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Abstract: Increased population necessitates an expansion of infrastructure and urbanization, 

resulting in growth in the construction industry. A rise in population also results in an increased 

plastic waste, globally. Recycling plastic waste is a global concern. Utilization of plastic waste in 

concrete can be an optimal solution from recycling perspective in construction industry. As 

environmental issues continue to grow, the development of predictive machine learning models is 

critical. Thus, this study aims to create modelling tools for estimating the compressive and tensile 

strengths of plastic concrete. For predicting the strength of concrete produced with plastic waste, 

this research integrates machine learning algorithms (individual and ensemble techniques), 

including bagging and adaptive boosting by including weak learners. For predicting the mechanical 

properties, 80 cylinders for compressive strength and 80 cylinders for split tensile strength were 

casted and tested with varying percentages of irradiated plastic waste, either as of cement or fine 

aggregate replacement. In addition, a thorough and reliable database, including 320 compressive 

strength tests and 320 split tensile strength tests, was generated from existing literature. Individual, 

bagging and adaptive boosting models of decision tree, multilayer perceptron neural network, and 

support vector machines were developed and compared with modified learner model of random 

forest. The results implied that individual model response was enriched by utilizing bagging and 

boosting learners. A random forest with a modified learner algorithm provided the robust 

performance of the models with coefficient correlation of 0.932 for compressive strength and 0.86 

for split tensile strength with the least errors. Sensitivity analyses showed that tensile strength 

models were least sensitive to water and coarse aggregates, while cement, silica fume, coarse 

aggregate, and age have a substantial effect on compressive strength models. To minimize 

overfitting errors and corroborate the generalized modelling result, a cross-validation K-Fold 

technique was used. Machine learning algorithms are used to predict mechanical properties of 

plastic concrete to promote sustainability in construction industry. 
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1. Introduction 

With the rise in population and growing urbanization, infrastructure planning is 

increasing day by day. This demand has resulted in a significant increase in the 

construction industry’s growth. Concrete is a common building material that is composed 

of cement, fine aggregate, coarse aggregate, and water [1]. Because of its durability, 

increased strength, ease of use, and other advantageous features, concrete is widely 

employed as a construction material [2]. It has served as the foundation of modern 

existence. A rise in population can cause an increase in urbanization demand which 

results in high concrete demand in construction industry [3]. Humanity has been willing 

to overlook concrete’s environmental disadvantages for many years in exchange for 

concrete’s obvious advantages. Having a strong foundation is appealing in these times of 

rapid change, but it may also create more problems than it solves if used to its full 

potential. 

After water, concrete is the second most commonly used substance on the earth [4]. 

There are numerous environmental and human health hazards associated with concrete. 

Carbon dioxide emissions from concrete-making accounted for 7% of worldwide carbon 

dioxide emissions in 2018, which is a major contributor to climate change, as it destroys 

the ozone layer, which raises the global temperature [5]. Calcination, the process of 

heating raw materials, such as limestone and clay, to temperatures greater than 1500 °C, 

results in the release of CO2 [6]. Cement production releases around 0.9 pounds of CO2 

into the environment for every pound of cement produced [7]. Since the cement is only a 

fraction of the constituents in concrete, manufacturing a cubic yard of concrete is 

responsible for emitting about 400 lbs of CO2. The focus of reductions in CO2 emissions 

during cement manufacturing is on energy use, and the cement industry is striving to 

continuously reduce its CO2 contribution. 

Consequently, each year, around 0.28 billion tonnes of plastic waste is produced 

worldwide [8]. A lot of it ends up in landfills, contaminating the environment and 

endangering aquatic life. Because of its durability and inexpensive cost, plastic is widely 

used but it has major environmental effects [9]. New ways for recycling plastic waste are 

being used nowadays. Plastic recycling saves 7.4 cubic yards of landfill area every tonne 

[10]. Recycling is on the rise because of greater environmental awareness and financial 

reasons. As a result of rapid industrial growth and urbanization, the amount of waste 

plastics produced each year has expanded uncontrolled. The environment suffers greatly 

as a result of this plastic waste. To reduce pollution, many products are produced from 

reusable waste plastics. Plastic waste is now recycled, but only a small percentage of it is 

recycled in comparison to manufacturing; the rest ends up in landfills, causing major 

environmental dangers. After being buried, plastic might take up to 1000 years to 

decompose. When it is burned to get rid of it, toxic chemicals like sulphur dioxide and 

carbon dioxide are emitted, harming both the environment and human health [11]. Plastic 

waste has become a major environmental concern in modern society. The increased use of 

numerous types of plastic objects is one of the most major environmental concerns. Plastic 

waste in large quantities, as well as its low biodegradability, has a negative influence on 

the environment [12]. To store such large influxes of plastic garbage, which demand vast 

tracts of land, and which cannot be recycled in their entirety, humans use a variety of 

plastic products throughout their daily lives. Plastic recycling is an environmentally 

friendly approach to limit the amount of waste burnt in landfills in the materials sector. 

As a result, adopting a strategy for utilizing plastic in the construction industry could be 

quite advantageous in the current situation. Concrete is a crucial input in the construction 

industry, and it is made up of cement, fine aggregates, and coarse aggregates. Due to high 

demand and limited supply, these basic resources are becoming increasingly difficult to 

obtain. As a result, using waste plastics as raw material in concrete may partially resolve 

both concerns. To accomplish sustainable development, plastic can be crushed and used 

as a concrete component, this sort of material has become a significant research topic in 

recent years. Some positive aspects of using plastic in concrete includes enhanced tensile 
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and compressive strengths. Plastic in concrete also provides dense packing, thus reducing 

the deal weight of concrete. It also provides better resistance against chemical attack. 

Utilizing plastic in concrete is associated with less cement demand, resulting in less 

cement production. Moreover, plastic is recycled instead of being dumped in land-fills or 

being burnt. Hence, emission of harmful gases will be reduced. 

Many laboratory tests have been conducted to examine the effect of partial 

replacement of concrete inputs by plastic waste on various properties of concrete. From 

the literature review, it is observed that using the plastic waste in concrete as an additive 

reduces the carbon emission but a decrease in some of the mechanical properties of 

concrete is also examined [13–16]. A detailed literature review is performed to discover 

the best grade polymer and its optimal quantities and additives for enhanced high 

strength [13]. We attempted to replace the fine aggregate with granulated plastic waste at 

different percentages. The test conducted on hardened concrete revealed a steady 

decrease in concrete strength as more plastic granules were added to the concrete mix [14]. 

The effects of replacing natural aggregate with non-biodegradable plastic aggregate made 

consisting of mixed plastic waste in concrete were studied. In the range of 9 to 17% at all 

curing ages, the decline in compressive strength (fc’) is mainly attributable to the weak 

adhesion of waste plastic to the cement paste. Compressive strength was increased by 23% 

when fine aggregate was replaced with irradiated plastic waste up to 5% [17]. Similarly, 

with a water–cement ratio of 0.52 and a water–cement ratio of 0.42, the fc’ increased by 8.86% 

and 11.97%, respectively, using fine aggregate as a 5% replacement for polyethylene 

terephthalate waste [15]. Similarly, it was studied that by replacing the natural coarse 

aggregate from 0 to 15% with waste plastic bottle caps, an increasing trend in fc’ was noticed 

but the course was reversed when the percentage was increased beyond 15% [16]. At varied 

mix ratios, the mechanical properties of plastic concrete display aberrant behaviour. A 

correlation among the properties of plastic waste and quantity of constituents used in 

concrete is necessary for altering this behaviour and promoting the widespread use of 

plastic in concrete. To achieve this, several artificial intelligence (AI) modelling techniques 

are utilized, as well as empirical models to support long progress. For plastic concrete 

design, basic mechanical parameters including fc’ and split tensile strength (fsts) should be 

considered. 

Computational modelling approaches could be a viable alternative to the time-

consuming complexity of laboratory-based mixture optimization [18]. To establish the 

optimal concrete mixes, these methods create objective functions from the concrete 

elements and their attributes and then identify the ideal concrete mixes using 

optimization methods. In the past, objective functions for linear and nonlinear models 

were designed separately. However, because of the considerably nonlinear correlations 

among concrete attributes and input parameters, the relations of such models cannot be 

established accurately. Consequently, researchers are utilizing machine learning (ML) 

techniques for forecasting concrete characteristics. Previously, a variety of ML techniques 

were utilized to forecast properties of concrete including fc’, elasticity modulus, and fsts. 

The most often used machine learning approaches were multi-layer perceptron neural 

networks (MLPNN), artificial neural networks (ANN), support vector machines (SVM), 

decision trees (DT), and genetic engineering programming (GEP) [19–21]. Researchers 

have used supervised machine learning and its algorithm to handle complicated issues in 

a variety of domains, including the prediction of concrete’s mechanical properties. 

