learner models for fc’, R2 value of 0.780 for MLPNN overrule DT
and SVM representing the accuracy of model up to 78%, whereas DT model surpasses the
other two model in terms of coefficient of determination (R2) for fsts. SVM is shown to have
the least accurate method in predicting both outcomes. Values of the statistical errors for
each method are shown in Table 15.

DT-Adaboost stands out among ensemble learning models with boosting having R2

values of 0.875 for fc’ model and 0.862 for fsts models, demonstrating the model’s accuracy
of about 87%. The prediction accuracy of DT-Adaboost model outperforms the MLPNN
model by 26.49%, 16.47%, and 25% for fc’ and 21.24%, 14.44%, and 11.32% for fsts in terms
of MAE, RMSE, and RMSLE, respectively. Similarly, in terms of MAE, RMSE, and RMSLE,
DT-Adaboost model beats SVM model with model accuracy of 22.5%, 16.2%, and 26.89%
for fc’ and 13.39%, 16.19%, and 21.67% for fsts, respectively.

Among ensemble learning models with bagging, DT out-performs the other two
methods with R2 value of 0.856 for fc’ model and 0.829 for fsts model. From evaluation of
MAE, RMSE, and RMSLE, again the prediction accuracy of DT-bagging overrule MLPNN
by 7.31%, 2.29%, and 4% for fc’ and 1.1%, 8.67%, and 15.79% for fsts model, respectively.
DT-bagging model tops SVM Bagging models by 6.03%, 13.55%, and 3.03% for fc’ and
1.13%, 8.11%, and 14.26% for fsts model in terms of MAE, RMSE, and RMSLE, respectively.

Random forest is classified as modified ensemble learner model, the prediction accu-
racy of modified ensemble outperforms individual, bagging, and boosting models based on
correlation coefficient R2 with model accuracy of 93% for fc’ model and 86% for fsts model.

Comparing all the models based on the coefficient of determination R2 value the pre-
diction accuracy follows the following order, modified ensemble > ensemble-adaboosting >
ensemble-Bagging > individual learner.

8. Sensitivity Analysis

Sensitivity analysis is a useful tool for determining the significance of each input to
the results. In most real-world applications, identifying all input variables that influence
the problem’s results is difficult. Sensitivity analysis is a neural network technology that
identifies all important parameters from a list of potential parameters efficiently. After
training the neural network on the complete dataset, sensitivity analysis is performed [57].
As input parameters, eight factors were used: cement, water, CA, FA, SP, SF, age, and
plastic waste. The influence of every constituent in the production of ensemble models is
illustrated in Figure 22. When compared to FA, cement, and other additives, silica fume,
coarse aggregate, and age have been demonstrated to contribute more towards compressive
strength. Although, for fsts models, CA and water are the least sensitive parameters. The
most influential parameters for fsts models include super plasticizer and age. In the creation
of both models, FA played a moderate influence.
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9. K Fold Cross-Validation

Machine learning models’ real performance may be estimated statistically via cross-
validation. It is essential to know how the models picked operate. To determine the model
data’s correctness, a validation method is needed. To perform the k fold cross-validation
test, the dataset must be shuffled and divided into k-groups. In this study, the experimental
samples’ data are randomly separated into 10 equal subgroups. Only one of the 10 subsets
is utilized for validation, while the other 9 are used to build the model [60].

As indicated in Figures 23–26, the results of cross-validation are expressed as R2, MAE,
RMSLE, and RMSE. In comparison to supervised machine learning approaches, the RF
model has fewer mistakes and a higher R2. The average R2 value for RF modelling is
0.674 for a tenfold increase in fc’, with a minimum value of 0.39 and a maximum value of
0.92, as illustrated in Figure 24. As indicated in Figure 26, the average R2 value for fsts is
0.57, with a minimum value of 0.32 and a maximum value of 0.87. Each model exhibits
less validation mistakes. The validation indication indicates that the mean values of RMSE,
MAE, and RMSLE for the fc’ RF model are 5.37, 7.11, and 0.083, respectively, and for fsts RF
model are 0.56, 0.58, and 0.035, respectively. Similarly, other ensemble models used in this
study exhibit the same tendency, but with far larger errors.
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Figure 23. Compressive strength models (a–c) indicates R2 models’ result validated with K fold; (d–
f) indicates MAE models’ result validated with K fold; (g–i) indicates RMSE models’ result validated 
with K fold; (j–l) indicates RMSE models’ result validated with K fold. 

