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Abstract: Actual substrates unavoidably possess, to some extent, defects and dirt, which motivate
understanding the impact due to their presence. The presence of a substrate naturally breaks
symmetries. Additionally, it effectively reduces spatial dimensionality, which favors fluctuation-
dominated behavior, but it also provides a multitude of possible interactions. We show evidence of
novel behavior in the case of polymer mass transport at a crystalline substrate when a single attractive
impurity is present. Specifically, we introduce a model system describing how an attractive impurity
pins adsorbed polymers on a substrate. We propose a novel mechanism to explain the size scaling
dependence of the diffusion coefficient as D∼N−3/2 for polymers with N monomers. Additionally,
the size dependence of the diffusion coefficient scales can be described as D∼N−δ, with δ = 1.51 as
determined from extensive simulations.

Keywords: surface contamination; polymer; monte carlo simulations; diffusion

1. Introduction

Challenges involving polymer diffusion, generally speaking, have remained of both
fundamental and applied interest. Early studies helped establish bulk diffusion properties
on good and poor solvents, along with polymer melts [1,2], while recent studies focused
on polymer properties occurring at interfaces [3–17]. Models of polymer diffusion act,
additionally, as paradigms for other long molecules, e.g., those occurring in biological and
biotechnological processes.

The paramount relevance of interfaces and their role over the diffusion of long
molecules definitely adds to a deeper, fuller understanding of polymers and life pro-
cesses, but it requires consideration of more realistic features. For example, real interfaces
are inherently contaminated and have defects, kinks, and terraces, which can act as pinning
centers to a molecule. In short, if a polymer becomes inserted (or trapped) at an interface,
the nature of the latter decisively affects polymer mobility, but a theoretical framework of
diffusion on these more realistic environments is presently lacking.

The presence of an interface reduces the effective spatial dimensionality, therefore
providing a more controlled environment. After all, many life processes take place by
exploiting properties solely arising at an interface, which enhances the survival of an
organism. Technological advances frequently take advantage of substrates for added
control [18,19]; however, from a theoretical perspective, a reduced spatial dimensionality
enhances fluctuations, which could be interpreted as undermining the ability to control.
The broader, more complex set of observed phenomena occurring at interfaces favors
control through a wide range of specific interactions.

Nevertheless, advances in how polymers and long molecules in general diffuse at inter-
faces have been consistently accomplished [3,6–14,16,17,20–24]. For example, for polymers
of N monomers (or subunits) diffusing on hard surfaces, the diffusion coefficient scales as
D∼N−1 and is usually denominated by Rouse regime or Langevin dynamics [6,14,25,26].
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Ring polymers have the same size dependence [14], but new issues have been identi-
fied [20,27]. In the case of collapsed polymers in poor solvents, the size dependence of
the diffusion coefficient decays exponentially [14]. If polymers diffuse in contact with a
set of repulsive obstacles, this leads to reptation and to a diffusion coefficient scaling as
D∼N−3/2 [20]. If hydrodynamic effects are relevant, the size dependence is ∼N−1 [6,14].
Effects due to confinement, for example, of polymer chains lengths in droplets of various
sizes have also been studied [28,29].

In the present work, we introduce a novel system, consisting of an attractive impurity
on a substrate pinning a polymer attached to it. Formally, it corresponds to the limit of
vanishing substrate contamination, but it can be regarded as the initial condition of common
phenomena, where a polymer starts attached to an attractive center, e.g., an impurity or
a defect. Novel properties of the model system, to be later justified, involve an intrinsic
time-dependence of the diffusion and the presence of anomalous diffusion. Additionally,
the size dependence of the diffusion coefficient is

DN = DI
o N−3/2. (1)

These predictions are concomitantly supported by extensive simulations.
In the next section, we start by defining the model system and analyze its properties.

In Section 3, we introduce our extensive Monte Carlo simulations, followed by a discussion
of the results in Section 4. Finally, in Section 5, we present final remarks.

2. Model and Theory

The relevance of the presence of an attractive center to polymer diffusion can be
established by the properties of a model system. The model consists of a single attractive
impurity placed on a crystalline substrate. The polymer is assumed to be well-adsorbed to
the substrate, to prevent detachment from it, where some of its monomers interact with
the impurity. Initially, an N-monomer polymer is placed, attached to an impurity, on an
FCC〈100〉 crystal and let go (see Figure 1). The number of interactions is restricted to a
minimum for the sake of simplicity, involving those between monomers, monomers and
substrate particles, and monomers and the impurity.

Figure 1. Illustration of a random initial configuration of a ten-monomer polymer (green) adsorbed
to an FCC〈100〉 crystal (red) substrate. The midpoint of the segment defined by its central monomers
is tangent to a circle of unit radius and centered on the (blue) impurity. The escape, or stop, condition
is defined by the midpoint moving past a distance, rc, scaling with the size of the polymer, illustrated
here by the (purple) ring. The (yellow) dot represents the position of the center of mass of the polymer.

