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Abstract: A procedure is described of grafting the acrylic acid onto an oxygen/ozone-activated
metallocene poly(ethylene-co-propylene). Consequently, the grafted copolymer is applied as a com-
ponent in a metallocene polyolefin-based hot-melt adhesive composition with increased adhesion.
The surface properties and adhesion strength of the prepared hot-melt adhesive (HMA) were deter-
mined and used to account for the effect of grafting. The application of grafted polyolefin as one
of the components of the HMA mixture provides significant increase in adhesive strength, and it
also results in increased compatibility and negligible effects on the technological parameters of the
final composition. The obtained results may have significant impact for the practical application of
prepared HMA for book bonding.

Keywords: hot-melt adhesives; metallocene polyolefins; adhesion strength; acrylic acid grafting

1. Introduction

Polyolefins are often used as a major component of hot-melt adhesives (HMAs),
containing in many cases a rather complex composition of waxes and tackifiers to achieve
the desired rheological and adhesive properties. The final composition of a particular HMA
must be carefully designed so that all processing parameters and application properties are
optimal for the intended application. Even small modifications of the designed composition
may lead to unexpected problems either during processing or later in the application phase.
Thus, when designing thermoplastics-based HMAs for bonding more polar materials (such
as paper, cardboard or wood), it is useful to modify the nonpolar chains of the polymers
used with polar monomers to achieve higher-polarity HMAs to ensure stronger adhesive
joints. In addition to the polarity of the modified HMA, the rheology of the polymer melt
is also of key importance, because, for the appropriate bonding of paper, cardboard or
wood, mechanical adhesion is ensured by anchoring the HMA in the pores on the material
surface [1].

Metallocene polyolefins (MePOs) are highly hydrophobic polymers with low surface
energy and especially small polar component. Recently, several papers have been published
describing the application of metallocene polyolefins as components that provide excellent
performance to HMAs [1,2]. Therefore, for the preparation of HMA-containing MePO [3–5]
for bonding more polar substrates, it is desirable to increase the polarity of the adhesive
either by adding a polar low-molecular weight or polymeric additive or to perform chemical
modification of the MePO by incorporating additional polar moieties into the HMA polymer
blends. A modification of one of the polyolefin species present in the HMA composition by
polar functional groups of selected polar monomers to the nonpolar MePO chains may be
preferred since the increase in the hydrophobicity/polarity does not substantially alter the
other key properties, especially the mechanical properties and rheological parameters of
the final HMA [1].
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The grafting of the selected monomer onto the MePO polymer backbone takes place
by a free-radical mechanism. The formation of hydroperoxides and peroxides on polymer
chains by oxidation may be initiated by thermal decomposition of organic peroxides (e.g.,
benzoyl peroxide, or dicumyl peroxide) or by radiation [6–10].

To increase the polarity, it is advantageous to modify MePO in the form of a powder
and to inoculate polar vinyl monomers in the presence of a free-radical initiator. Favorable
conditions with higher cleavage efficiency exist for the metallocene poly(ethylene-co-
propylene) copolymers containing hydrogen on tertiary carbon, which are more reactive
in transfer reactions [11]. The introduction of the species potentially initiating free-radical
grafting may be easily achieved by ozone [12–15]. The advantage of such a procedure con-
sists in the fact that both initiator and grafts are attached to the same polymer chain [16–20],
so that the expected increase in the polarity of the composition does not need any intro-
duction of an additional additive, which might affect the processing parameters and/or
ultimate properties of the original material. The formation of peroxides on polymer chains
can be significantly accelerated by using a mixture of ozone and oxygen.

However, a number of different schemes has been published in the literature related
to the reaction of ozone with metallocene polymers (in most cases, the substrates are other
polyolefins or completely different polymers) and none of these are generally accepted.
Since this contribution is aimed to ultimate properties of HMAs, we are not going to discuss
that aspect in detail; however, in our view, among several alternative reaction schemes, the
most acceptable one seems to be the ozone interaction with double bonds present in small
concentrations in all polyolefins and further formed during the early stage of the ozonation.
The process results in Criegee’s molozonides [21] followed by subsequent cleavage and
formation of various species including carbonyl hydroperoxides, as shown in Scheme 1.

Scheme 1. Example of a possible way of ozone reaction with double bonds on polyolefin chain
(Redrawn based on [21]).

Further scission of these hydroperoxides may lead to grafting as well as to reduction
of the polymer chain length [22].

The formation of peroxides on polymer chains can be significantly accelerated by
using a mixture of ozone and oxygen. After the grafting of more polar chains in the form
of side branches on the main polymer chain, the surface energy and in particular its polar
component, are increased, while the difference between the polarities of HMA and the
bonded polar substrate is reduced, resulting in high adhesion [23]. The grafted MePO will
then be used to formulate new HMA with increased adhesion.

