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Abstract: The structure of wind turbine blades (WTBs) is characterized by complex geometry and
materials that must resist various loading over a long period. Because of the components’ exposure
to highly aggressive environmental conditions, the blade material suffers cracks, delamination, or
even ruptures. The prediction of the damage effects on the mechanical behavior of WTBs, using
finite element analysis, is very useful for design optimization, manufacturing processes, and for
monitoring the health integrity of WTBs. This paper focuses on the sensitivity analysis of the effects
of the delamination degree of fiberglass-reinforced polymer composites in the structure of wind
turbine blades. Using finite element analysis, the composite was modeled as a laminated structure
with five plies (0/45/90/45/0) and investigated regarding the stress states around the damaged
areas. Thus, the normal and shear stresses corresponding to each element of delaminated areas were
extracted from each ply of the composites. It was observed that the maximum values of normal
and shear stresses occurred in relation to the orientation of the composite layer. Tensile stresses
were developed along the WTB with maximum values in the upper and lower plies (Ply 1 and
Ply 5), while the maximum tensile stresses were reached in the perpendicular direction (on the
thickness of the composite), in the median area of the thickness, compared to the outer layers where
compression stresses were obtained. Taking into account the delamination cases, there was a sinuous-
type fluctuation of the shear stress distribution in relation to the thickness of the composite and the
orientation of the layer.

Keywords: polymer matrix; composite; finite element analysis; delamination

1. Introduction
1.1. The Damage to Wind Turbine Blades

According to several studies, 40% of all global damage to wind turbines is due to me-
chanical damage and malfunction; 20% is due to lightning; 9% is caused by lightning fires,
overheated bearings or sparks caused by gears at the time, and forced braking/deceleration;
and 4% is due to extreme weather events (storms, hurricanes etc.) [1–4]. The operation of
the whole assembly depends to a large extent on the structural integrity of the wind turbine
blades. Wind turbine blades can be damaged in many ways, depending on the blade
design and materials used. In some cases, these modes of damage may result in complete
destruction of the blade or may only require repair of the blade. The causes of damage to
the wind turbine blades, highlighted by [1], are as follows: geometric factors associated
with buckling, large deformation, crushing or folding; material factors associated with
plasticity, ductile/fracture, rupture or crack damage; initial manufacturing imperfections,
such as initial deformation, residual stresses or production defects; temperature factors,
such as low temperature associated with cold running and high temperature due to fires
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and explosions; dynamic factors (sensitivity to deformation, inertia effect, damage) associ-
ated with the impact pressure resulting from the explosion, fallen objects or similar; and
age-related impairments, such as fatigue cracking. The analysis of the risks of the blades
is closely related to the safety in operation, understanding by this both the possibilities of
minimization and elimination of some defects, as well as the reserve of robustness to some
unforeseen demands. Quality monitoring is subject to reliability, as the latter is ensured by
checking processes and technological equipment, by performing rigorous control of the
quality of materials, design, manufacture, and final tests [3]. Li et. al. 2014 [3] identified the
areas with the highest risk of damage. Along the length of the blade, the greatest damage
occurs at a distance of 1/3 of the length seen from the tip of the blade to the fixing area in
the rotor (68–72% of defects) and at 2/3 of the length (30–32% of defects) [3].