The multi-layer perceptron neural network (MLPNN) is a class of artificial neural 

network (ANN), which is a non-linear computer modelling method capable of 

establishing input–output relations for complex issues. SVM models are trained to find a 

global solution during training because model complexity is considered a structural risk 

in SVM training [22]. Classification problems are best solved using the decision tree, a 

supervised learning technique. In a tree-structured classifier, each leaf node represents a 

classification result, with internal nodes corresponding to dataset features, branching 

corresponding to decision rules. In the field of computational intelligence, the GEP is one 
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of the most recent methodologies. Advanced genetic algorithms use an expression tree to 

express non-linear relationships. The robust architecture of deep learning (DL) 

algorithms, in contrast to previous ML techniques, allows researchers to better predict 

results. Because of the enormous amount of data collected over the past decade, DL is 

becoming increasingly popular. Thus, neural networks have been able to demonstrate 

their potential since they improve with an increasing amount of input data. When 

compared to typical machine learning techniques, more data will not necessarily lead to 

better results. When it comes to machine learning algorithms, ensemble approaches have 

a significant advantage over the competition [23]. Due to its capacity to tackle complicated 

and tough issues with exceptional precision, the DL technique has helped to promote the 

use of machine learning algorithms across a wide range of industries. The random forest 

(RF) technique was utilized to predict the mechanical properties of high-strength concrete, 

and statistical analyses, such as mean absolute error (MAE), relative root mean squared 

error (RRMSE), root mean square error (RMSE), and were employed to evaluate the 

models’ performance. This model outperformed all others since it relies on a weak base 

learner decision tree and provides a more accurate coefficient of determination (R2) = 0.96 

[24]. A study was conducted by [20] for estimating the uniaxial fc’ of rubberized concrete 

by using RF with an optimization technique. The authors claimed that the model was 

accurate and had a high correlation. Moreover, fc’ was predicted using SVM, ANN, DT, 

and linear regression approaches by [25]. The DT approach was found to predict fc’ with 

minimum error and to perform better than other methods, the correlation coefficient (R2) 

was 0.86, and the best mean absolute error was 2.59 using the DT algorithm. For the 

purpose of forecasting the strength of self-compacting geopolymer concrete generated 

from raw ingredients, ANN and GEP models were developed. Using empirical 

relationships to predict output parameters, the authors observed that the GEP model 

performed better than the ANN model [26]. MLPNN, SVM, DT, and random forest (RF) 

algorithms were used to evaluate the performance of ensemble techniques in predicting 

the fc’ of high-performance concrete. The results suggested that using the bagging and 

boosting learners improved the individual model performance. In general, the random 

forest and decision tree with bagging models performed quite well, with R2 = 0.92. On 

average, the ensemble model in machine learning enhanced the performance of the model 

[24]. Ref. [25] declared that GEP and ANN are effective and efficient methodologies for 

estimating swell pressure and unconfined compression strength of expansive soils, 

according to the comparison results. The mathematical GP-based equations that were 

created represent the uniqueness of the GEP model and are relatively simple and efficient. 

The R2 values for both swell pressure and unconfined compression strength of expansive 

soils lie in the acceptable range of 0.80. In terms of accuracy, the order followed by the 

techniques is ANN > GEP > ANFIS. The GEP model outperformed the other two models 

in terms of closeness of training, validation, and testing dataset with the ideal fit slope. 

An effort has been made in this study to encourage plastic waste use in concrete, and 

studies have been undertaken to focus on carbon footprint reduction by employing 

ensemble ML techniques to use plastic waste as an additive or a replacement in concrete 

for greater long-term sustainability. The purpose of this research is to evaluate and use 

ensemble learning methodologies over individual learning models to predict the strength 

of PC. According to the authors, there is no previous study that employs ensemble 

machine learning modelling for plastic concrete. 

2. Experimental Investigation 

2.1. Selection of Materials 

Plastic debris made of high-density polyethylene (HDPE) was separated from scrap 

gathered at a local scrap market. HDPE is a material that is frequently utilized in the 

production of shampoo bottles, mobile oil canisters, and containers for storing water. 

Table 1 summarises the features of HDPE [27]. Gamma-radiation was used to detoxify 
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waste plastic. It was crushed into flakes ranging in size from 2 mm to 4 mm prior to 

treatment. So that fine aggregate and cement could be used instead of it, it was 

mechanically processed. After that, the powdered waste plastic was sent to sieve analysis 

for quality assurance. Cement with an average particle size of 75–100 microns has been 

substituted for the plastic that would have gone through mesh number 200. Fine 

aggregate was used to fill up the gap left by the removal of the other. ASTM C150/150M 

specifies the use of Type-1 cement as a binding medium. In all its fresh and hardened 

forms, fine aggregate makes up 70% to 80% of the concrete’s volume. Lawrencepur sand 

from Pakistan was employed in this study, and its fineness modulus was determined to 

be 2.47 using sieve analysis following ASTM C136. Additionally, the specific gravity of 

2.60 was determined using the pycnometer apparatus following ASTM C128. In this 

investigation, coarse aggregate with a fineness modulus of 7.52 and a maximum aggregate 

size of 19 mm was used following ASTM C33. The silica fume utilized in the research was 

acquired from a chemical store in Rawalpindi and met the ASTM C 1240 standard 

specification, containing 87% SiO2 and having a specific area of 15 m2/g. 

Table 1. High-density polyethylene (HDPE) properties. 

Attribute Value Unit 

Compressive strength 2.9 ksi 

Split tensile strength 4.05 ksi 

Impact strength 247.2 kJ/m2 

Percent elongation 213.1 % 

Modulus of elasticity 1.0103 MPa 

Life of service >50 years 

Thermal conductivity 0.29 kcal/m.hr.c 

2.2. Treatment Using Gamma Radiation 

Treatment of gamma radiation of polymeric polymers alters their chemical and 

physical properties. This approach is becoming increasingly used for sterilizing medical 

devices and irradiating foods for preservation. Worldwide, the most often utilized source 

of gamma radiation is cobalt-60 (radioactive isotope) [28]. Rays are generated using 

electron beams with energy between 1.173 and 1.332 MeV (Mega Electron Volts) [29]. Co-

60 has a half-life of approximately 5.27 years [30]. Gamma radiations as a source of Co-60 

radionuclide were utilized to cure HDPE. The under-consideration plastic polymer was 

dosed at a rate of 50 Gray/min, resulting in a cumulative dose of 100 kGY. The 60 kg 

sample was divided into four 20 kg bags and packed in a plastic bag by machine to ensure 

it was airtight. Radiation induces crosslinking between the polymer’s chain structure and 

increases the polymer’s crystallinity. X-ray diffraction was used to investigate the 

influence of radiation. This cross-linking technique enhances the crystallinity of the 

polymer chain, which results in enhanced HDPE characteristics [31]. After cross-linking, 

the resulting HDPE offers a 20-fold increase in environmental stress crack resistance and 

a tenfold increase in molecular weight over standard HDPE. Additionally, the impact and 

fsts of treated HDPE are boosted by fivefold [32]. 

2.3. Diffraction Analysis of Conventional and Irradiated Plastic Waste 

The X-ray diffraction (XRD) technique can be used to investigate the material’s 

structural information and forecast its mechanical response under various stress 

circumstances. XRD analysis was used to examine the effects of gamma radiation on RPW 

and IPW in this work. Flakes of 2–4 mm in diameter were fed into an X-ray diffractometer 

with a voltage of 20–40 Kev (Kilo Electron Volts). Using rays with a wavelength of 1.5418 

(Angstrom), the sample spun in the apparatus, ensuring that each particle of the material 

was exposed to the radiation. The crystallinity of the sample was determined by plotting 

the intensities and rotation angle on a graph. The peak area is directly related to the degree 
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of crystallinity. Integrating the areas of all of the curves yields a precise degree of 

crystallinity [33]. Gamma radiation has been shown to improve waste plastic’s mechanical 

qualities by enhancing its microstructure and making it crystallized. Table 2 shows the 

XRF analysis results for chemical composition. Figures 1 and 2 refer to XRD analysis of 

radiated and irradiated plastic, respectively.  

 

Figure 1. XRD Analysis of Virgin HDPE. 

 

Figure 2. XRD Analysis of Irradiated HDPE at 100 kGY. 

Table 2. Chemical composition of constituents of plastic concrete. 

Chemical Composition 

(Mass % of Oxide) 
CaO SiO2 Al2O3 MgO SO3 TiO2 K2O Fe2O3 Na2O Zn H2O 

Binder Type            

OPC 65.2% 19.2% 5.2% 3.4% 1.5% - 0.62% 2.4% 0.3% - - 

Silica Fume 0.25 96% 0.25% 0.56% 0.12%  0.56% 0.5% 0.25% 0.02% 0.6% 

Regular Plastic 4.87% 64.3% <0.01% <0.01% 14.76% 5.0% 1.89% 4.12% <0.01% 1.7% - 

Irradiated Plastic 5.24% 68.6% <0.01% <0.01% 13.47% 5.91% 2.02% 3.26% <0.01% 0.71% - 
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2.4. Mix Proportioning 

The constituents utilized in the investigation were readily obtainable in the area, and 

their attributes are listed above. Calculations for the mix design of concrete with a 3 ksi fc’ 

were conducted using water to cement ratio of 0.50 to 0.55 to ensure a three-inch slump 

value. This investigation employed a concrete mix mixture of 1:1.86:2.45 by mass. Two 

distinct mixtures were created. In the initial mix, cement was replaced with RPW and IPW 

in various quantities, including 1%, 2%, 3%, 5%, and 7% by weight of cement. The fine 

aggregate was replaced with RPW and IPW in the same quantities in the second mix. Six 

× twelve-inch concrete cylinders were cast and tested after three, seven, and twenty-eight 

days of curing. 

3. Modelling Dataset 

Experimental tests, i.e., fc’ test and fsts test have been performed on 160 cylinders at 

different percentages. It has been customary for laboratories to prepare test cylinders to 

meet these requirements and adhere to building specifications. The trained models were 

put to the test using data from experiments. A model that is solely based on experimental 

data performs admirably, yet it cannot be called the best-performing model. The plastic 

concrete database containing 320 tests for each outcome, i.e., fc’ and fsts was compiled using 

data from internationally published studies [14,34–46]. Tables 3 and 4 illustrate the 

maximum and minimum ranges of input parameters that are functions of outputs. Tables 

5 and 6 also includes the frequency distribution and statistical description of the measure, 

including the mean, standard deviation, median, and skewness. Prior to building a model, 

the input factors affecting the mechanical characteristics of plastic concrete must be 

chosen. The major constituents impacting concrete’s characteristics are identified and a 

generalized function is devised. The function is defined as follows: 

fc, fst (MPa) = (C, FA, CA, W, SF, PW, SP, Age)  

Table 3. The range of input and output variables for developing the compressive strength model of 

plastic concrete. 

