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Abstract: Suture is an important part of surgery, and wounds closing after surgery remains a chal-
lenge for postoperative care. Currently, silk, linen fiber, and cotton are available in the market as
non-absorbable suture biomaterials. So, there is an urgent need to develop a novel suture with
advantageous characteristics compared to the ones available on the market. In present study, a series
of ultra-high molecular weight chitosan with different DD and MV were prepared from squid carti-
lage by alkaline treatment and ultrasonic degradation. The corresponding chitosan monofilaments
were prepared by a wet spinning process and were characterized as sutures. The effects of the DD
and MV of chitosan on the properties of its monofilament were studied, including surface morphol-
ogy, mechanical property, swelling ratio, ash content, in vitro enzymatic degradation, and in vitro
cytotoxicity. According to the results, AS-85 was chosen to be the best suitable as an absorbable
surgical suture, which was spun from squid cartilage chitosan with DD~85% and MV~1.2 × 106.
The outcome of the present study might derive tremendous possibilities for the utilization of squid
cartilage β-chitin for biomedical applications.

Keywords: squid cartilage chitosan; absorbable surgical suture; wet spinning; degree of deacetylation;
viscosity average molecular weight

1. Introduction

Sutures are the medical devices which were used for wound healing, to repair damaged
tissues, and to obligate the blood vessels [1,2]. So, the suture materials have a wide range
of applications in the field of surgery, and the demand for suture grows at the rate of
millions of dollars annually. The basic purpose of a suture is to stabilize wounds as well as
to promote wound healing. That is why the biocompatibility and mechanical properties
are vital for an ideal suture biomaterial [3,4]. According to its origin, the suture can be
divided into natural sutures (silk, cotton, and linen fiber) and synthetic sutures (nylon and
polyester). Furthermore, according to degradation properties, sutures can be divided into
non absorbable and absorbable sutures [5,6].

After wound healing, the non-absorbable sutures need to be removed from the body,
which might cause further injury, thereby making the procedure more complicated as well
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as painful for the patients [7]. Additionally, the removal of sutures in pediatric patients and
difficulty of accessing anatomical areas are clinically challenging [8]. On the other hand,
absorbable sutures do not need to be removed after surgery. Hence, they help reduce the
incidence of second injury as well as reduce the patient’s pain [2,9].

An absorbable surgical suture is one of the most important in the development of
polymer materials [10]. Compared with non-absorbable sutures, an absorbable suture
is biodegradable, avoiding the risk of secondary operation [11]. Absorbable surgical
sutures include natural fibers and synthetic polymers. The former includes catgut [12],
collagen [13], and chitin fiber [14]. The latter includes polyglycolic acid (PGA) [15], poly
(p-dioxanone) (PDS) [16], poly (lactic-co-glycolic acid) (PGLA) [17], poly (trimethylene
carbonate) (PTMC) [18], and polycaprolactone (PCL) [19].

The ideal absorbable suture should be flexible and have high knotted strength; it
should be convenient for operation with a strong ability to remain knotted, maintaining a
certain strength in the body for a certain time and then being absorbed after the wound
heals. It should have good biocompatibility, with no inflammation due to foreign body
reaction. Finally, it should be stable, reliable, thoroughly sterilizable, and convenient for
storage [4,20,21]. Moreover, the development of the ideal absorbable surgical suture needs
to consider practical factors, so it is difficult to prepare a suture that meets all clinical
needs [22,23]. Different types of wound tissue have different requirements for suturing,
such as fascia or tendon tissue, which need weeks or even months to repair, so a suture
with a long degradation cycle is needed. Wounds in the muscles and epithelial tissue can
be healed in a few days, so a suture with a short degradation cycle is needed [24].

Chitosan is the only alkaline polysaccharide found in nature, which has abundant and
unique properties, including good biocompatibility, degradability, cell adhesion, hemostasis
and antibacterial properties, and wound-healing effects [25–27]. Moreover, the amino
sugars produced by chitosan degradation can be completely absorbed by the human body.
All of these criteria make chitosan a viable candidate for absorbable surgical sutures [28,29].