However, the addition of even one new component to the optimized composition of
the HMA may lead to a destruction of the delicate balance of a full set of key ultimate
properties and processing parameters. Therefore, it seems to be benefiting to perform
any changes through modification of a small part of the component that is present in the
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original mixture. By such a way, the compatibility between the polymers, as well as e.g.
viscosity or thermal stability, may be kept close to the initial optimal values, making the
optimization of the composition much easier. From this point of view, the utilization of
gaseous ozone appears to be beneficial.

The presented paper investigates the procedure of the grafting of acrylic acid onto an
oxygen/ozone-activated metallocene poly(ethylene-co-propylene) copolymer. The grafted
MePO is consequently applied as a component of the HMA to increase the adhesion of the
MePO-based HMA composition. Thus, the final HMA recipe contains the same MePO for
both the original and acrylic acid-grafted samples. The probability of substantial changes
in key parameters and crucial properties of the modified HMA would be minimalized or
eliminated by such a way. The surface properties and adhesion of this system to model
paper materials were determined and used to account for the effect of grafting.

2. Materials and Methods
2.1. Materials

The random metallocene ethylene-co-polypropylene copolymer Licocene PP 2602
(Clariant, Muttenz, Switzerland), with Tm = 95,102 ◦C, Tg = 57 ◦C, density = 0.874 g/cm3,
tensile stress at yield = 1.76 MPa, was used as the main component of the HMA, as well
as for the preparation of the grafted component modified by ozonation and grafting by
acrylic acid.

Other polymers included in the overall HMA composition were Licocene PP 3602
(a low crystalline metallocene propylene–ethylene copolymer, Clariant) and PP 1302 (a
metallocene propylene–ethylene co-polymer wax, Clariant). Licowax PE 520—a medium-
molecular weight nonpolar polyethylene hard wax (Clariant) with dropping temperature
T = 120 ◦C was used for viscosity adjustment, and Escorez 5600 (Exxon Mobil Chemical,
Houston, TX, USA)—an aromatic modified, cycloaliphatic hydrocarbon resin—was applied
as tackifier.

Acrylic acid (AA) (99% monomer purity, Sigma-Aldrich, St. Louis, MO, USA), stabi-
lized with 180–200 ppm 4-methoxyphenol, was used for grafting, while sodium laurylsul-
fate (NaLS) (purity ≥98%, Aldrich), was added as a wetting agent in the grafting process.
Kinox-10—pentaerythrityl tetrakis [3-(3,5-di-tert.butyl-4-hydroxyphenyl) propionate] (HPL
Additives, Haryana, India)—was used as an antioxidant. Regalite R 1100—a low molec-
ular weight fully hydrogenated hydrocarbon—was used as a tackifying resin (Eastman,
Kingsport, TN, USA).

2.2. Acrylic Acid Grafting on Licocene PP 2602

The modification of Licocene PP 2602 by grafting the polymer in powder form with
a polar monomer was performed by activation of the polymer molecules with a mixture
of O2 + O3 as the first step. Ozone was generated by passing oxygen through a Profizon
X ozone generator (UVC Servis, Prague, Czech Republic), enabling excellent control of
hydroperoxide (HPx) and peroxide (Px) formation. The ozone concentration in the mixture
with O2 was 17.8 mg/L.

The absolute concentration of HPx and Px groups bonded to LC was determined
by modified iodine analytical procedure (16). Moreover, the presence of peroxides, their
thermal stability and kinetics of decomposition were monitored in parallel by chemilumi-
nescence (CL) using a LUMIPOL 3 photon-counting instrument (commercial product of
Polymer Institute SAS, Bratislava, Slovakia). The measurements proceeded under non-
isothermal conditions in a temperature range between 50 and 250 ◦C, with a heating rate
of 5 ◦C per minute. Thermal heat emission under the given conditions is negligible com-
pared to the CHL intensity from sample degradation. The instrument dark count rate was
2–3 counts/second, and the resolution level at 40 ◦C was 2 photons/second.

Modification of ozonated Licocene PP 2602 (LC) with acrylic acid proceeded in a
50 mL chamber of a Brabender Plasticorder PLE 331 laboratory internal mixer (Brabender,
GmbH, Duisburg, Germany). Considering the polymer melting temperature of 95–102 ◦C
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and thermal stability of hydroperoxides present in ozone—modified LC as determined by
chemiluminescence, the grafting temperature was set to 120 ◦C and the intensity of mixing
was 30 rounds per minute (rpm). No special arrangement was applied to maintain the
oxygen-free atmosphere. The optimized composition of the reaction mixture consisted of
basic LC polymer mixed with 18.5 wt.% of acrylic acid, while 0.5 wt.% of NaLS wetting
agent was added to obtain increased homogeneity of polar acrylic acid in apolar metallocene
polyolefin. After completing the grafting reaction, the content of acrylic acid in the final
product was 11.4 wt.% according to FTIR analysis.