Parameters Unit Abbreviation Min Max 

Input parameters     

Cement kg/m3 C 100 550 

Fine-aggregate kg/m3 FA 80 957 

Coarse-aggregate kg/m3 CA 100 1867 

Water kg/m3 W 100 238 

Silica-fume kg/m3 SF 0 127.9 

Plastic kg/m3 P 0 637 

Superplasticizer kg/m3 SP 0 8 

Age Days Age 3 28 

Output parameters     

Compressive strength MPa fc’ 2.69 66.89 
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Table 4. The range of input and output variables for developing the split tensile strength model of 

plastic concrete. 

Parameters Unit Abbreviation Min Max 

Input parameters     

Cement kg/m3 C 100 1015 

Fine-aggregate kg/m3 FA 80 909 

Coarse-aggregate kg/m3 CA 100 1335 

Water kg/m3 W 100 260 

Silica-fume kg/m3 SF 0 254 

Plastic kg/m3 P 0 637 

Superplasticizer kg/m3 SP 0 49.5 

Age Days Age 3 28 

Output variable     

Tensile strength MPa fsts 0.45 8.21 

Table 5. Data statistical description for compressive strength model’s parameters (kg/m3). 

Parameters Cement 
Fine  

Aggregate 

Coarse  

Aggregate 
Water Silica Fume Plastic Superplasticizer Age 

Statistical  

description 
 

Mean 376.90 642.87 938.56 185.46 8.82 93.77 1.42 20.67 

Std error 3.75 9.24 17.21 1.44 1.11 6.79 0.13 0.52 

Median 375 671.8 928 191.58 0 25.955 0 28 

variance 5639.22 34,182.90 118,510.56 825.83 489.12 18,448.57 6.41 109.24 

Std. dev 75.09 184.89 344.25 28.74 22.12 135.83 2.53 10.45 

Kurtosis 5.18 1.50 1.19 1.26 12.94 3.17 0.52 −1.40 

Skewness −1.40 −1.22 0.04 −0.89 3.41 1.87 1.47 −0.75 

Range 450 877 1767 138 127.9 637 8 25 

Min 100 80 100 100 0 0 0 3 

Max 550 957 1867 238 127.9 637 8 28 

Sum 150,760.35 257,146.50 375,423.84 74,185.07 3528.34 37,509.57 567.45 8267 

Count 400 400 400 400 400 400 400 400 

Training dataset  

Mean 374.01 643.20 933.46 185.24 9.35 94.45 1.48 20.77 

Std error 4.20 10.27 19.52 1.61 1.27 7.76 0.14 0.58 

Median 375 672.3 928 191.58 0 25.58 0 28 

variance 5651.64 33,748.12 121,956.35 834.10 515.71 19,246.67 6.54 108.32 

Std. dev 75.18 183.71 349.22 28.88 22.71 138.73 2.56 10.41 

Kurtosis 5.40 1.56 1.03 1.34 11.78 3.08 0.32 −1.37 

Skewness −1.51 −1.22 −0.06 −0.93 3.26 1.87 1.40 −0.77 

Range 450 877 1767 138 127.9 637 8 25 

Min 100 80 100 100 0 0 0 3 

Max 550 957 1867 238 127.9 637 8 28 

Sum 119,681.85 205,823.42 298,708.42 59,276.27 2991.81 30,224.74 474.4 6647 

Count 320 320 320 320 320 320 320 320 

Testing Dataset  

Mean 388.48 641.54 958.94 186.36 6.71 91.06 1.16 20.25 

Std error 8.28 21.32 36.33 3.17 2.19 13.90 0.27 1.19 

Median 375.50 663.32 928.00 191.58 0.00 28.42 0.00 28.00 

variance 5490.71 36,368.97 105,570.79 801.85 382.24 15,450.08 5.88 114.11 

Std. dev 74.10 190.71 324.92 28.32 19.55 124.30 2.43 10.68 

Kurtosis 4.59 1.46 2.01 1.00 21.42 3.68 1.72 −1.53 

Skewness −1.02 −1.25 0.57 −0.73 4.28 1.82 1.82 −0.68 

Range 450 871.6 1767 138 127.9 609 8 25 
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Min 100 85.4 100 100 0 0 0 3 

Max 550 957 1867 238 127.9 609 8 28 

Sum 31,078.5 51,323.08 76,715.42 14,908.8 536.53 7284.826 93.05 1620 

Count 80 80 80 80 80 80 80 80 

Table 6. Data statistical description for tensile strength model’s parameters (kg/m3). 

Parameters Cement 
Fine  

Aggregate 

Coarse  

Aggregate 
Water Silica Fume Plastic Superplasticizer Age 

Statistical 

description 
 

Mean 388.89 674.16 874.46 188.65 11.66 81.67 2.08 21.28 

Std error 5.15 8.53 14.20 1.72 1.65 6.75 0.30 0.51 

Median 376 702 928 197 0 18.5 0 28 

variance 10,589.82 29,114.93 80,600.92 1178.76 1089.41 18,216.78 35.26 102.70 

Std. dev 102.91 170.63 283.90 34.33 33.01 134.97 5.94 10.13 

Kurtosis 13.67 3.40 0.95 0.46 29.44 4.62 48.80 −1.21 

Skewness 1.60 −1.65 −0.80 −0.52 4.90 2.20 6.47 −0.87 

Range 915 829 1235 160 254 637 49.5 25 

Min 100 80 100 100 0 0 0 3 

Max 1015 909 1335 260 254 637 49.5 28 

Sum 155,555.73 269,662.81 349,782.84 75,459.18 4662.44 32,669.14 833.80 8513.00 

Count 400 400 400 400 400 400 400 400 

Training dataset  

Mean 390.42 673.89 872.62 190.16 12.54 82.56 2.25 21.04 

Std error 5.95 9.59 15.58 1.89 1.98 7.67 0.36 0.57 

Median 376 702 928 197 0 19.2 0 28 

variance 11,329.68 29,404.05 77,697.30 1142.59 1259.42 18,800.92 42.22 104.58 

Std. dev 106.44 171.48 278.74 33.80 35.49 137.12 6.50 10.23 

Kurtosis 14.41 3.10 1.09 0.60 26.55 4.60 41.67 −1.31 

Skewness 1.99 −1.59 −0.81 −0.58 4.72 2.21 6.09 −0.81 

Range 915 829 1235 160 254 637 49.5 25 

Min 100 80 100 100 0 0 0 3 

Max 1015 909 1335 260 254 637 49.5 28 

Sum 124,933.32 215,644.78 279,238.98 60,852.38 4013.86 26,420.02 721.45 6734.00 

Count 320 320 320 320 320 320 320 320 

Testing Dataset  

Mean 382.78 675.23 881.80 182.59 8.11 78.11 1.40 22.24 

Std error 9.80 18.81 34.15 4.02 2.24 14.17 0.30 1.09 

Median 376 700 928 191.58 0 15.05 0 28 

variance 7689.11 28,314.56 93,277.73 1293.20 400.80 16,072.59 7.00 95.25 

Std. dev 87.69 168.27 305.41 35.96 20.02 126.78 2.64 9.76 

Kurtosis 3.52 5.11 0.58 0.22 18.19 4.84 0.86 −0.69 

Skewness −1.39 −1.96 −0.81 −0.28 3.87 2.16 1.58 −1.13 

Range 450 829 1235 160 127.9 618 8 25 

Min 100 80 100 100 0 0 0 3 

Max 550 909 1335 260 127.9 618 8 28 

Sum 30,622.41 54,018.03 70,543.86 14,606.80 648.58 6249.12 112.35 1779.00 

Count 80 80 80 80 80 80 80 80 

The model’s performance is strongly impacted by its variables. The correlations between 

their distributions and the input factors affecting their compressive and tensile strength are 

shown in Figure 3 and Figure 4, respectively. It illustrates the link between the data points by 

including the relative frequency distribution with them. Additionally, it assists us in doing 

statistical analysis by displaying the database, as seen in Figures 3 and 4. 



Polymers 2022, 14, 1583 10 of 41 
 

 

 

Figure 3. Compressive strength parameters’ relative frequency distribution; (a) cement, (b) fine 

aggregate, (c) coarse aggregate, (d) water, (e) silica fume, (f) plastic, (g) superplasticizer, and (h) age. 
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Figure 4. Split tensile strength parameters’ relative frequency distribution; (a) cement, (b) fine 

aggregate, (c) coarse aggregate, (d) water, (e) silica fume, (f) plastic, (g) superplasticizer, and (h) age. 

4. Methodology 

4.1. Machine Learning as an Approach to Artificial Intelligence 

Artificial intelligence (AI) is proven to be a more efficient modelling technique than 

more conventional ways. AI offers several benefits when it comes to dealing with unclear 

challenges and is an effective tool for resolving such complex scenarios. When testing is 

not feasible, AI-based solutions are a viable choice for identifying engineering design 
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parameters, resulting in considerable time and effort savings for human testers. 

Additionally, AI can accelerate decision-making, reduce mistake rates, and increase 

computing efficiency [47]. There has been a surge in interest in the application of AI to all 

disciplines of engineering in recent years, igniting a variety of objectives and dreams. The 

civil engineering community has witnessed a substantial surge in the use of various AI 

branches/methods throughout its many areas. ML, pattern recognition (PR), and deep 

learning (DL) are three techniques to artificial intelligence that have lately garnered 

considerable interest and are establishing themselves as a new class of intelligent 

structural engineering solutions. ML is a rapidly growing area of artificial intelligence AI, 

and it is generally used in the construction industry for predicting material behaviour. 

The purpose of this study is to examine how social variables are included In multi-criteria 

infrastructure evaluation approaches. By including social elements into the evaluation of 

infrastructure sustainability through the use of multi-criteria assessment methodologies 

[48]. Comprehensive research of evolutionary computation, a subfield of artificial 

intelligence, was undertaken in the context of structural design [49]. Similarly, cutting-

edge techniques in civil engineering, construction, and building technology were 

surveyed to make environmentally friendly solutions [50]. Ref. [51] studied applications 

of AI in geotechnical engineering. A survey was conducted to see how high-rise building 

optimization was progressing [52]. The research was conducted to synthesize ideas in the 

emerging direction of AI applications in civil engineering. A wide range of techniques are 

included in this list: evolutionary computation (EC), neural networks (NN), fuzzy systems 

(FS), expert systems (ES), reasoning (RS), classification (CL), and learning (CL), among others 

[53]. 