In this paper, β-chitin extracted from squid cartilage was used as the raw material, and
then a series of ultra-high molecular weight chitosan with different deacetylation degree
(DD) and viscosity average molecular weight (MV) were prepared by the method of alkaline
deacetylation and ultrasonic degradation. The corresponding chitosan monofilaments were
prepared by a wet spinning process and were characterized as sutures. The effects of the
DD and MV of chitosan on the properties of its monofilament were studied. This study
aimed to carry out the basic research of suture selection in line with clinical needs.

2. Experimental
2.1. Materials

β-chitin was supplied by Jiangxi Goldenbrilliance Medical Products Co., Ltd., China.
NaOH (AR), acetic acid (AR), HCl (AR), and ethanol (AR) were purchased from Aladdin
(Shanghai, China). Deionized water was used throughout the experiments.

2.2. Preparation and Characterization of Chitosan

Chitosan with high MV were prepared by milder alkaline treatment. β-chitin or
chitosan powder was dispersed in an NaOH (0.1 M) solution with a solid-liquid ratio of
1:11 (g/mL) under stirring. Deacetylation was processed at the appropriate temperature.
After reaction, the mixture was filtered and the solid was washed with deionized water
until neutral and was then dried in an oven at 80 ◦C.

Chitosan with different MV were prepared by ultrasonic degradation. Chitosan with
ultra-high MV was dispersed in a 1.0% (w/w) of HCl (0.1 M) solution with stirring until
it dissolved at room temperature, then the solution was put into an ultrasonic cleaner at
60 ◦C. After degradation, the solution was adjusted to pH 7 by the addition of 1.0 mol/L of
NaOH solution until complete precipitating. The mixture was filtered and the solid was
washed with deionized water and ethanol and was then dried in an oven at 80 ◦C.
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The DD of chitosan was determined by elemental analysis (Vario micro cube Ele-
ment Analyzer, Elementar Analysis System GmbH, Langenselbold, Germany). The MV of
chitosan was examined by the dilute solution viscosity method.

2.3. Wet Spinning to Produce Chitosan Monofilaments

The chitosan monofilament was wet spun in a wet spinning machine. Briefly, 3.0 g of
chitosan was dissolved in 100 mL, 2.0% (v/v) of acetic acid solution at room temperature.
The chitosan acetate solution was filtered and defoamed before wet spinning. The solution
was loaded in a syringe of the wet spinning machine and squeezed at an extrusion pressure
of 1.4 MPa into the coagulation bath which was comprised of 5.0% (w/w) sodium hydroxide
and 2.0% (v/v) ethanol aqueous solution. Then, the precipitated monofilament was washed
to neutrality with deionized water. All monofilaments spun from chitosan with different
DD and MV were collected and dried naturally at room temperature on the collector.

2.4. Characterization of Chitosan Monofilaments

The appearance morphology of chitosan monofilament was observed by SEM (S3400N
(II), Hitachi, Japan) at an accelerating voltage of 10 kV. All samples were treated with gold
spray for 80 s before imaging.

The dry or wet monofilament was tied in a knot at about 10 cm and ten specimens
were evaluated for each sample. The tensile rate was set at 300 ± 50 mm/min and the test
gauge distances were 125~200 mm. Before testing, the wet monofilament was treated by
first immersing the dry in 0.1 mol/L of PBS (pH 7.4) for 24 h, and clearing the excess PBS
on its surface by filter paper.

The sample was soaked in 0.1 mol/L of PBS (pH 7.4) for 24 h, the excess PBS on its
surface was gently absorbed by filter paper, and it was weighed (noted as Wt). Then, it was
dried in a vacuum oven at 100 ◦C for 6 h, and the dry was weighed (noted as Wd). Three
specimens were tested for each sample, and the swelling ratio of the chitosan monofilament
was calculated as follows:

Swelling ratio =
Wd −Wt

Wt
×100% (1)

The sample was dried in an oven at 120 ◦C for 2 h and weighed (noted as W0) after
cooling. Then, the sample was cut into pieces and placed into a crucible. The crucible with
the dried sample was weighed (noted as W1). The ash content was determined by fully
carbonizing for 3 h and ashing in a muffle furnace at 600 ◦C for at least 5 h. After cooling,
the crucible with ashed sample was weighed (noted as W2). The ash value was calculated
as the following equation:

Ash% (dry basis) =
W2 −W0

W1 −W0
×100 (2)

The in vitro enzymatic degradation performance of chitosan monofilament was char-
acterized by the residual ratio, the breaking strength retention (BSR), and the morphological
observation. The dried sample was weighed (noted as W0) and immersed in 50 mL of PBS
containing 1 mg/mL of lysozyme (>20,000 U/mg). Then, the sample was incubated at
37 ◦C with gentle vibration. The fresh lysozyme solution was renewed every three days.
The sample was taken out every week and rinsed with deionized water. Then, the sample
was dried in a vacuum oven at 100 ◦C for 2 h and weighed (noted as Wt). The residual ratio
was calculated by the following equation:

Residual ratio% =
Wt

W0
×100 (3)

After the excess PBS on the surface of the chitosan monofilament sample was absorbed
by filter paper, it was knotted at the midpoint of the sample. Then, the sample was loaded
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on the above material testing machine to obtain the tensile strength value. The BSR was
calculated by the following formula:

BSR% =
TSt

TS0
×100 (4)

TSt is the tensile strength of the degraded sample at each time point, and TS0 is for
the initial.

The degraded sample was dried naturally at room temperature to a constant weight
and observed by the above SEM.

2.5. In Vitro Cytotoxicity Test of AS-85

An in vitro cytotoxicity test of human skin epithelial cells (HFF-1) after exposure to
suture extracts was assessed using the colorimetric MTT assay. Briefly, by comparing
the viability of HFF-1 cells cultured with a normal medium to that of the cells cultured
with a medium containing suture extracts, AS-85 were selected as the test samples. To
prepare the extract, 0.1 g of AS-85 was immersed into 1 mL of Dulbecco’s modified Eagle
medium (DMEM) containing 10% (w/w) of FBS, 1% (w/w) of penicillin and streptomycin at
37 ◦C for 24 h. Afterwards, the HFF-1 cells were seeded into 96-well plates with a density
of 1 × 104 cells/well in DMEM. The medium was replaced 24 h later with a fresh one
containing the extracts and the HFF-1 cells were incubated up to another 24 h, 48 h, and
72 h. After each interval, 25 µL of MTT solution (5 mg/mL) was added to each well and
incubated for 4 h. After the MTT was removed, 150 µL dimethyl sulfoxide (DMSO) was
added and incubated for additional 20 min. The plate was detected by a microplate reader
(Thermo Fisher Scientific mµltiscan MK3, Waltham, MA, USA) at a wavelength of 490 nm.
The relative cell proliferation rate (RGR) was calculated by the following formula:

RGR =
ODtest −ODBlank

ODcontrol −ODBlank
×100 (5)

ODtest, ODcontrol and ODblank are the OD values for cells cultured in the suture extracts,
DMEM, and blank PBS well, respectively.

2.6. Statistical Analyses

The results are indicated as mean values± SD of at least three replicates. The data were
expressed as the mean ± SD. The T-test was used to determine the significant differences
between the treatment groups by using GraphPad prism 8.0.1.

3. Results and Discussion
3.1. Structural Parameters of Chitosan and Specifications of Their Monofilaments

The DD and MV of the chitosan prepared under different conditions were shown in
Tables S1 and S2. The DD and MV of the chitosan were conditioned by the reaction temper-
ature, reaction time, alkaline concentration, times of deacetylation, and time of ultrasonic
degradation. Table S1 shows the preparation conditions and structural parameters of the
chitosan with different DD and similar MV. Chitosan with ultra-high MV were prepared by
milder alkaline treatment from β-chitin or chitosan, even through multiple deacetylating in
a short time [26]. The MV of CTS-65 with the lowest DD was not obtained because of its
low solubility in dilute acetic acid solution, and the CTS-70 was produced after two times’
milder ultrasonic degradation for slightly decreasing its MV. The CTS-90 with the highest
DD was prepared from CTS-65 through three times’ deacetylation every for 1 h.