1.2. The Mechanical Properties of Glass-Fiber-Reinforced Polymer Matrix Composites

The challenge for wind turbine blade manufacturers is to find constructive solutions
that ensure large blade lengths, but sufficient rigidity (no deformation under load) and
at the same time light weight (to rotate at a minimum wind speed of 4.5–5 m/s); made
of materials resistant to wear, damage, and fatigue; and low cost. Thus, thinner blades
can deform under the wind load reaching the tower, which could lead to damage to
both the blade and the tower. The composite materials used must be rigid so as not to
allow large deformation of the blades, but also light so that their mechanical capacity is
not diminished by their own weight. However, lighter blades also have the advantage
of lighter loads at the base, as well as those on the rest of the structure, which in turn
reduce the total weight and costs. The occurrence of blade damage is conditioned by
the simultaneous action of factors: tensile stresses that occur due to centrifugal force and
bending moments produced by wind pressure; plastic deformations that develop as a result
of the stress of the material in the plastic field, correlated with the aggressive environmental
factors that lead to the degradation of the elastic properties of the material; variable loads
which, in the case of the blade, are due both to the variable action of the wind and the
cyclic stresses that occur during the rotation of the blades by the kinetic energy of the
wind, vibrations, and even resonance phenomena [5–9]. Research has shown that the
most common types of damage are cracks; delamination; and peeling of joints, cracks,
or exfoliations [10–15]. The weak point of the composites used in the construction of the
blades is that on the thickness of the composite the strength is ensured by the strength
of the matrix. As presented in the literature, there are different sections and models of
blade stiffening [16–20]. Some researchers [20] studied the problem of delamination of
T-type joints between the cover and the stiffening elements inside the blade. According to
other researchers [21–27], the delamination mechanism consists of separation of plies from
each other under loading. The risks of delamination occurrence consist of increasing the
failure area due to interlaminar normal and shear stresses, leading to the sudden collapse
of the entire structure [28–30]. Being subjected to dynamic loading due to the wind speed
variation and the rotation mechanism of the wind turbine blades, the failure rate of the
WTB increases with the extension of the debonding or delamination areas in the composite
structure. According to [31], the delamination or crack tends to increase in its own plane
due to material constraints and weak interface between plies. Different theoretical and
numerical approaches regarding the delamination criteria are indicated in [30–34]. Some of
them are based on the assumption that delamination occurs in pure interlaminar tension
(mode I), pure interlaminar sliding shear (mode II), and pure interlaminar scissoring shear
(mode III), if the corresponding interlaminar stress component exceeds the maximum
interfacial strength [11]. The mechanical properties of the materials used in the construction
of wind turbine blades are determined experimentally on samples subjected to various
mechanical, static, or dynamic stresses, under controlled environmental conditions or
subjected to thermal, humidity, or chemical treatments. Considering different databases
on the state of stresses and deformations, delamination processes, extensive fatigue, and
changes in the mechanical behavior of glass-fiber-reinforced plastic (denoted GFRP) to
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aggressive environmental factors (humidity, temperature, ultraviolet radiation) in WTBs,
it can be seen that the results between different materials and the loading conditions are
not transferable, and thus an additional high experimental effort is required for each new
project and material used [31–34]. The numerical approach has the role of supplementing
the realization of experimental tests on the real structure, reducing the consumption of
materials, production, and time.

1.3. The Investigation Methods

Due to the large dimensions of the wind turbine blades that would involve high
production costs, the experimental results of the GFRP properties are applied in numerical
analyses of the whole structure, following either the state of stresses and deformations of
the structure, or the delamination phenomenon, or the modal response of the structure,
depending on the objective pursued. Thus, [35] presented a combined method, numerical
and experimental, using the machine learning method in order to predict damage caused
by delamination of the composite using modal analysis and numerical simulation. Ref. [36]
focused on reverse-engineering of the process modeling of composite materials for wind-
turbine rotor blades, starting from the real model and experimental measurements and
applying the data in the numerical model of temperature distribution in thick laminates
in the construction of the rotor. The main criteria for composite failure are based on the
classical laminated plate theory (CLT), which assumes that each layer of the laminate is
orthotropic and homogenous; the laminate is thin compared to the side dimension and for
this reason Timoshenko’s theory can be applied. All displacements are small compared to
the thickness of the laminates, the transverse share strains being negligible [37–39]. The
Tsai–Wu and Tsai–Hill criteria are based on different strengths in tension and compression,
and the mathematical modeling of different failure criteria is indicated in [38–47].

This paper focuses on the quantitative and qualitative effects of delamination severity
in the polymer matrix of the wind turbine blade on its static behavior, using finite element
analysis (FEA). Compared to other research, the novelty of this study is the post-effect
analysis of the airfoil damage on stress and strain, in different degrees of degradation, with
two areas of interest being developed. Future studies will address the experimental aspects
of the entire structure of the wind turbine blade, starting from the simulations presented in
the current research. Moreover, the FEA carried out in this research highlights the evolution
of the magnitude of normal and tangential stresses, as well as the deformations in each layer
of the composite depending on the direction of loading and the orientation of the layer.

2. Modeling of Damaged Fiberglass-Reinforced Polymer Matrix Composites from
WTB Structures
2.1. The Geometrical Model of a WTB

A 1.5 m long WTB consists of two components: the airfoil that can be considered a
thin-walled structure and the reinforcement I profile, both of which are made of fiberglass-
reinforced composite. The geometrical model was designed in the Catia R19 solid modeling
program. The WTB composite was modeled as a multilayer structure comprising five layers
with the orientation of the RT500 plain weave fabric 0/45/90/45/0. Similar to the actual
model, which consists mainly of ±45 layers, plus a small amount of randomly oriented
fibers, gelcoat, and filling resin and with the inner I-profile fixed on the aerodynamic shell,
the numerical model contains the same structure. From a mechanical point of view, the
WTB is essentially a cantilever beam mounted on a rotating hub, and the aerodynamic
shape of the blade consists of a relatively thin-walled structure, namely the outer shells
(Figure 1). For the finite element analysis, ABAQUS Version 6.14, a commercial version
for general-purpose finite element analysis, was used. Two types of WTB structures were
investigated in order to determine the static responses: without delamination and with
delamination (different degrees of damage).
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Figure 1. The main parts of the WTB.