Although the cited review articles addressed AI applications in civil engineering, 

they primarily focused on old methodologies and did not address newer methods having 

ensemble algorithms. This study is employed to use machine learning techniques, such as 

DT, MLPNN, SVM, and RF to estimate the fc’ and fsts of plastic concrete as depicted in 

Figure 5. These algorithms are considered best for data prediction, and the choice of 

selection of these techniques was based on their extensive use in relevant studies. 

Furthermore, ensemble learners are used to predicting the modelling strength of concrete. 

In terms of computing performance and time required for processing, ML models are 

quite important. In comparison with standard models, the error rate is almost non-

existent. In this research, a comparative study is drawn between individual models and 

ensemble models. The next section provides a quick overview of the various modelling 

approaches used in this research. 

 

Figure 5. Flow chart of ML techniques. 
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To begin, DT, MLPNN SVM, and RF were used to estimate the fc’ and fsts of plastic 

concrete as a single separate model. After that, for each outcome new ensemble learning 

algorithms techniques, such as boosting, bagging, and modified learner are used for 

forecasting. The individual model is compared with each other and was then compared 

to ensemble approaches. The outcomes indicate that newly designed ensemble techniques 

outperform the typical individual machine learning model [54]. ML ensemble approaches 

were evaluated for prediction accuracy using a variety of statistical markers. Indeed, 

recent prediction modelling research has found that ensemble approaches are gaining 

favour, as they typically generate better findings than individual base learners [54]. 

4.1.1. Decision Tree 

For regression and classification issues, DT is a method for predictive modelling that 

is used in AI. DT is a categorization scheme comprised of a series of if-else expressions. 

As seen in Figure 6, it is made up of several nodes, also known as leaves. Each leaf is 

subjected to a test, which sends a query to the node’s branches. The query will be looped 

until it reaches the terminal leaf. Each leaf node is correlated with the value returned as 

the tree’s contribution. This should be performed to construct the shortest feasible tree by 

prioritizing the most essential qualities. Division of learners after the first attribute, other 

learners come to be DT problems in their own right, although with fewer samples and 

fewer attributes. The complexity can be solved by using subtrees with fewer but more 

important properties. A node with a larger number of samples has a higher level of 

complexity. The complexity of a homogenous node is reduced because it has a sample of 

only one type. The objective is to create trees by repeatedly reducing the sample’s classes 

to achieve as pure leaf nodes as possible [55]. 

 

Figure 6. Flow chart of decision tree. 

4.1.2. Multilayer Perceptron Neural Network (MLPNN) 

One of the most effective machine learning models is the ANN model. It has been 

frequently used in environmental, hydrological, and engineering investigations due to its 

potential to address nonlinear problems. The multi-layer perceptron ANN is the most 

extensively utilized of the many types of ANN models (MLPNN). The MLPNN model’s 

basic architecture consists of three layers: the input layer, one or more hidden layers, and 

the output layer. Purelin, logsig, and tansig are three typical activation functions. Weights, 

bias, and activations functions are the most significant components in the hidden and 

output layers. Model training determines the weights or model parameters. All of the 

hidden layers employed the tansig activation function, but the output layer used purelin. 
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Fivefold cross-validation was used to find the best structure. The best ANN model was 

found to have three hidden layers, with the optimal number of neurons for each hidden 

layer being 9, 3, and 2, respectively [56]. Figure 7 shows a typical neural network. These 

networks are composed of three stages: the forward-pass transmits the input and 

multiplies it by weight, and the model output is predicted. The anticipated outputs are 

compared to the provided inputs. The output of the model predicts the results by 

considering the input parameters into account. Depending on our performance and 

objectives, we employ a variety of loss functions. Backward propagation generates partial-

derivatives of the cost-function relating to the individual parameters back into the 

function. Back propagate loss and update the model’s weights using gradient descent 

during this process. 

 

Figure 7. Typical neural network architecture. 

4.1.3. Support Vector Machine 

SVM is an input–output mapping supervised learning method provided by the 

dataset. Classification and regression problems are solved using SVM models. SVM, on 

the other hand, is mostly used to solve classification difficulties. In SVM, classification is 

accomplished by using a hyperplane to distinguish between two classes. Each data point 

is represented as an n-dimensional space point where n is the number of features you have 

with the value of each feature being the coordinate value. Following that, categorization 

is completed by analysing the hyper-plane, which clearly distinguishes the two classes 

[57]. Figure 8 illustrates the SVM flow chart. 
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Figure 8. Flow chart of support vector machine. 

4.1.4. Random Forest 

Random forest regression is a supervised learning regression technique that makes 

use of the ensemble learning method. Random forest is a bagging technique, not a 

boosting technique. In random forests, trees grow parallel to one another. There is no 

contact between the trees throughout their construction. It works by training a large 

number of decision trees and then determining the class that corresponds to the mode of 

the classes or mean forecast of each tree. The random forest algorithm was developed in 

2001 [58]. 

The RF method consists of three main steps. It is used to gather trained regression 

trees using the training set, then to calculate the average of each regression tree’s output, 

and, finally, to perform cross-validation on the predicted data using the validation set [19]. 

A recent study by [59] concluded about the random forest that in RF the average of the 

learners on the nodes and the mean square error (MSE) produced among each learner 

were determined at each branching of the regression tree. The regression tree will stop 

growing if the minimal leaf node MSE is used as a branching condition until no more 

features are available or the total MSE is optimal. The number of regression trees and the 

number of random variables of nodes are two crucial custom factors. Figure 9 depicts how 

RF works based on classes and trees. 
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Figure 9. Flow chart of support vector machine. 

4.2. Techniques for Ensembles Including Bagging and Bossing 

The idea behind ensemble approaches is that by merging multiple models, you can 

create a far more powerful model. Multiple models, sometimes known as weak learners, 

are taught to tackle the same problem and then combined to obtain better results. A strong 

model can be created by merging all of the weak learners in a perfect configuration. 

Machine learning approaches use ensemble techniques to improve their recognition and 

prediction accuracy. By integrating and aggregating numerous weak predictive models, 

these methods can often assist to decrease the overfitting problems of the training set. 

Bagging is a subclass of ensemble modelling that is taught to minimize prediction variance 

by generating new data for training from a dataset using combinations and repetitions to 

build multiple sets of the original data. The final outcome is obtained by averaging the 

outputs of the component models. Boosting, like bagging, adjusts the weight of an 

observation based on the previous categorization. Boosting generates generally accurate 

prediction models. Base learners, such as MLPNNs, SVMs, decision trees, and random 

forests are combined with boosting and bagging in this study to predict the strength of 

typical concrete. 

Ensemble Learner Parameter Calibration 

Features linked to the total number of sample learners and the rate at which they 

learn, as well as other comparable parameters that uniquely affect ensemble algorithms, 

may be represented using tuning parameters utilized in ensemble processes. To find the 

optimal sub-model range, bagging and boosting ensemble models (20 each) with 10, 20, 

30, …, 200 component sub-models were generated for each base learner, and the best 

structures were picked based on high correlation coefficient values. Figure 10 depicts the 

relation among ensemble model performance and the different sub-models for fc’, 

whereas Figure 11 illustrates the relationship for fsts. As seen in Figure 10, the ensemble 

model with Adaboost generates a high value of R2 in the prediction aspect, where DT 

prevails over other boosting models. Ensemble model with highest R2 is selected for each 

ML technique. 
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Figure 10. R2 for compressive strength ensemble models with different sub-models; (a) Adaboost; 

(b) Bagging. 

 

Figure 11. R2 for tensile strength ensemble models with the different sub-models; (a) Adaboost; (b) 

Bagging. 

5. Model Evaluation Criteria 

A model’s performance for training or testing dataset may be evaluated using 

statistical errors, such as MAE, R2, RMSLE, and RMSE. Among them, the R2 value is 

considered an excellent parameter for model evaluation since it is the most accurate. The 

models are evaluated in this study utilizing statistical study and error measures. When 

combined, these metrics may offer you a wealth of information about the problems in 

your design. The coefficient of determination is used in this study to demonstrate the 

accuracy and validity of the model in question. When the model produces good results, 

the R2 value should be between 0.65 and 0.75; when the model produces poor results, the 

R2 value should be less than 0.50. The value of R2 may be calculated with the help of 

Equation (1). 

R2  =  
∑ (Mi − M̅i)(Pi −n

i=1 P̅i)

√∑ (Mi − M̅i)2 ∑ (Pi − P̅i)2n
i=1

n
i=1

 (1) 

MAE stands for average absolute error; it is the difference between predicted and 

observed values when all input entities are equally weighted. The absolute value is used 

to eliminate the negative sign. Absolute error size is determined, and the units are 
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identical to the output units. A model with an MAE value inside a range can occasionally 

have extraordinarily high errors. Equation (2) is used to compute it. 

MAE =
1

n
∑ |Pi − Mi| 

n

i=1
 (2) 

RMSLE considers the relative inaccuracy between the anticipated and actual values. 

It is the difference between the logarithm of the predicted and actual values. RMSLE is 

computed as follows, where yi represents the anticipated value and yj represents the 

actual value. 

RMSLE = √
1

N
∑(log(yi + 1) − log(yj + 1))2

N

i=1

  (3) 

RMSE is the square-root of the mean of the squared discrepancies between predicted 

and actual measurement. It determines the mean square value of the error. It shows 

standard deviation of the anticipated inaccuracy. The root mean square error is a statistic 

that indicates the average prediction error of model while anticipating the results. The 

model is more accurate if the root mean square error is less. The model’s ability to 

effectively forecast the data is reflected by the RMSE score of 0.5. The following Equation 

(4) can be used to determine the RMSE. 