Table S2 shows the preparation conditions and structural parameters of chitosan with
different MV and similar DD. The CTS-1.3, which the MV reached at 1.29 × 106, was
prepared from CTS-65 by milder alkaline deacetylation, and those chitosan with lower MV
were prepared from CTS-1.3 through ultrasonic degradation with different lengths of time.
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Elemental analysis results showed that ultrasonic degradation had little effect on the DD of
chitosan [30], but the MV of chitosan decreased with increasing ultrasonic time.

Table S3 shows the specifications of chitosan monofilaments as sutures. The diameter
of chitosan monofilament slightly increased with the increase of DD and the decrease of
MV of the chitosan, possibly due to the slightly increased solubility of chitosan in the dilute
acetic acid solution.

3.2. Appearance and Morphology of Monofilaments

Figure 1A shows the appearance picture and surface SEM images of chitosan monofil-
aments with different DD, and Figure 1B shows chitosan monofilaments with different
MV. The appearance and morphology of chitosan monofilaments with different DD and
MV were uniform, and their pale-yellow surfaces were clean and free of stains. Their
SEM images indicated that all surfaces look relatively smooth, with no air bubbles, pores,
or depressions.
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3.3. Mechanical Properties of Monofilaments

As a suture, chitosan monofilament should have excellent mechanical properties to
hold wound tissue and withstand tensile forces. The experiment measured tensile strength
and elongation at the break of dry and wet knotted monofilaments, as shown in Figure 2.
The tensile strength and elongation at the break of the dry and wet knotted monofilament
first increased and then decreased as the DD of chitosan increased, and the AS-85 prepared
from the chitosan with (85.46 ± 1.13)% of DD and (1.16 ± 0.04) × 106 of MV exhibited
the most optimal mechanical properties with 38.96 ± 0.56 N/23.24 ± 0.65 N of dry/wet
tensile strength and (14.60 ± 1.03)%/(16.20 ± 0.98)% of dry/wet elongation at the break. It
indicated that the monofilament prepared from the chitosan with medium-high DD and
ultra-high MV that was seized was of the highest toughness. As the DD increased, the
molecular regulation of β-chitin was destroyed, and its crystallinity was lowered. The
ductility and toughness of the knotted chitosan monofilament increased, so its tensile
strength and elongation at the break increased. But the ultra-high DD (e.g., >85%) resulted
in a more regular molecular arrangement and elevated crystallinity of chitosan, so the
chitosan monofilament became more fragile and breakable [31,32]. Furthermore, the tensile
strength and elongation at the break of the dry and wet knotted monofilament increased
with the increasing of the MV of the chitosan, which enhanced the intermolecular interaction
including hydrogen bonding of the chitosan. When the chitosan monofilament is applied
clinically as a surgical suture, it always appears in a wet state with lower tensile strength
and higher elongation at the break than the dry.

Polymers 2022, 14, x FOR PEER REVIEW 6 of 11 
 

 

 

   

Figure 1. Appearance picture and surface SEM images of chitosan monofilaments with different DD 
(A) and chitosan monofilaments with different MV (B). 

3.3. Mechanical Properties of Monofilaments 
As a suture, chitosan monofilament should have excellent mechanical properties to 

hold wound tissue and withstand tensile forces. The experiment measured tensile 
strength and elongation at the break of dry and wet knotted monofilaments, as shown in 
Figure 2. The tensile strength and elongation at the break of the dry and wet knotted mon-
ofilament first increased and then decreased as the DD of chitosan increased, and the AS-
85 prepared from the chitosan with (85.46 ± 1.13)% of DD and (1.16 ± 0.04) × 106 of MV 
exhibited the most optimal mechanical properties with 38.96 ± 0.56 N/23.24 ± 0.65 N of 
dry/wet tensile strength and (14.60 ± 1.03)%/(16.20 ± 0.98)% of dry/wet elongation at the 
break. It indicated that the monofilament prepared from the chitosan with medium-high 
DD and ultra-high MV that was seized was of the highest toughness. As the DD increased, 
the molecular regulation of β-chitin was destroyed, and its crystallinity was lowered. The 
ductility and toughness of the knotted chitosan monofilament increased, so its tensile 
strength and elongation at the break increased. But the ultra-high DD (e.g., >85%) resulted 
in a more regular molecular arrangement and elevated crystallinity of chitosan, so the 
chitosan monofilament became more fragile and breakable [31,32]. Furthermore, the ten-
sile strength and elongation at the break of the dry and wet knotted monofilament in-
creased with the increasing of the MV of the chitosan, which enhanced the intermolecular 
interaction including hydrogen bonding of the chitosan. When the chitosan monofilament 
is applied clinically as a surgical suture, it always appears in a wet state with lower tensile 
strength and higher elongation at the break than the dry. 