Let us first consider the case of a polymer diffusing on a perfect crystalline substrate
without the presence of an impurity. Additionally, the polymer is well-adsorbed to the
substrate so that its detachment from the substrate does not occur. It requires sufficiently
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low temperatures, where monomers jiggle mostly at the bottom of their local energy
minima. The motion of a monomer in its basin of attraction is not relevant for polymer
diffusion, constituting the so-called fast processes. Polymer diffusion happens whenever a
monomer escapes from a local basin of attraction, which represents a thermally activated
process with an associated Poisson distribution of escape times. The escape of a monomer
from its local basin of attraction requires it to overcome an (effective) energy barrier, Eo

a , just
to become trapped on a neighboring one an (equilibrium) distance, ro, apart, as imposed by
the underlying crystal structure. The motion of the center of mass of the polymer,

RCM = N−1
N

∑
n=1

rn, (2)

where rn are monomer positions, represents the slowest process, or rate-determining
process, as a monomer escape affects its position by a distance of ∼ro/N.

The diffusion coefficient, D, of a polymer is defined through Einstein’s relation,

〈(RCM(t)− RCM(0))2〉 = Dt, (3)

where 〈(RCM(t) − RCM(0))2〉 represents the mean square displacement of the polymer
center of mass, and t is time.

To monitor a polymer diffusing, it becomes convenient to define a constant escape
distance, rc, while measuring its escape time, τe. As soon as the polymer moves past such a
distance, recording of the evolution of the trajectory is stopped, defining the escape time, τe,
which also represents a first passage time. A consistent reference point from the polymer is
required, so the midpoint of the two central monomers of the polymer is utilized to define
the escape time. Finally, the distance rc must scale in terms of the radius of gyration,

R2
G = N−1

N

∑
i
(ri − RCM)2, (4)

where ri are the monomer positions in the specific configuration, and RCM is the position
of the center of mass of the polymer. The radius of gyration is a universal quantity, i.e., it
depends on a few parameters, such as spatial dimensionality or the presence of excluded
volume, scaling as

RG∼Nν. (5)

The main assumption of well-adsorbed polymers permits taking ν = 3/4, which was
obtained from two-dimensional, self-avoiding walks.

To compute the typical timescale involved in the diffusion of a polymer by a distance
ro, one can consider an ensemble of such systems and calculate the rate, Γ, at which a
polymer displaces by ro. The same idea also applies to individual monomers belonging
to a polymer, say, Γo, an escape probability per unit time defined by the lifetime of a
Poisson process. Using transition-state theory [21,30–37] permits the calculation of Γo, the
reciprocal of an escape timescale (from the basin), by relating it to an (effective) vibrational
timescale, τeff,

Γo =
1

τeff
e−βEo

a , (6)

where β = 1/kBT, kB is the Boltzmann constant, and T is the temperature. A polymer of
size N has the diffusion coefficient scaling as

DN =
r2

o
τo

e−βEo
a N−1 = Do N−1, (7)

where

Do =
r2

o
τo

e−βEo
a . (8)
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Equation (7) retrieves Rouse or Langevin predictions, which are applied here for
thermally activated processes [25,26,38,39]. The basis of the argument to obtain Rouse
behavior is the fact that all monomers sample, on average, the same energy landscape and,
thus, have Γ = Γo/N.

The inclusion of an attractive impurity undermines the latter assumption, as its
presence implies that few monomers are sampling a different energy landscape from
the remaining ones. Eventually, the polymer will escape from its influence, thus returning
to Rouse or Langevin behavior. Therefore, its presence does make the system intrinsically
time-dependent, which, in turn, removes the equilibrium property of time translation.
Hence, ensemble averages of a given quantity, Q, are, instead, required at a specified time,
t, and denoted as 〈Q(t)〉. Since few monomers (possibly none) interact with the impurity
at any given time, the majority still diffuse according to Rouse behavior. Nevertheless, the
polymer center of mass motion remains as the rate-determining process, but one must now
account for the composition of two statistically independent, though concomitant, processes
that are responsible for the escaping. One represents the herd motion of the N monomers,
with an energy barrier, Eo

a , resulting in Rouse size dependence of the diffusion coefficient,
which can be written as ∼N−1. The other process involves those few monomers attached
to the impurity, which are required to overcome an extra activation energy barrier, EI

a.
Considering that the polymer slides through the impurity along the chain, one monomer at
a time, that monomer has an added energy barrier, EI

a; therefore, it has an overall energy
barrier of Ea = Eo

a + EI
a. Now, regarding the impurity as moving in opposite direction along

the polymer chain, it samples an energy barrier, EI
a. Consequently, for the center of mass of

the polymer to move by a distance ∼ro, there must be the above herd motion coupled to a
hop of the impurity along the polymer chain over the same timescale. Now, the impurity
performs an isotropic random walk along the polymer chain with a probability

p∼ 1
N

e−2β(Ea−Eo
a) =

1
N

e−2βEI
a , (9)

as the bound monomer is chosen once every N attempts, on average. Along the polymer
chain, the impurity moves, on average, by a distance ro, so that