RMSE = √
∑ (Pi − Mi)2n

i=1

N
 (4) 

6. Model Outcomes for Compressive Strength and Tensile Strength 

6.1. Decision Tree Outcomes 

The accuracy of nonlinear regression or supervised learning predictions is rather 

high, as seen in Figure 12. DT individual model provides precise and reliable performance 

with R2 = 0.779 as seen in Figure 12a. However, as seen in Figures 12c and 13e, respectively, 

the ensemble model with boosting and bagging outperforms the individual model. Table 

7 shows the comparison of individual algorithms and ensemble algorithms for all models. 

Table 8 shows error ranges for statistical parameters. The ensemble model’s resilient 

performance can also be connected to its error distribution, as seen in Figure 12d,f. As 

shown in Figure 12b, an average error of 4.32 MPa is observed with the maximum error 

of 27.09 MPa and minimum error of 0.0088 MPa, for the individual algorithm using DT 

approach. These attributes are enhanced using an ensemble algorithm to average, 

maximum, and minimum error of 3.39 MPa, 17.71 MPa, and 0.04 MPa, respectively, for a 

DT-adaBoost ensemble model as seen in Figure 12d and 3.87 MPa, 18.23 MPa, and 0.0057 

MPa, respectively, for bagging ensemble DT model, as shown in Figure 12f. Furthermore, 

70% of the data of individual DT models indicate an imprecision under 5 MPa, whereas 

23.75 and 2.5% of the data indicates an error from 5 to 10 MPa and 10 to 15 MPa, 

respectively. Furthermore, no error is observed in the range of 15 to 20 MPa, while 3.75% 

of the error lies in between 20 to 30 MPa. Contrarily, the ensemble DT-adaboost 

algorithm’s data demonstrates no error beyond 20 MPa. Data from the ensemble DT-

adaboost model displays that the error is 80% under 5 MPa, whereas 15 and 1.25% of the 

error is from 5 to 10 MPa and 10 to 15 MPa, respectively. Only 3.75% of the data displays 

that error lie from 15 to 20 MPa. Similarly, the ensemble bagging DT model for fc’ shows 

no error above 20 MPa. Data from the bagging DT model depicts an error of 70% under 5 

MPa, 23.75% from 5 to 10 MPa, and 5% from 10 to 15 MPa, respectively. Only 1.25% error 

from bagging DT model data illustrates the error in the range of 15–20 MPa. 
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Figure 12. Compressive strength: (a) DT regression model; (b) DT model error distribution; (c) DT-

adaboost model; (d) DT-adaboost model error distribution; (e) DT-bagging regression model; and 

(f) DT-bagging model error distribution. 
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Table 7. R2 values of models. 

Approaches 

Employed 
Output Parameter Machine Learning Methods Ensemble Models 

Optimum  

Estimator 
R Value 

Individual  

algorithm 

Compressive Strength 

DT - - 0.779 

MLPNN - - 0.780 

SVM - - 0.752 

Tensile Strength 

DT - - 0.767 

MLPNN - - 0.736 

SVM - - 0.723 

Ensemble 

boosting 

Compressive strength 

DT-Adaboost (10, 20, 30…200) 150 0.875 

MLPNN-Adaboost (10, 20, 30…200) 10 0.814 

SVM-Adaboost (10, 20, 30…200) 120 0.817 

Tensile Strength 

DT-Adaboost (10, 20, 30…200) 30 0.862 

MLPNN-Adaboost (10, 20, 30…200) 140 0.814 

SVM-Adaboost (10, 20, 30…200) 150 0.809 

Ensemble  

bagging 

Compressive strength 

DT-Bagging (10, 20, 30…200) 180 0.856 

MLPNN-Bagging (10, 20, 30…200) 80 0.850 

SVM-Bagging (10, 20, 30…200) 30 0.807 

Tensile Strength 

DT-Bagging (10, 20, 30…200) 10 0.829 

MLPNN-Bagging (10, 20, 30…200) 110 0.803 

SVM-Bagging (10, 20, 30…200) 130 0.804 

Modified learner Compressive strength RF (10, 20, 30…200) 20 0.932 

Modified learner Tensile Strength RF (10, 20, 30…200) 130 0.864 

Table 8. Error ranges associated with statistical factors. 

Evaluation Criteria Range Model Accuracy 

MAE [0, ∞) Smaller value > better result 

RMSE [0, ∞) Smaller value > better result 

MSLE [0, ∞) Smaller value > better result 

R2 value (0, 1] Larger value > better result 

Figure 13a,c,e depicts the model performance versus actual fsts results, while Figure 

13b,d,f depicts the error between actual and predicted values. Boosting ensemble algorithm 

improved individual DT model of fsts from R2 = 0.767 to R2 = 0.862. The average, maximum and 

minimum values of individual DT models for fsts are 0.4 MPa, 1.92 MPa, and 0.013 MPa, 

respectively. The average, maximum, and minimum values are observed to be 0.30 MPa, 1.69 

MPa, and 0.002 MPa, respectively, for the best ensemble DT-adaboost model and 0.35 MPa, 

1.25 MPa, and 0.001 MPa for best ensemble DT bagging model. This shows an enhancement 

of 25, 12, and 84.62% in average, maximum, and minimum errors, respectively, using adaboost 

ensemble algorithm for fsts. Similarly, there is an improvement of 12.5, 34.9, and 92.3% in 

average, maximum, and minimum errors, respectively, using the bagging ensemble algorithm 

for fsts. Moreover, individual DT model data shows an error of 90% below 1 MPa, and 10% 

error between 1–2 MPa. Similarly, DT-adaboost model data illustrates an error of 98.75% 

below 1 MPa and 1.25% error between 1 and 2 MPa. For the bagging ensemble DT model, data 

depicts an error of 96.25 below 1 MPa, and 3.75 between 1 and 2 MPa. 
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Figure 13. Tensile strength: (a) DT regression model; (b) DT model error distribution; (c) DT-

adaboost model; (d) DT-adaboost model error distribution; (e) DT-bagging regression model; and 

(f) DT-bagging model error distribution. 
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The DT boosting ensemble model in comparison to the individual model improves R2 by 

12.32% for fc’ and 12.39% for fsts. Similarly, DT-bagging ensemble model enhances R2 by 9.88% 

for fc’ and 8.03% for fsts. The values of the DT metrics are acceptable, and this approach may be 

used to reliably forecast the fc’ of the model. A model’s accuracy is greatly reliant on the 

number of databases used. This model consists of 400 databases for the prediction of fc’ and 

fsts. Tables 9 and 10 show the statistical description for DT fc’ and fsts models, respectively. The 

average, minimum, and maximum compressive strength obtained from individual DT model 

are 28.37 MPa, 7.59 MPa, and 64.09 MPa, respectively, as depicted in Table 9. DT-adaboost 

compressive strength model shows a deviation of 1.37, 1.85, and 7.27% in average, minimum, 

and maximum values, respectively. Similarly, the average, minimum, and maximum values 

deviated by 0.4, 5.14, and 6.71% for DT-bagging model when compared with individual DT 

compressive strength model. Table 10 shows an average value of 3.14 MPa, with 1.32 MPa, 

and 4.97 MPa as minimum and maximum value for DT split tensile strength model. A 

variance of 0.64, 9.1, and 0.61% is observed in average, minimum, and maximum values of DT 

adaboost split tensile strength model when compared to individual DT model. DT bagging 

model shows a deflection of 0, 6.82, and 11.67% in average, minimum, and maximum values, 

respectively, when compared with the individual split tensile strength DT model. 

Table 9. Statistical analysis of compressive strength decision tree model. 

Statistical Analysis DT DT-Adaboost DT-Bagging 

Average 28.37 27.98 28.50 

Minimum 7.59 7.45 7.98 

Maximum 64.09 59.43 59.79 

No of entries below 10 MPa 3 6 5 

No of entries from 10 to 20 MPa 22 15 17 

No of entries from 20 to 30 MPa 21 23 20 

No of entries from 30 to 40 MPa 14 26 25 

No of entries from 40 to 50 MPa 14 5 8 

No of entries from 50 to 60 MPa 2 5 5 

No of entries from 60 to 70 MPa 4 0 0 

Total testing data points 80 80 80 

Mean below 10 MPa 0.29 0.58 0.51 

Mean in range of 10 to 20 MPa 3.89 3.09 3.40 

Mean in range of 20 to 30 MPa 6.45 6.90 6.07 

Mean in range of 30 to 40 MPa 5.87 11.25 10.67 

Mean in range of 40 to 50 MPa 7.53 2.61 4.30 

Mean in range of 50 to 60 MPa 1.28 3.56 3.55 

Mean in range of 60 to 70 MPa 3.07 0.00 0.00 

Table 10. Statistical analysis of tensile strength decision tree model. 