Four cases were analyzed: case 1—blade without damage; case 2—single-layer dam-
aged blade, in both areas; case 3—blade with two damaged layers, in both areas; case
4—wind turbine blade with three delaminated layers, in both areas (Figure 2). Three cases
of delamination of the wind turbine blade were modeled and simulated, applied in two
areas (area 1 and area 2), as can be seen in Figure 2. In the first case, the damage of one
layer of the composite in both areas was considered. In the second case, the delamination of
two layers was simulated, and in the third case, the deterioration of three layers was taken
into account in the finite element analysis. The delaminated surfaces were determined
taking into account the risk areas presented by the blades during operation according to
the literature [2–5].
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Figure 2. The structure of the wind turbine with the three cases of delamination (left—the types of
delamination; right—the position of areas with delamination).

2.2. Preprocessing Steps of the Finite Element Analysis (FEA)

The WTB structure without and with damage was analyzed to determine the stresses
and strain state. Two types of finite element meshing were used:

• Due to the complex geometry of the WTB airfoil, the structure was meshed using the
incompatible mode eight-node bricks, denoted C3D8I, which are continuum elements
with incompatible modes. This type of element assures good meshing at the contact
between the inner surfaces of the airfoil. The C3D8I elements are first-order elements,
being enhanced by incompatible modes to improve their bending behavior. The main
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effect of these modes is to eliminate the parasitic shear stresses that cause the response
of the regular first-order displacement elements to be too stiff in bending [37,38].

• For the I-profile surface, C3D10M quadratic tetrahedral elements were used in order
to solve the large-deformation problems and contact problems. This kind of element
performs either the traditional node-to-surface or surface-to-surface contact meshing
and exhibits minimal shear and volumetric locking.

The load of 600 N was applied on the WTB tip, in the y direction (Figure 2). Based on
previous studies [14,17,18], the structure in the current research was subjected to a load
perpendicular to the longitudinal axis of the blade, which has the greatest effect on the
stresses and deformations of the structure. The displacements and rotations in all directions
were constrained in the hub area, the WTB structure being subjected to bending. In a simple
theory, the analyzed structure is the case of a cantilever beam subjected to bending. In
addition to the normal bending stresses, shear stresses also appear in the composite layers.

Knowing that the anisotropic structure of the composites influences both the me-
chanical and non-mechanical characteristics, an anisotropy test of the wind turbine blade
composite structure was performed by using the ultrasonic investigation method. It was
possible to identify the degree of homogeneity/anisotropy of the composites used in the
construction of the blade by determining the propagation time of the ultrasound at different
points of the material established according to the polar coordinates. The investigation
method is presented in detail in [47]. It can be seen in Figure 3 that the composite structure
of the airfoil without damage is relatively homogeneous, especially in the three main
directions of layer orientation.
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of composite layer orientation.

The physical and elastic properties of the composite used in the simulation were
determined experimentally, being presented in previous research papers [13,17,32,39].
Table 1 summarizes the elastic and mechanical properties used in the numerical analysis.

Table 1. Elastic properties of each composite layer.

Composite
RT500 Fiberglass Fabric

Matrix: Epoxy Resin

Density ρ
(kg/m3)

Thickness of
Layer

h (mm)

Number
of Layers

Young’s Modulus
(MPa)

Shear
Modulus
G12 (MPa)

Poisson
Coefficient

νE1 E2

0/45/90/45/0 2400 1.6 5 36,000 8800 3050 0.1615

2.3. Postprocessing Steps of the Finite Element Analysis (FEA)

Two types of analysis were performed: static analysis and modal analysis. From the
static analysis, the normal stresses, shear stresses, and displacements in the delaminated



Polymers 2022, 14, 1471 6 of 17

areas were extracted, being compared with the values obtained for the structure without
defects. As the objective of the study focuses on the variation of stresses and strains in the
delaminated areas, the nodes and elements that border these areas have been identified
(Figure 4). The methodology of data analysis consists of collecting the normal stresses in
two-dimensional directions, S11 and S22, and the shear stress S12 for each element in the
considered area of each ply, in all four cases.
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3. Results and Discussion
3.1. Static Analysis of the WTB—Stress State