DI
N =

Do

N
√

p =
Do

N
e−βEI

a
√

N
, (10)

or
DI

N = DI
o N−3/2, (11)

where

DI
o =

r2
o

τo
e−βEa . (12)

Finally, the above result from Equantion (11) corresponds to Equation (1).

3. Monte Carlo Simulations

To confirm the above predictions, we performed a set of extensive Metropolis Monte
Carlo (MC) simulations, consisting of a set with 214 = 16,384 samples for polymers of sizes
N = 10, 20, 40, 80, and 160, respectively. We found that a temperature of T = 1 ensures
tightly bound polymers as required by the arguments developed in the previous section.

Each sample is initialized with the midpoint of the two central monomers placed at
a distance ro from the impurity along a random direction in the plane of the substrate as
the example of the initial configuration provided in Figure 1 illustrates. The position of the
midpoint of the central monomers on the circle (not shown) of radius ro is randomly chosen
(with uniform probability to ensure isotropy) while the monomers are placed tangent to
the circle. The simulation of the sample ends when the midpoint moves past a distance
rc = ro + RG/4 from the impurity (Figure 2). We parametrized the scaling relation for the
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radius of gyration (Equation (5)) by running a 108 MC steps simulation for a ten-monomer
polymer, which resulted in RG = 2.

Figure 2. Final configurations of the escape time from various realizations of top and side views of
a ten-monomer polymer. The side views represent a left-to-right observation of the of the top view,
providing support for the requirement of a well-adsorbed polymer. In addition, notice the highly
fluctuating escape times of a polymer of the set of samples.

As the focus is on polymer diffusion, the polymer has to displace by a distance, rc,
scaling with its size. Therefore, actual short-range details of the potentials are not as
relevant to describe the universal behavior related to its diffusion. In this context, the
interactions involve two monomer–monomer potentials, a monomer–substrate potential,
and a monomer–impurity potential.

Three different pairwise potentials of particle distance r were considered, all involving
a common length scale, ro = 1, for the sake of simplicity. Attractive interactions, such as
the adsorption of the polymer on the substrate (MS) and binding to the impurity (MI),
are modeled by a Lennard–Jones (LJ) potential of different well depths. The LJ potential
is defined as VLJ(r) = ε(2(ro/r)6 − (ro/r)12), with the MS and MI interactions having
different well depths, εMS = −1 and εMI = −1.5, respectively.

One of the two monomer–monomer (MM) interactions involves the soft-sphere po-
tential, also known as the Weeks, Chandler, and Anderson potential (WCA) [40]. The
WCA potential samples the repulsive part of the LJ potential. This is accomplished by
considering the LJ potential up to its minimum, at ro, and shift it to zero to solely sample
the repulsive part of the potential so that VWCA(r) = VLJ(r) + ε for r < ro and VWCA(r) = 0
otherwise. The other interaction provides bonding between consecutive monomers uti-
lizing the finite-extent, nonlinear-elastic (FENE) potential [41,42]. The FENE potential is
defined as VFENE(r) = −K2r2

o/2 ln (1− (r− ro)2/r2
o), where ro is the equilibrium distance

between consecutive monomers in the chain and K = 20 is a constant [42].

4. Results and Discussion

The model system has an intrinsic time dependence, as previously discussed, that
breaks the time translation property, thus requiring ensemble averages to be performed.
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Additionally, it is useful to rescale time by defining a maximum observation time, tmax,
which acts as a cutoff time,

ξ =
t

tmax
. (13)

Of course, the value of tmax depends on both the number of monomers of the polymer
and the number of remaining (surviving) samples, set to 27 = 128, from a total number of
samples of 214 = 16,384.

Another important aspect of the argumentation was that polymer escapes are ther-
mally activated, hence having a Poisson distribution of escape times. A major assumption
of the arguments developed in Section 2 was having polymers well-adsorbed to the sub-
strate. To this end, the height of the z-coordinate of the center of mass of the polymer,
ZCM, relative to the z-coordinate of the top substrate layer, ZS, is followed as a function of
the rescaled time, ξ. This is fully corroborated by simulations for a temperature of T = 1
where it is observed in Figure 3 that polymers remain bound to the substrate at all times.
In Figure 4, the log-linear plots of the expected exponential decay in time, ξ, are shown,
emphasizing that polymers are thermally activated. A more relevant result is the collapse
of the set of polymer sizes into a single curve (Figure 4), revealing the role, in terms of the
physics, of rescaled time, ξ.