Statistical Analysis DT DT-Adaboost DT-Bagging 

Average 3.14 3.12 3.14 

Minimum 1.32 1.44 1.41 

Maximum 4.97 4.94 5.55 

No. of entries below 1 MPa 0 0 0 

No. of entries from 1 to 2 MPa 20 15 16 

No. of entries from 2 to 3 MPa 13 18 20 

No. of entries from 3 to 4 MPa 26 30 28 

No. of entries from 4 to 5 MPa 21 17 11 

No. of entries from 5 to 6 MPa 0 0 5 

No. of entries from 6 to 7 MPa 0 0 0 

Total testing data points 80 80 80 

Mean below 1 MPa 0.00 0.00 0.00 

Mean in range of 1 to 2 MPa 0.43 0.33 0.35 

Mean in range of 2 to 3 MPa 0.41 0.56 0.63 

Mean in range of 3 to 4 MPa 1.10 1.26 1.23 

Mean in range of 4 to 5 MPa 1.20 0.97 0.60 
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Mean in range of 5 to 6 MPa 0.00 0.00 0.33 

Mean in range of 6 to 7 MPa 0 0 0 

6.2. MLPNN Outcomes 

MLPNN is modelled in the same way as the decision tree, adopting ensemble 

learner’s methods, as shown in Figure 14. Figure 14a illustrates the relation among 

predicted and experimental values for individual MLPNN model of plastic concrete 

having R2 = 0.78, along with its error-distribution, illustrated in Figure 14b. Best boosting 

and bagging ensemble algorithm MLPNN sub-model is selected, analysed, and compared 

with individual MLPNN model. The individual MLPNN model demonstrates a 

maximum error of 18.97 MPa and minimum error of 0.029 MPa, indicating an average 

error of 4.89 MPa. Furthermore, data illustrates error of 63.75% below 5 MPa, 20% from 5 

to 10 MPa, 13.75% from 10 to 15 MPa, and 2.5% from 15 to 20 MPa. Moreover, this model 

is enhanced by an ensemble adaboost algorithm that depicts R2 of about 0.81, as illustrated 

in Figure 15c. Additionally, Figure 14d shows an average, maximum and minimum values 

of error of 4.61 MPa, 17.66 MPa, and 0.07 MPa, respectively, for MLPNN best ensemble 

adaboost fc’ model. Moreover, 68.75% of the data depict error below 5 MPa, 22.5% from 5 

to 10 MPa, 7.5% from 10 to 15 MPa, and 1.25% from 15 to 20 MPa. The bagging algorithm 

enhanced fc’ MLPNN model with R2 = 0.85. Figure 14f for bagging ensemble MLPNN 

model illustrates an average, maximum, and minimum values of error of 4.17 MPa, 16.45 

MPa, and 0.04 MPa, respectively. Furthermore, 66.25% of the data show the error below 5 

MPa, 26.25% from 5 to 10 MPa, 6.25% from 10 to 15 MPa, and 1.25% from 15 to 20 MPa. 
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Figure 14. Compressive strength; (a) MLPNN regression model; (b) MLPNN regression model error 

distribution; (c) MLPNN-Adaboost regression; (d) MLPNN-Adaboost regression model error 

distribution; (e) MLPNN-Bagging regression model; (f) MLPNN-Bagging regression model error 

distribution. 
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The value of R2 is found to be 0.736 for the individual MLPNN model, as seen in 

Figure 15a. Boosting and bagging ensemble fsts model improved R2 to 0.814 and 0.803, as 

shown in Figure 15c and Figure 15e, respectively. Figure 15b,d,f displays error 

distribution of fsts MLPNN individual and ensemble models. An average error of 0.46 MPa 

is observed for individual fsts MLPNN model, with 1.98 MPa and 0.012 MPa as the 

maximum and minimum error, respectively. Moreover, data depicted errors of 88.75% 

below 1 MPa, and 11.25% error between 1 and 2 MPa, respectively, whereas these statistics 

are enhanced in the ensemble MLPNN fsts models. The ensemble boosting model depicts 

that an average error of 0.39 MPa is observed with an improvement of 15.22%. Maximum 

and minimum errors are enhanced by 42.93 and 50%, respectively, with values of 1.13 and 

0.006, respectively. Moreover, adaboost MLPNN fsts model data show that 96.25% of error 

is less than 1 MPa, and 3.75% of the error is from 1 to 2 MPa. The bagging ensemble model 

enhances the average, maximum, and minimum error values by 19.56, 0, and 98.08%, 

respectively, with the value of 0.37 MPa,1.98 MPa, and 0.00023 MPa for average, 

maximum, and minimum errors, respectively. Furthermore, the bagging ensemble model 

for fsts data shows an error of 98.75% is less than 1 MPa and just 1.25 of the error is from 

1–2 MPa. 

MLPNN boosting ensemble technique shows an enhancement of 4.36% for fc’ and 

10.6% for fsts in terms of R2 when compared with the individual MLPNN model. Similarly, 

the bagging ensemble technique depicts an improvement of 8.97% and 9.1% for fc’ and fsts, 

respectively. The MLPNN can accurately forecast the compressive and fsts based on the 

following statistics. Tables 11 and 12 show statistical values for testing used in MLPNN 

models of fc’ and fsts, respectively. Individual MLPNN models yield an average 

compressive strength of 28.88 MPa, a minimum of 2.50 MPa, and a maximum of 58.23 

MPa, as shown in Table 11. Compressive strength of the MLPNN model exhibits a 

variance of 1.98%, 43.68%, and 3.25% in the average, minimum, and maximum values 

accordingly. Similarly, the average, maximum, and minimum values for the MLPNN-

bagging model differed from the individual MLPNN compressive strength model by 

0.1%, 5.14%, and 1.66 times, respectively. MLPNN split tensile strength model has an 

average value of 3.29 MPa, with 0.81 MPA as the minimum and 6.14 MPA as the 

maximum. The average, minimum, and maximum values of the MLPNN-adaboost split 

tensile strength model vary by 3.65, 49.38, and 18.24%, respectively, as compared to the 

individual MLPNN model. When compared to the individual split tensile strength 

MLPNN model, the MLPNN-bagging model exhibits a deflection of 0.91, 61.73, and 18.57 

in average, minimum, and maximum values, respectively. 

 



Polymers 2022, 14, 1583 26 of 41 
 

 

 

Figure 15. Tensile strength (a) MLPNN regression model; (b) MLPNN regression model error 

distribution; (c) MLPNN-Adaboost regression; (d) MLPNN-Adaboost regression model error 

distribution; (e) MLPNN-Bagging regression model; (f) MLPNN-Bagging regression model error 

distribution. 

Table 11. Statistical analysis of compressive strength MLPNN model. 

Statistical Analysis MLPNN MLPNN-Adaboost MLPNN-Bagging 

Average 28.88 28.31 28.85 

Minimum 2.50 3.59 6.66 

Maximum 58.23 56.34 57.56 

No. of entries below 10 MPa 8 4 3 

No. of entries from 10 to 20 MPa 10 16 15 

No. of entries from 20 to 30 MPa 24 24 27 

No. of entries from 30 to 40 MPa 23 26 21 

No. of entries from 40 to 50 MPa 12 5 9 

No. of entries from 50 to 60 MPa 3 5 5 

No. of entries from 60 to 70 MPa 0 0 0 

Total testing data points 80 80 80 



Polymers 2022, 14, 1583 27 of 41 
 

 

Mean below 10 MPa 0.84 0.35 0.32 

Mean in range of 10 to 20 MPa 1.67 2.89 2.55 

Mean in range of 20 to 30 MPa 7.35 7.31 8.34 

Mean in range of 30 to 40 MPa 10.30 11.65 9.44 

Mean in range of 40 to 50 MPa 6.56 2.68 4.73 

Mean in range of 50 to 60 MPa 2.16 3.43 3.45 

Mean in range of 60 to 70 MPa 0.00 0.00 0.00 

Table 12. Statistical analysis of tensile strength MLPNN model. 

Statistical Analysis MLPNN MLPNN-Adaboost MLPNN-Bagging 

Average 3.29 3.17 3.26 

Minimum 0.81 1.21 1.31 

Maximum 6.14 5.02 5.00 

No. of entries below 1 MPa 1 0 0 

No. of entries from 1 to 2 MPa 7 6 3 

No. of entries from 2 to 3 MPa 21 27 29 

No. of entries from 3 to 4 MPa 36 30 29 

No. of entries from 4 to 5 MPa 6 16 19 

No. of entries from 5 to 6 MPa 8 1 0 

No. of entries from 6 to 7 MPa 1 0 0 

Total testing data points 80 80 80 

Mean below 1 MPa 0.01 0.00 0.00 

Mean in range of 1 to 2 MPa 0.12 0.13 0.06 

Mean in range of 2 to 3 MPa 0.65 0.80 0.88 

Mean in range of 3 to 4 MPa 1.57 1.31 1.25 

Mean in range of 4 to 5 MPa 0.33 0.87 1.08 

Mean in range of 5 to 6 MPa 0.53 0.06 0.00 

Mean in range of 6 to 7 MPa 0.08 0.00 0.00 

Statistical Analysis MLPNN MLPNN-Adaboost MLPNN-Bagging 

Average 3.29 3.17 3.26 

Minimum 0.81 1.21 1.31 

Maximum 6.14 5.02 5.00 

No. of entries below 1 MPa 1 0 0 

No. of entries from 1 to 2 MPa 7 6 3 

No. of entries from 2 to 3 MPa 21 27 29 

No. of entries from 3 to 4 MPa 36 30 29 

No. of entries from 4 to 5 MPa 6 16 19 

No. of entries from 5 to 6 MPa 8 1 0 

No. of entries from 6 to 7 MPa 1 0 0 

Total testing data points 80 80 80 

Mean below 1 MPa 0.01 0.00 0.00 

Mean in range of 1 to 2 MPa 0.12 0.13 0.06 

Mean in range of 2 to 3 MPa 0.65 0.80 0.88 

Mean in range of 3 to 4 MPa 1.57 1.31 1.25 

Mean in range of 4 to 5 MPa 0.33 0.87 1.08 

Mean in range of 5 to 6 MPa 0.53 0.06 0.00 

Mean in range of 6 to 7 MPa 0.08 0.00 0.00 
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6.3. SVM Outcomes 

Figure 16 depicts the prediction outcome of fc’ with and without ensemble modelling 

via SVM. It is clear that all supervised machine learning algorithms produce a good 

correlation between prediction and output. The SVM model yields an R2 = 0.752 

correlation, as shown in Figure 16a, whereas boosting and bagging yield relationships of 

approximately 0.817 and 0.807, respectively, as shown in Figure 16c and Figure 16e, 

respectively. As shown in Figure 16b, an average, maximum, and minimum error of 4.28 

MPa, 31.82 MPa, and 0.023 MPa, respectively, for individual SVM model is observed. 