For all analyzed cases, the distribution of maximum stress is observed on the opposite
side of the force application, in the WTB hub area, regardless of the degree of blade damage.
In general, a higher stress concentration develops in the transition region of the root-blade,
as can be seen in Figure 5. The results of the static analysis show that the distributions of
the normal stresses S11 and S22 and the shear stress S12 differ from one layer to another
both in intensity and in orientation. Since the purpose of the study is the comparative
analysis of the stresses in the damaged areas, the following results focus on the variation of
the extracted stresses for each element that delimits the delaminated areas in each layer.
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The delamination of the layers of the WTB structure has the effect of increasing the
stresses in the delaminated areas by 30% (in the case of a single damaged layer) and
up to 60% in the case of the delamination of two layers (third and fourth), in area 2.
The stresses extracted from the second studied area of the wind turbine blade (towards
the top of the blade—area 2) showed a higher increase than those from area 1, by 35%.
This proves that an increase in the degree of blade damage, even over a relatively small
area (2000 mm2), causes amplification of stresses in the delaminated area, generating the
occurrence of stress concentrators and, according to different studies [27–30,40–42], the
crack propagation occurs with an amplification factor that depends on the intensity of the
time-varying loading, aggressive environmental conditions, vibrations, etc. Within this
part of the paper, the results regarding the stresses of different WTB integrity states are
presented. It can be observed that the delamination of the three composite layers increases
the normal stresses in S11 and S22 in the outer layers of Ply 1 and Ply 5. Figures 6 and 7
show a comparison between the variation of normal and tangential stresses in the analyzed
cases, for each layer, in relation to the orientation of the composite layers. The envelope
of the stresses in the elements at the boundary of the delaminated area was represented
graphically using the values of the stresses extracted from each finite element, according
to the numbering indicated in Figure 4. The maximum values of stresses in each layer
depend on the orientation of the composite layers. This is observed in the geometric
shape of the tension envelope. The more damaged the composite, the more non-linear
the distribution of S11 stresses around the delaminated area, as can be seen for the
middle layers (Figures 6 and 7).
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Considering that in the blade design, direction 1 coincides with direction x, and
direction 2 coincides with direction z, according to Figure 4a, it can be seen that the
maximum tension S11 of layer 1 coincides with the direction of the fabric orientation
(direction x). The second layer, oriented at 45 degrees, has the maximum tensile stresses in
the direction of the fibers. In the case of layer 3, located in the middle area of the airfoil
thickness, the stresses are maximum in direction 1 (x), the direction that coincides with
the direction of the fiber orientation (Figures 6 and 7a). In the case of the normal stress
S22, it can be observed that for layers 1 and 5, oriented parallel to the direction of the
longitudinal axis of the blade, the stresses are maximum in the longitudinal direction,
compared to layers 2 and 4, oriented at 45 degrees, alternating with the longitudinal axis.
Maximums are oriented perpendicular to the longitudinal axis. As a result of the bending
of the blade produced by the force applied to the tip of the blade, the tangential stresses S12
show an evolution dependent on the degree of delamination, the highest tangential stresses
developing in case 4, as can be seen in Figures 6c and 7c. An in-plane shear deformation
causes an additional rotation of the fibers. Depending on the layup of a unidirectional
laminate, high shear strains can occur.

The stress distribution profiles, according to the loading direction, are expressed in
Figure 8. Along the blade, the tensile stresses are developed with maximum values in the
upper and lower plies (Ply 1 and Ply 5), as indicated in Figure 8a,b. In the perpendicular
direction, on the thickness of the composite, the maximum of the tensile stresses is reached
in the median area of the thickness, compared to the outer layers where compression
stresses are obtained (Figure 8c,d). Taking into account the delaminated cases, the shear
stress distribution profiles are displayed in Figure 8e,f. As can be seen in Figure 8e,f, there
is a sinuous-type fluctuation of the shear stress distribution relative to the thickness of the
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composite and the orientation of the layer. These results are in good agreement with the
mathematical models developed by [45–47]. The magnitude of the stresses obtained in the
four cases of delamination does not exceed the limit of rupture of the composite, which
was determined experimentally by the authors in their previous studies [27]. In [31], a
similar wind turbine blade was investigated experimentally. Although the experimental
study aimed to determine the states of stress and strain in the area near the hub, the values
obtained are comparable to those determined with FEA in the study presented, taking into
account the differences given by the position of the measurement points. Thus, in case 1
(structurally integral blade), in the area near the top, the maximum stress is 17 MPa, and
in the next area, 19 MPa. Experimentally, the tension in the hub area was 48 MPa. Taking
into account the geometry of the blade, the evolution of the stress values in the case of FEA
agrees with the values obtained experimentally by Iftimie et al. [31]. According to [36],
several effects, including asymmetry of the blade sections, non-coincidence of the center of
mass with the shear center, polarization between the aerodynamic and shear centers, offset
of the center from the shear center, inclined installation of the blade, setting angle, cone
angle, structural damping, gravitational loading, and aerodynamic loading influence the
static and dynamic responses of WTBs. Compared to uniform blades, the asymmetry of the
blade sections results in additional terms of stiffness, inertial forces, static displacements,
damping terms, and excitation forces for nonlinear vibration of non-uniform blades. Thus,
the delamination of the composite changes the relative equilibrium between all factors (the
static displacements, gyroscopic forces, and elastic restoring forces) [48,49].
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3.2. Effects of Delamination on the Displacement of WTBs