(a) 

 

(b) 

 
Figure 2. Mechanical properties of monofilaments (a) Dry and (b) Wet. 

  

Figure 2. Mechanical properties of monofilaments (a) Dry and (b) Wet.

3.4. Swelling Performance of Monofilaments

The results indicated that the swelling ratio of the chitosan monofilament decreased
as the DD of the chitosan increased, due to the reduction of its acetamido group and the
lowering of hydrophilicity, as shown in Figure 3. The slightly lower swelling ratio of
AS-70 may have been derived from the lower water-solubility of CTS-70 (Tables S1 and S3).
However, within the experimental range of MV, the MV of the chitosan had no obvious
effect on the swelling performance of the chitosan monofilament.
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3.5. Ash Contents of Monofilaments

Theoretically, all chitosan monofilaments only contain chitosan with C/H/O/N el-
ements. Hence, the inorganic impurities of chitosan and the contamination of alkaline
coagulation bath should be controlled. The detected ash contents of all chitosan monofila-
ments, shown in Table 1, were less than 0.04% and met the requirements of the Chinese
Pharmaceutical Industry Standards (YY 1116–2010).

Table 1. Ash contents of chitosan monofilaments.

Suture Ash Content
(%) Suture Ash Content

(%)

AS-70 0.038 AS-1.3 0.036
AS-75 0.037 AS-1.1 0.037
AS-80 0.038 AS-1.0 0.039
AS-85 0.039 AS-0.9 0.037
AS-90 0.038 AS-0.7 0.038

3.6. In Vitro Enzymatic Degradation of Monofilaments

The results indicated that the that the residual ratio and BSR of all chitosan monofil-
aments gradually decreased with increasing time, as shown in Figure 4. The lower DD
of the chitosan resulted in the faster degradation of its monofilament, indicating that the
degradation speed of chitosan and the number of acetamido groups of its molecular chain
had a notably positive correlation, which was consistent with previous reports [33,34].
Among these chitosan monofilaments, AS-85 prepared from CTS-85 looked like an ideal
surgical suture with moderate degradation speed and high BSR in 5 weeks. Furthermore,
Figure 5 shows the SEM images of chitosan (with different DD) monofilaments with enzy-
matic hydrolysis for five weeks. With decreasing the DD of the chitosan, the surface of its
monofilament bestrewed more depressions and pores, but AS-85 & AS-90 looked smoother.

Polymers 2022, 14, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 4. Effects of chitosan’s DD on residual ratio (a) and BSR (b) of its monofilament with enzy-
matic hydrolysis. 

 
Figure 5. SEM images of chitosan (with different DD) monofilaments with enzymatic hydrolysis for 
five weeks. 

The effects of the chitosan’s MV on the residual ratio and BSR of its monofilament 
with enzymatic hydrolysis are shown in Figure 6. It looked as though the difference on 
the residual ratio for all monofilaments was not obvious, but the BSR of the monofilament 
decreased quickly with the decreasing of the MV of the chitosan. After degradation for 5 
weeks, the BSR of AS-1.1 & AS-1.3 were more than 70% and suitable as sutures. Figure 7 
shows the SEM images of chitosan (with different MV) monofilaments with enzymatic hy-
drolysis for five weeks. With the decreasing of the MV of the chitosan, the surface of its 
monofilament bestrewed more depressions and pores, but AS-1.0, AS-1.1, and AS-1.3 
looked smoother. 