Furthermore, data illustrates that 70% of the error lies below 5 MPa, 23.75% from 5 to 10 

MPa, 1.25% from 10 to 15 MPa, 2.5% from 15 to 20 MPa, and 2.5% above 20 MPa. As shown 

in Figure 16d, the error distribution of the best fc’ SVM ensemble adaboost model has a 

minimum and maximum error of 0.029 MPa and 22.17 MPa, respectively, with 4.38 MPa 

as an average error. Moreover, data show that 61.25% of error lies below 5 MPa, 32.5% 

between 5 and 10 MPa, 3.75% from 10 to 15 MPa, only 1.25% from 15 to 20 MPa, and 20 to 

25 MPa, respectively. Figure 16e shows an average, maximum, and minimum error of 4.11 

MPa, 28.90 MPa, and 0.0027 MPa, respectively, for the ensemble SVM bagging model for 

fc’. Moreover, bagging ensemble model data depict an error of 72.5% below 5 MPa, 20% 

from 5 to 10 MPa, 5% from 10 to 15 MPa, 1.25% from 15 to 20 MPa and 1.25% above 20 

MPa. 
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Figure 16. Compressive strength: (a) SVM regression model; (b) SVM regression model error 

distribution; (c) SVM-Adaboost regression model; (d) SVM-Adaboost regression model error 

distribution; (e) SVM-Bagging regression model; (f) SVM-Bagging regression model error 

distribution. 

Figure 17a shows R2 = 0.723 for individual SVM fsts model. R2 value of 0.809 and 0.804 

is observed for boosting and bagging ensemble SVM models, respectively, as seen in 

Figure 17c,e. The average, minimum, and maximum errors observed from Figure 17b are 

0.40 MPa, 0.0024 MPa, and 2.167 MPa, respectively, for individual SVM models while 0.35, 

1.60, and 0.0097 MPa, respectively, for SVM best fsts ensemble adaboost model, as shown 

in Figure 17d. Figure 17f illustrates the average, maximum, and minimum error of 0.35, 

1.92, and 0.00084 for SVM best ensemble bagging model. An enhancement of 12.5 and 

26.16% is observed for average and maximum error values for the SVM best ensemble 

adaboost model in comparison to the individual SVM fsts model. Similarly, the individual 

SVM model compared with bagging SVM model depicts an improvement of 12.5, 11.39, 

and 65% in average, maximum, and minimum errors, respectively. Data of individual 

SVM model depict an inaccuracy of 91.25% below 1 MPa, 7.5% error between 1 and 2 MPa, 

and 1.25% error between 2 and 3 MPa. In total, 95% of data of the SVM ensemble models 

(both bagging and boosting) shows an error of less than 1 MPa, while only 5% of error 

from 1 to 2 MPa. SVM model can predict the targeted results with an ignorable deviation 

observed by the value of errors. Moreover, the SVM-boosting ensemble model enhances 

the R2 value by 8.64% and 11.89% for fc’ and fsts in comparison to the individual SVM 

model. Likewise, the SVM bagging ensemble model enhances R2 by 7.31% and 11.20% for 

fc’ and fsts, respectively. Tables 13 and 14 illustrate the statistical value of SVM fc’ and SVM 

fsts model, respectively. As illustrated in Table 13, the average, minimum, and maximum 

compressive strengths obtained from individual SVM models are 27.96 MPa, 5.50 MPa, 

and 58.89 MPa, respectively. The SVM-adaboost compressive strength model has an 

average, minimum, and maximum value variation of 2.11, 61.64, and 6.81%, respectively. 

Similarly, when comparing the SVM bagging model to the individual SVM compressive 

strength model, the average, minimum, and maximum values diverged by 1.86, 48.73, and 

2.43%, respectively. The average result for the SVM split tensile strength model is 3.19 

MPa, with the minimum and maximum values being 0.92 MPa and 5.43 MPa, respectively. 

When compared to individual SVM models, a variance of 2.19%, 0.18%, and 1.01 times is 

seen in the average, maximum, and minimum values of the SVM-adaboost split tensile 

strength model. When compared to the individual split tensile strength SVM model, the 

SVM bagging model exhibits a deflection of 1.57, 1.09, and 0.37% in average, minimum, 

and maximum values, respectively. 
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Figure 17. Tensile strength: (a) SVM regression model; (b) SVM regression model error distribution; 

(c) SVM-Adaboost regression model; (d) SVM-Adaboost regression model error distribution; (e) 

SVM-Bagging regression model; (f) SVM -Bagging regression model error distribution. 
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Table 13. Statistical analysis of compressive strength SVM model. 

Statistical Analysis SVM SVM-Adaboost SVM-Bagging 

Average 27.96 28.55 28.48 

Minimum 5.50 2.11 8.18 

Maximum 58.89 62.90 60.32 

No. of entries below 10 MPa 5 1 3 

No. of entries from 10 to 20 MPa 15 16 16 

No. of entries from 20 to30 MPa 27 34 29 

No. of entries from 30 to 40 MPa 24 19 20 

No. of entries from 40 to 50 MPa 7 6 9 

No. of entries from 50 to 60 MPa 2 2 1 

No. of entries from 60 to 70 MPa 0 2 2 

Total testing data points 80 80 80 

Mean below 10 MPa 0.54 0.03 0.35 

Mean in range of 10 to 20 MPa 2.71 2.69 2.78 

Mean in range of 20 to 30 MPa 8.90 11.06 9.33 

Mean in range of 30 to 40 MPa 10.46 8.53 8.76 

Mean in range of 40 to 50 MPa 3.92 3.32 5.07 

Mean in range of 50 to 60 MPa 1.42 1.38 0.69 

Mean in range of 60 to 70 MPa 0.00 1.54 1.50 

Table 14. Statistical analysis of tensile strength SVM model. 

Statistical Analysis SVM SVM-Adaboost SVM-Bagging 

Average 3.19 3.26 3.14 

Minimum 0.92 1.85 0.91 

Maximum 5.43 5.42 5.45 

No. of entries below 1 MPa 1 0 1 

No. of entries from 1 to 2 MPa 7 6 9 

No. of entries from 2 to 3 MPa 20 23 24 

No. of entries from 3 to 4 MPa 39 36 33 

No. of entries from 4 to 5 MPa 7 11 6 

No. of entries from 5 to 6 MPa 6 4 7 

No. of entries from 6 to 7 MPa 0 0 0 

Total testing data points 80 80 80 

Mean below 1 MPa 0.01 0.00 0.01 

Mean in range of 1 to 2 MPa 0.16 0.15 0.18 

Mean in range of 2 to 3 MPa 0.60 0.71 0.73 

Mean in range of 3 to 4 MPa 1.63 1.52 1.40 

Mean in range of 4 to 5 MPa 0.40 0.63 0.36 

Mean in range of 5 to 6 MPa 0.39 0.26 0.46 

Mean in range of 6 to 7 MPa 0.00 0.00 0.00 

6.4. Random Forest Outcomes 

Random forests are a type of ensemble machine learning technique that combines 

bagging and random feature selection to generate prediction models. It is an efficient and 

user-friendly approach. Figure 18 shows the supervised learning approach’s prediction 

accuracy for fc’ of plastic concrete. It is an ensemble model, with a strong correlation to the 

target values of R2 = 0.9327 with an average error distribution, as shown in Figure 18a, 

demonstrating its precision in the non-linear projection of normal concretes’ strength. 
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Figure 18b demonstrates an average, minimum error of 2.71 MPa and maximum error of 

0.0036 MPa, and 10.12 MPa, respectively. Moreover, data show an inaccuracy of 81.25% 

below 5 MPa, 17.5% between 5 and 10 MPa, and 1.25% between 10 and 15 MPa, 

respectively. The data show no error above 15 MPa. 

 

Figure 18. Compressive strength (a) RF model; (b) RF regression model error distribution. 

Figure 19a shows the RF prediction accuracy of tensile strength of plastic concrete. It 

is an ensemble with a strong correlation to the target values of R2 = 0.8639. Figure 19b 

shows an average, maximum, and minimum error of 0.27 MPa, 1.88 MPa, and 0.00073 

MPa, respectively, for RF model of tensile strength. Moreover, data depict that 96.25% of 

the error lies below 1 MPa and 3.75% of the error is in between 1 and 2 MPa, respectively. 

 

Figure 19. Tensile strength (a) RF model; (b) RF model error distribution. 
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7. Evaluation of Models 

The results of individual, ensemble bagging, ensemble boosting, and modified 

ensemble models are evaluated by different errors including correlation coefficient (R2), 

RMSLE, MAE, and RMSE, as shown in Figure 20 for fc’ models and Figure 21 and fsts 

models, and their values are tabulated in Table 15. 

 

Figure 20. Statistical analysis of compressive strength models. 

 

Figure 21. Statistical analysis of tensile strength model. 
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Table 15. Statistical errors for the models. 

Approach Used Output Parameter ML Methods MAE RMSE RMSLE R2 

Individual 

Learner 

Compressive Strength 

DT 4.317 6.678 0.113 0.779 

MLPNN 4.887 6.501 0.133 0.780 

SVM 4.276 6.902 0.101 0.752 

Tensile Strength 

DT 0.400 0.542 0.059 0.767 

MLPNN 0.458 0.594 0.065 0.737 

SVM 0.397 0.575 0.064 0.723 

Ensemble 

Learning  

Boosting 

Compressive Strength 

DT-Adaboost 3.391 4.962 0.087 0.875 

MLPNN-Adaboost 4.613 5.940 0.116 0.814 

SVM-Adaboost 4.376 5.921 0.119 0.817 

Tensile Strength 

DT-Adaboost 0.304 0.409 0.047 0.862 

MLPNN-Adaboost 0.386 0.478 0.053 0.814 

SVM-Adaboost 0.351 0.488 0.060 0.809 

Ensemble 

Learning  

Bagging 

Compressive Strength 

DT-Bagging 3.865 5.244 0.096 0.856 

MLPNN-Bagging 4.170 5.367 0.100 0.850 

SVM-Bagging 4.113 6.066 0.099 0.807 

Tensile Strength 

DT-Bagging 0.350 0.453 0.048 0.829 

MLPNN-Bagging 0.379 0.496 0.057 0.803 

SVM-Bagging 0.354 0.493 0.056 0.804 

Modified  

Ensemble 

Compressive Strength Random Forest 2.712 3.613 0.084 0.933 

Tensile Strength Random Forest 0.268 0.402 0.048 0.864 

A comparison was conducted between the ensemble algorithm and the other individual 

machine learning algorithms to further demonstrate the ensemble algorithm’s capacity. The 

model parameter determinations are comparable to ensemble models, for example, setting 

initial values and then optimizing these values using ensemble algorithm. Ensemble 

algorithms are widely recognised to contain multiple weak-learners created by individual 

learning algorithms, weak-learners with excellent performance gain weight, while weak-

learners with poor performance lose weight. As a result, it can provide exact projections. As 

indicated in Table 15, individual learners have higher error-values than ensemble learners 

with boosting and bagging. This demonstrates that ensemble algorithms besides minimizing 

the range of error between experimental and predicted results provide precise forecasts. 