 

Figure 23. Compressive strength models (a–c) indicates R2 models’ result validated with K fold;
(d–f) indicates MAE models’ result validated with K fold; (g–i) indicates RMSE models’ result
validated with K fold; (j–l) indicates RMSE models’ result validated with K fold.
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10. Conclusions

Experimental tests for compressive strength and tensile strength were performed
on 80 cylinders with different proportions for radiated and irradiated plastic for each
outcome. Data from the literature were used to train the models containing 320 data points.
Testing was performed on the experimental data. Characteristics and mix proportions of
the specimens are shown in Sections 2.3 and 2.4, respectively. Individual and ensemble
machine learning models for the prediction of compressive and split tensile strength of
plastic concrete are investigated in this paper using DT, MLPNN, SVM, and RF algorithms.
The analysis resulted in the following conclusions:

1. The cross-linking effect of gamma radiation on plastic waste was responsible for the
material’s improved crystallinity. IPW has shown more crystalline structure showing
an increase of 16% in crystallinity as compared to IPW. Hence, enhanced mechanical
properties for IPW were observed when compared with RPW specimens;

2. Tensile strength of plastic concrete is marginally affected by high tensile strength of
plastic polymer itself, as opposed to its compressive strength;

3. Due to the increased micro-structure, the strength loss was restored by utilizing IPW
as a replacement for cement or fine aggregate. It was found that the use of IPW in
concrete not only eliminate plastic waste, but also improve the mechanical properties
of concrete. Concrete with less cement in it, on the other hand, emits less CO2 into
the atmosphere;

4. A 1.07% improvement in compressive strength and 13.7% rise in split tensile strength
were seen when conventional Portland cement was replaced with IPW. A 5% substitu-
tion will minimize 20.20 kg/m3 of cement, making the mix environmentally friendly;

5. As compared to the individual technique, ensemble models with boosting and bagging
showed better results with fewer errors. The individual models were enhanced
using ensemble algorithms. Comparison of different ensemble learning models with
boosting and bagging showed that DT performed better with R2 of 0.875 and 0.856 for
boosting and bagging, respectively, for fc’ models and depicted R2 value of 0.856 and
0.829 for boosting and bagging, respectively, for fsts models, when compared to
MLPNN and SVM;

6. The prediction accuracy of Modified ensemble (RF) outperforms individual, bagging,
and boosting models based on correlation coefficient (R2) with model accuracy of 93%
for fc’ model and 86% for fsts model;

7. Sensitivity analyses depicted that FA contributed moderately in the development of
the fc’ models and fsts models. Moreover, cement, SF, CA, and age played vital role in
the development of fc’ models. Tensile strength models showed to be affected least by
water and CA;

8. K fold validation was utilized for determining the models’ validity R2, RMSE, RMSLE,
and mean errors. Fewer errors with high correlation were observed. In comparison to
supervised machine learning approaches, the RF model has less errors and a higher
R2. The average R2 for RF cross validation is 0.674 for fc’ model and 0.57 for fsts model;

9. ML approaches utilized in this study can precisely predict the mechanical properties of
concrete. Furthermore, these ML algorithms may be used to create a more sustainable
mix design for plastic concrete instead of laborious experimental work demanding
a large number of experiments in the laboratory and using a large number of raw
materials and manpower.

11. Limitations and Direction for Future Work

Compressive and split tensile strengths were calculated with the use of a comprehen-
sive and reliable database. If, however, a more general expression is needed, increasing
the database and adding other input parameters may produce the appropriate results. The
models established in this paper are for compressive and split tensile strength prediction
in plastic concrete. The models predicted the plastic concrete strengths using statistical
parameters with high accuracy and reliability. However, by using the same modelling
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parameters, ANN, ANFIS, and GEP models may be used to forecast the characteristics
of concrete that contains a variety of additional concrete ingredients. These models will
be modified based on the input parameters, and the predicted outcomes will be heavily
influenced by the database used. Additionally, machine learning techniques may be used
with heuristic methods such as the whale optimization algorithm, ant colony optimization,
and particle swarm optimization to obtain optimal results. These tactics may then be
compared to those employed in the current investigation.
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