The procedure of grafting proceeded as follows: the temperature of the reaction
mixture and the torque in the Brabender chamber depending on the mixing time show that
the polymerization reaction of the grafting begins shortly after the monomer is added to
the system. The temperature set in the mixing chamber was 120 ◦C and was monitored by a
bimetal thermometer with its top directly in the mixing chamber with intimate contact with
the polymer melt. After filling the chamber with the polymer and closing the chamber, the
temperature decreased to about 80 ◦C within 5 to 10 s, and monomer acrylic acid was added
within a further 10 s. Maximum temperature in the chamber of 129 ± 0.8 ◦C was achieved
after 11.5 min as a result of both intensive mechanical mixing and exothermal chemical
reaction. During the initial heating and adding liquid monomer, the torque and the melt
viscosity decreased, but with the onset of polymerization as the amount of monomer reacts
and the grafted copolymer is formed, both the torque and the viscosity of the system
increased. Rapid grafting reaction proceeded between 10 and 15 min with a maximum at
11.5 min, indicated by an increase in the torque. The reaction was over after 22 min.

2.3. Experimental HMA Preparation and Characterization

The grafted Licocene copolymer prepared according to the previous section was used
in varying amounts as the additive for the experimental HMA. The composition of the basic
material is shown in Table 1. The variations in composition given in Table 1 for materials
HMA prepared to estimate the effect of other components are described in the legends of
the corresponding Tables or Figures.

Table 1. HMA based on Licocene PP 2602 modified with various amounts of polar additive (sample
L3 = Licocene PP 2602 grafted with 11.4.% of PAA).

Component Contents of the Polar Component (%)/(Dosing (g))

Polar additive L3 0% 0.068%
(0.22 g)

0.136%
(0.44 g)

0.272%
(0.88 g)

0.544%
(1.78 g)

Regalite R 1100 12.0 12.0 12.0 12.0 12.0
Licowax PE 520 1.0 1.0 1.0 1.0 1.0

Kinox 10 components
(wt.%) Kinox 10 0.3 0.3 0.3 0.3 0.3

Licocene PP 1302 12.7 12.7 12.7 12.7 12.7
Licocene PP 3602 17.0 17.0 17.0 17.0 17.0
Licocene PP 2602 17.0 16.78 16.56 16.12 15.22

Measured Properties
Brookfield viscosity

170 ◦C (mPa·s) 2250 2000 2100 2300 2175

Softening temp. (◦C) 100 100 100 102 100
Solidification Time (s) 8 9 9 9 11

Open Time (s) 24 27 27 30 33

The samples for analytical procedures were prepared from the LC-grafted product
by compression molding to disks 1 mm thick with a 20 mm diameter at a temperature of
180 ◦C, the molding time was 180 s, and the specific plate pressure was 3 N/mm2.

Brookfield viscosity was measured according to STN EN 2555. The softening tem-
perature was measured according to STN EN 1427. Solidification time determination was
performed according to the VIPO internal standard by means of a prototype equipment for



Polymers 2022, 14, 1253 5 of 11

the examination of glue joints developed in ZDA Partizánske, Slovakia. In this procedure
the bonding material was uncoated paper with a basic weight of 500 g/m2. The required
testing temperature was adjusted in the equipment and paper strips with dimensions of
6 cm × 1.5 cm were placed into the equipment. The expected time of solidification was
set up on the timer. One bead of tested molten hot melt was applied on the bottom paper
strip, and the upper paper strip was immediately placed on the top. In this way a glue
joint with measurement area of 1.5 cm × 1.5 cm was created and the timer was switched on.
When the time was over, a weight of 2 kg was applied in shear mode on the glue joint. If
the glue joint failed, the time interval in the timer was increased and the test was repeated
step by step until the glue joint held up the weight. This time interval was defined as
solidification time.

Open time was measured according to the VIPO internal standard. A hot-melt film
with a width of 0.5 mm was prepared using a hot-melt spreader. The hot-melt film was
placed on a nonabsorbent plate and put in an oven adjusted to the required temperature.
After 10 min, during which the hot melt became molten, the plate with the hot melt was
placed on an insulated plate and the paper strips from the tested paper with an area of
20 mm × 60 mm were placed one by one on the hot melt and pressed by a 200 g weight in
order to obtain the 20 mm × 20 mm bonded surface. The procedure was repeated, keeping
the selected time intervals between the individual steps of the paper piece bonding test.
After 2 h of conditioning at room temperature, the paper strips were pulled out by hand.
The open time was determined as the maximum time interval when the glue joint still
failed in the cohesive tearing of paper.