Among Individual learner models for fc’, R2 value of 0.780 for MLPNN overrule DT and 

SVM representing the accuracy of model up to 78%, whereas DT model surpasses the other 

two model in terms of coefficient of determination (R2) for fsts. SVM is shown to have the least 

accurate method in predicting both outcomes. Values of the statistical errors for each method 

are shown in Table 15. 

DT-Adaboost stands out among ensemble learning models with boosting having R2 

values of 0.875 for fc’ model and 0.862 for fsts models, demonstrating the model’s accuracy 

of about 87%. The prediction accuracy of DT-Adaboost model outperforms the MLPNN 

model by 26.49%, 16.47%, and 25% for fc’ and 21.24%, 14.44%, and 11.32% for fsts in terms 

of MAE, RMSE, and RMSLE, respectively. Similarly, in terms of MAE, RMSE, and RMSLE, 

DT-Adaboost model beats SVM model with model accuracy of 22.5%, 16.2%, and 26.89% 

for fc’ and 13.39%, 16.19%, and 21.67% for fsts, respectively. 

Among ensemble learning models with bagging, DT out-performs the other two 

methods with R2 value of 0.856 for fc’ model and 0.829 for fsts model. From evaluation of 

MAE, RMSE, and RMSLE, again the prediction accuracy of DT-bagging overrule MLPNN 

by 7.31%, 2.29%, and 4% for fc’ and 1.1%, 8.67%, and 15.79% for fsts model, respectively. 

DT-bagging model tops SVM Bagging models by 6.03%, 13.55%, and 3.03% for fc’ and 

1.13%, 8.11%, and 14.26% for fsts model in terms of MAE, RMSE, and RMSLE, respectively. 

Random forest is classified as modified ensemble learner model, the prediction 

accuracy of modified ensemble outperforms individual, bagging, and boosting models 
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based on correlation coefficient R2 with model accuracy of 93% for fc’ model and 86% for fsts 

model. 

Comparing all the models based on the coefficient of determination R2 value the 

prediction accuracy follows the following order, modified ensemble > ensemble-

adaboosting > ensemble-Bagging > individual learner. 

8. Sensitivity Analysis 

Sensitivity analysis is a useful tool for determining the significance of each input to the 

results. In most real-world applications, identifying all input variables that influence the 

problem’s results is difficult. Sensitivity analysis is a neural network technology that 

identifies all important parameters from a list of potential parameters efficiently. After 

training the neural network on the complete dataset, sensitivity analysis is performed [57]. 

As input parameters, eight factors were used: cement, water, CA, FA, SP, SF, age, and plastic 

waste. The influence of every constituent in the production of ensemble models is illustrated 

in Figure 22. When compared to FA, cement, and other additives, silica fume, coarse 

aggregate, and age have been demonstrated to contribute more towards compressive 

strength. Although, for fsts models, CA and water are the least sensitive parameters. The 

most influential parameters for fsts models include super plasticizer and age. In the creation 

of both models, FA played a moderate influence. 

 

Figure 22. Input parameters’ contribution to compressive and tensile strength models. 

9. K Fold Cross-Validation 

Machine learning models’ real performance may be estimated statistically via cross-

validation. It is essential to know how the models picked operate. To determine the model 

data’s correctness, a validation method is needed. To perform the k fold cross-validation 

test, the dataset must be shuffled and divided into k-groups. In this study, the 

experimental samples’ data are randomly separated into 10 equal subgroups. Only one of 

the 10 subsets is utilized for validation, while the other 9 are used to build the model [60]. 

As indicated in Figures 23–26, the results of cross-validation are expressed as R2, MAE, 

RMSLE, and RMSE. In comparison to supervised machine learning approaches, the RF model 

has fewer mistakes and a higher R2. The average R2 value for RF modelling is 0.674 for a tenfold 

increase in fc’, with a minimum value of 0.39 and a maximum value of 0.92, as illustrated in 

Figure 24. As indicated in Figure 26, the average R2 value for fsts is 0.57, with a minimum value 

of 0.32 and a maximum value of 0.87. Each model exhibits less validation mistakes. The 

validation indication indicates that the mean values of RMSE, MAE, and RMSLE for the fc’ RF 

model are 5.37, 7.11, and 0.083, respectively, and for fsts RF model are 0.56, 0.58, and 0.035, 



Polymers 2022, 14, 1583 36 of 41 
 

 

respectively. Similarly, other ensemble models used in this study exhibit the same tendency, 

but with far larger errors. 

 

Figure 23. Compressive strength models (a–c) indicates R2 models’ result validated with K fold; (d–

f) indicates MAE models’ result validated with K fold; (g–i) indicates RMSE models’ result validated 

with K fold; (j–l) indicates RMSE models’ result validated with K fold. 



Polymers 2022, 14, 1583 37 of 41 
 

 

 

Figure 24. RF models cross validation with different statistical parameters. 

 

Figure 25. Tensile strength models (a–c) indicates R2 models’ result validated with K fold; (d–f) 

indicates MAE models’ result validated with K fold; (g–i) indicates RMSE models’ result validated 

with K fold; (j–l) indicates RMSE models’ result validated with K fold. 
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Figure 26. RF models cross validation with different statistical parameters. 

10. Conclusions 

Experimental tests for compressive strength and tensile strength were performed on 

80 cylinders with different proportions for radiated and irradiated plastic for each 

outcome. Data from the literature were used to train the models containing 320 data 

points. Testing was performed on the experimental data. Characteristics and mix 

proportions of the specimens are shown in Sections 2.3 and 2.4, respectively. Individual 

and ensemble machine learning models for the prediction of compressive and split tensile 

strength of plastic concrete are investigated in this paper using DT, MLPNN, SVM, and 

RF algorithms. The analysis resulted in the following conclusions: 

1. The cross-linking effect of gamma radiation on plastic waste was responsible for the 

material’s improved crystallinity. IPW has shown more crystalline structure showing 

an increase of 16% in crystallinity as compared to IPW. Hence, enhanced mechanical 

properties for IPW were observed when compared with RPW specimens; 

2. Tensile strength of plastic concrete is marginally affected by high tensile strength of 

plastic polymer itself, as opposed to its compressive strength; 

3. Due to the increased micro-structure, the strength loss was restored by utilizing 

IPW as a replacement for cement or fine aggregate. It was found that the use of IPW 

in concrete not only eliminate plastic waste, but also improve the mechanical 

properties of concrete. Concrete with less cement in it, on the other hand, emits less 

CO2 into the atmosphere; 

4. A 1.07% improvement in compressive strength and 13.7% rise in split tensile 

strength were seen when conventional Portland cement was replaced with IPW. A 

5% substitution will minimize 20.20 kg/m3 of cement, making the mix 

environmentally friendly; 

5. As compared to the individual technique, ensemble models with boosting and 

bagging showed better results with fewer errors. The individual models were 

enhanced using ensemble algorithms. Comparison of different ensemble learning 

models with boosting and bagging showed that DT performed better with R2 of 0.875 

and 0.856 for boosting and bagging, respectively, for fc’ models and depicted R2 value 

of 0.856 and 0.829 for boosting and bagging, respectively, for fsts models, when 

compared to MLPNN and SVM; 

6. The prediction accuracy of Modified ensemble (RF) outperforms individual, bagging, 

and boosting models based on correlation coefficient (R2) with model accuracy of 93% 

for fc’ model and 86% for fsts model; 

7. Sensitivity analyses depicted that FA contributed moderately in the development of 

the fc’ models and fsts models. Moreover, cement, SF, CA, and age played vital role in 
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the development of fc’ models. Tensile strength models showed to be affected least 

by water and CA; 

8. K fold validation was utilized for determining the models’ validity R2, RMSE, 

RMSLE, and mean errors. Fewer errors with high correlation were observed. In 

comparison to supervised machine learning approaches, the RF model has less errors 

and a higher R2. The average R2 for RF cross validation is 0.674 for fc’ model and 0.57 

for fsts model; 

9. ML approaches utilized in this study can precisely predict the mechanical properties 

of concrete. Furthermore, these ML algorithms may be used to create a more 

sustainable mix design for plastic concrete instead of laborious experimental work 

demanding a large number of experiments in the laboratory and using a large 

number of raw materials and manpower. 

11. Limitations and Direction for Future Work 

Compressive and split tensile strengths were calculated with the use of a 

comprehensive and reliable database. If, however, a more general expression is needed, 

increasing the database and adding other input parameters may produce the appropriate 

results. The models established in this paper are for compressive and split tensile strength 

prediction in plastic concrete. The models predicted the plastic concrete strengths using 

statistical parameters with high accuracy and reliability. However, by using the same 

modelling parameters, ANN, ANFIS, and GEP models may be used to forecast the 

characteristics of concrete that contains a variety of additional concrete ingredients. These 

models will be modified based on the input parameters, and the predicted outcomes will 

be heavily influenced by the database used. Additionally, machine learning techniques 

may be used with heuristic methods such as the whale optimization algorithm, ant colony 

optimization, and particle swarm optimization to obtain optimal results. These tactics 

may then be compared to those employed in the current investigation. 
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