 
Figure 6. Effects of chitosan’s MV on residual ratio (a) and BSR (b) of its monofilament with enzy-
matic hydrolys. 

Figure 4. Effects of chitosan’s DD on residual ratio (a) and BSR (b) of its monofilament with
enzymatic hydrolysis.



Polymers 2022, 14, 1306 8 of 11

Polymers 2022, 14, x FOR PEER REVIEW 8 of 11 
 

 

 

Figure 4. Effects of chitosan’s DD on residual ratio (a) and BSR (b) of its monofilament with enzy-
matic hydrolysis. 

 
Figure 5. SEM images of chitosan (with different DD) monofilaments with enzymatic hydrolysis for 
five weeks. 

The effects of the chitosan’s MV on the residual ratio and BSR of its monofilament 
with enzymatic hydrolysis are shown in Figure 6. It looked as though the difference on 
the residual ratio for all monofilaments was not obvious, but the BSR of the monofilament 
decreased quickly with the decreasing of the MV of the chitosan. After degradation for 5 
weeks, the BSR of AS-1.1 & AS-1.3 were more than 70% and suitable as sutures. Figure 7 
shows the SEM images of chitosan (with different MV) monofilaments with enzymatic hy-
drolysis for five weeks. With the decreasing of the MV of the chitosan, the surface of its 
monofilament bestrewed more depressions and pores, but AS-1.0, AS-1.1, and AS-1.3 
looked smoother. 

 
Figure 6. Effects of chitosan’s MV on residual ratio (a) and BSR (b) of its monofilament with enzy-
matic hydrolys. 

Figure 5. SEM images of chitosan (with different DD) monofilaments with enzymatic hydrolysis for
five weeks.

The effects of the chitosan’s MV on the residual ratio and BSR of its monofilament
with enzymatic hydrolysis are shown in Figure 6. It looked as though the difference on
the residual ratio for all monofilaments was not obvious, but the BSR of the monofilament
decreased quickly with the decreasing of the MV of the chitosan. After degradation for
5 weeks, the BSR of AS-1.1 & AS-1.3 were more than 70% and suitable as sutures. Figure 7
shows the SEM images of chitosan (with different MV) monofilaments with enzymatic
hydrolysis for five weeks. With the decreasing of the MV of the chitosan, the surface of
its monofilament bestrewed more depressions and pores, but AS-1.0, AS-1.1, and AS-1.3
looked smoother.
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3.7. In Vitro Cytotoxicity of AS-85

It was suggested that the excellent biocompatibility of the sutures is vital for their
application in a clinical study. The in vitro cytotoxicity of the AS-85 suture was evaluated
by an MTT assay using suture extracts on HFF-1 cells. As shown in Figure S1, the viability
of the HFF-1 cells incubated for 1 d, 2 d, and 3 d in medium were all above 50% compared
with the control, according to the ISO standard (ISO10993.12-2004), and the cytotoxicity of
AS-85 was recorded as grade II, indicating that the absorbable surgical suture prepared in
this experiment had slight cytotoxicity. This is likely because of the higher salt content in
this suture.

4. Conclusions

In this study, the effects of the DD and MV of chitosan on the properties of its monofil-
ament were studied, including surface morphology, mechanical property, swelling ratio,
ash content, in vitro enzymatic degradation, and in vitro cytotoxicity. According to the
obtained results, AS-85 was chosen as the one that is most suitable as an absorbable surgical
suture, which was spun from squid cartilage chitosan with DD~85% and MV~1.2 × 106.
Owing to the lower mechanical properties of the fibers spun from crab chitosan with low-
moderate MV, chitosan has been absent from the applications of absorbable surgical sutures
for a long time. However, the monofilament spun from chitosan with ultra-high MV and
appropriate DD exhibited outstanding mechanical properties and met the characteristic
requirements as an absorbable surgical suture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14071306/s1, Figure S1: Biocompatibility of AS-85 suture
determined by MTT assay; Table S1: Preparation conditions and structural parameters of chitosan
with different DD and similar MV; Table S2: preparation conditions and structural parameters of
chitosan with different MV and similar DD; Table S3: Specifications of chitosan monofilaments as
sutures.
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