The distribution maps of the overall displacements of the wind turbine blade are
similar for all four cases analyzed, being maximum at the tip of the blade (Figure 9). Similar
to the variation in the stresses relative to the delamination cases, the overall displacement
increases with increasing the WTB damage degree. Therefore, the displacement increases
by 1.16% in case 4 (Table 2).

Polymers 2022, 14, x FOR PEER REVIEW 14 of 17 
 

 

  
(e) (f) 

Figure 8. The relationship between the stress distribution and damage effects: (a) normal stresses 

S11 from area 1; (b) normal stresses S11 from area 2; (c) normal stresses S22 from area 1; (d) normal 

stresses S22 from area 2; (e) shear stresses S12 from area 1; (f) shear stresses S12 from area 2. 

3.2. Effects of Delamination on the Displacement of WTBs 

The distribution maps of the overall displacements of the wind turbine blade are sim-

ilar for all four cases analyzed, being maximum at the tip of the blade (Figure 9). Similar 

to the variation in the stresses relative to the delamination cases, the overall displacement 

increases with increasing the WTB damage degree. Therefore, the displacement increases 

by 1.16% in case 4 (Table 2). 

  
(a) U1 (x direction) (b) U2 (y direction) 

 
 

(c) U3 (z direction) (d) U (magnitude) 

Figure 9. Distribution of displacement in case 2: (a) displacement in x direction; (b) displacement in 

y direction; (c) displacement in z direction; (d) total displacement. 

Table 2. The displacement values for each studied case. 

 Displacement (mm) 

Studied Cases Total % On x On y On z 

Figure 9. Distribution of displacement in case 2: (a) displacement in x direction; (b) displacement in
y direction; (c) displacement in z direction; (d) total displacement.



Polymers 2022, 14, 1471 15 of 17

Table 2. The displacement values for each studied case.

Displacement (mm)

Studied Cases Total % On x On y On z

Case 1 18.96 0 0.21 18.96 0.47
Case 2 19.02 0.32 0.21 19.02 0.47
Case 3 19.10 0.74 0.22 19.10 0.48
Case 4 19.18 1.16 0.22 19.18 0.48

4. Conclusions

The present study focused on the effects of the delamination severity in fiberglass-
reinforced composites used for wind turbine blade construction. The geometrical model
was designed in Catia and imported in Abaqus, where all parameters related to the com-
posite material structure (elastic properties, thickness of the layers, number of layers, etc.)
were indicated according to the technological specifications of the composite manufacturers
and previous experimental tests.

The main conclusions regarding the effect of delamination of the composite layers of
the wind turbine blade on the stress states, using FEA, are as follows:

• In this study, different cases of delamination severity of the layers in different areas
were assumed and the tensions in the damaged areas were analyzed.

• The stress state is influenced by the delamination severity, even if its surface is rela-
tively small.

• The maximum values of normal and shear stresses occur in relation to the orientation
of the composite layer.

• Even if the geometric stiffness remains unchanged in the case of a small delamination
area, the crack propagation increases the damage during operation.

The numerical shapes of the isoprobable variation curves of the stresses analyzed in
this study were limited to the case of static bending stress. The real structure is subjected
to variable loads that induce a poly-axial state of tension, directed in three orthogonal
directions, more precisely three-axial. As a result, the problem is complicated by the need
to consider the effect of voltage concentration, average voltage, and non-synchronization
of voltage cycles after the three directions of stress. Because fatigue degradation nucleates
at the surface of the structure, where one of the three normal stresses is zero, fatigue in the
three-axial stress state is reduced to a two-axial stress state. Numerical analysis showed
increases in two-axial stresses with increasing material damage.
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