Figure 3. Plots of the position of the z-coordinate of the center of mass relative to the top layer
substrate for different polymer sizes. In this and the following plots, the sizes and respective colors
are N = 10 (red), 20 (green), 40 (blue), 80 (purple), and 160 (cyan).

We proceed to the analysis of energy contributions, starting with the monomer–
substrate (MS) and monomer–monomer (MM) energies per monomer, as shown in Figure 5.
The MS contribution, EMS/N, in Figure 5 decreases with polymer size, therefore implying
that larger polymers are more tightly bound to the substrate. Regarding the MM (Figure 6),
EMM/N, repulsive contributions, one observes that FENE energy clearly dominates over
the soft sphere one. Additionally, FENE shows a size dependence per monomer, while the
soft sphere does not.

The argument developed in Section 2 requires few monomers interacting with the
impurity. The reason lies on the fact that due to its attractive nature, two monomers
(coordination number) become attached to the impurity. Plots of the MI interaction, EMI,
in Figure 7 show this behavior, where those interacting monomers have an additional
potential well of εMI = −1.5 (see Section 3). Contrary to the remaining interactions, the
monomer–impurity energy has an intrinsic time dependence, as emphasized by the rescaled
time plots of Figure 7. The MI binding energy becomes weaker for polymers of larger sizes
since these are not as mobile, as evidenced by plots of rescaled time, ξ, even though, as the
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MI energy varies significantly with polymer size, overall, it does not contribute as much,
since it does not scale with the size of the polymer.

Figure 4. Fraction of surviving samples as a function of rescaled time, ξ, for polymers of various sizes.

Figure 5. Plots of the monomer–substrate energy contribution per monomer as a function of rescaled
time, ξ, for polymers of various sizes.

Figure 6. Plots of the two repulsive energy contributions, namely, soft-sphere and FENE, per
monomer, as a function of rescaled time, ξ, for polymers of various sizes.
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Figure 7. Plots of the monomer–impurity energy contributions in terms of the rescaled time, ξ, for
polymers of various sizes.

The total energy per monomer, ET/N, shown in Figure 8, has a monotonic increase
with polymer size. The observed size dependence is imposed by the stronger size depen-
dence of FENE in relation to MS, as both soft sphere and MI contributions do not have
noticeable size dependences.

Figure 8. Plots of the total polymer energy per monomer, in terms of ξ for polymers of various sizes.

The present model has various diffusive regimes, e.g., the initial condition does have
to be one of equilibrium, so some adjustment is expected. This transient behavior, present in
the MS contribution (Figure 6), does not affect how the polymer detaches from the impurity.
After the transient behavior, in the intermediate regime, the polymer still evolves attached
to the impurity, as Figure 7 shows, representing the relevant regime of the argument
developed in Section 2. Given enough time, the polymer will also escape altogether from
its influence, hence crossing over to a regime of diffusion on a clean substrate [6,14,25,39].
In Figure 9 the log2–log2 plots of the time dependence of the mean square displacement
of the center of mass of the polymer, 〈(∆RCM)2〉 = 〈(RCM(t)− RCM(0))2〉, according to
Equation (3), show the transient and intermediate regimes.
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Figure 9. Time dependence of the log2–log2 plots of the mean square displacement of the center of
mass relative to its initial position.

The size dependence of diffusion coefficient, DN , shown in Figure 10, clearly departs
from the Rouse behavior of D∼N−δ, with δ = 1. In this model, the argument developed in
Section 2 predicts a size dependence of δ = 3/2, which is corroborated by simulations; the
computed value is δ = 1.51.

Figure 10. Size dependence of the diffusion coefficient for a polymer initially attached to an impurity.
Gray line represents expected slope value.

5. Final Remarks

We introduced a model system of a polymer initially attached to an impurity site on
top a crystalline substrate in order to understand how it diffuses away. In this system, the
polymer remains adsorbed to the substrate at all times, and an argument was developed
with a predicted size dependence of the diffusion coefficient of ∼N−3/2. Furthermore,
the prediction was confirmed by extensive simulations by monitoring the motion of the
polymer over distances scaling with its size, namely, rc, which is related to the gyration
radius. The result embodied in Equation (1) is due to a single attractive impurity as opposed
to a number of repulsive contact points scaling with the size of the polymer.



Polymers 2022, 14, 1459 10 of 11

The present work raises the need of other studies, such as, for example, the study of
polymers attached to a prescribed number of impurity sites, by direct comparison to the
present case. In addtion, there is the possibility of researching the implications of finite
concentration of contamination.

The result reinforces the need of further studies involving more realistic features
of interfaces.
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