2.4. Surface Energy Measurements

The polarity/hydrophilicity of metallocene polyolefin increased after grafting of the
polymer with AA. Based on static contact angle (CA) measurements of a set of three
testing liquids [18], namely redistilled water, glycerol and dimethyl sulfoxide, the free
surface energies were determined. The volume of a drop of the testing liquid was 3 µL.
Ten separate values of each CA were averaged to obtain one representative contact angle
value for each liquid. The hydrophilicity of LC-g-AA surfaces was evaluated and the
values of the surface energies were determined. A Professional Surface Energy Evaluation
(SEE) system with a CCD camera (Advex Instruments, Brno, Czech Republic) was used
for experiments and the sessile drop technique was applied. The contact angle of each
drop was measured approximately 3 s after the drop was placed, which was sufficient for
achieving thermodynamic equilibrium between the solid, liquid, and gas phases. The data
were used for determination of the total (γs

tot), polar (γs
p) and dispersive (γs

d) components
of the surface free energy. The surface energies of the polymer were evaluated by the
Owens–Wendt–Rable–Kaelble (OWRK) method [18,19]:

(1 + cos θ)γLV
2

=
(

γd
LVγd

s

)
1/2 +

(
γ

p
LVγ

p
s

)
1/2 (1)

where

θ = contact angle of testing liquid (deg),
γLV = surface free energy (SFE) of the testing liquid (mJ·m−2),
γLV

d, γLV
p = dispersion component (DC), and polar component (PC) of the testing liquid

SFE (mJ·m−2),
γs

d, γs
p = DC and PC of the polymer SFE (mJ·m−2),

xs
p = γs

p/γs
p + γs

d = polar fraction.

2.5. Adhesive Properties

To assess the strength of adhesion of paper to the HMA based on the modified MePO,
a specific method was developed. HMA samples were tested to verify the reproducibil-
ity. The adhesive joints were prepared by applying a 500 µm thick film of adhesive on a
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medium-density fiber board (MDF) and consequently anchoring 50 sheets of 135 g/m2 pa-
per with an area of 90 mm × 90 mm on the glued side of the board. Individual sheets/pages
were subsequently ripped off in the specified order (page order) using an Instron 4301 uni-
versal testing machine (Instron, Norwood, MA, USA) equipped with a 5 kN measuring
cell as shown in Figure 1. The adhesion value was determined as the tensile strength,
calculated in N per 90 mm, of the adhesive joint of HMA paper to pull out one paper sheet.
Measurements of the strength of adhesive joints were tested at 9 places of the testing paper
binding (on pages 6, 10, 15, 20, 25, 30, 35, 40 and 45) and the final extent of adhesion was
expressed as average values of adhesive strengths and statistical deviations.

Figure 1. Measurement of the tensile strength of adhesive joint HMA paper. 1—frame to be fastened
in the bottom clamp, 2—fiber board, 3—one sheet of the paper ready for testing, 4A—lower clamp
4B—upper clamp. 5—cooling equipment of the instrument’s driveline, 6A—pad for gluing the paper
sheets, 6B—set of paper sheets glued to the pad.

3. Results and Discussion
3.1. Formation of Peroxide and Hydroperoxide Moieties by Ozonation

The concentration of hydroperoxides formed on Licocene PP 2602 after ozonation
depends on the temperature, ozone concentration and time of reaction. In our case, at
a constant temperature and O3 content in the reactive gas, the desired concentration of
peroxide and hydroperoxide groups attached to the polymeric macromolecules is easily
controlled by changing the ozonation time, as seen in Table 2. The increase in HPx moieties
with time is close to linear.

Table 2. Time-dependence of hydroperoxide (HPx) concentration on Licocene PP 2602 molecules
formed during ozonation. The HPx concentration was determined by titration.

Time (min) HPx (102 mol/kg)

30 1.14
60 2.75

120 3.40
180 6.90

Since thermal stabilities and decomposition kinetics are important characteristics of
HPx, the decomposition of HPx in the activated polymer was controlled by temperature
and monitored by titration as well as by the CL method under nitrogen. The oxidized
polymers also emit photons when heated in an inert atmosphere to a temperature high
enough to decompose peroxides.



Polymers 2022, 14, 1253 7 of 11

The dependence shown in Figure 2 confirms that several types of HPx groups with
different thermal stability are formed on the macromolecule backbones of LC during ozona-
tion. The least stable HPx with measurable decomposition from 50 ◦C, and maximum at
90 ◦C and 98 ◦C is formed predominantly at the beginning of ozonation. The concentra-
tion of this type of HPx gradually decreases and the subsequently formed HPx moieties
are thermally more stable. The primary HPxs observed at the onset of ozonation appear
to be transformed into more stable HPx types over the continuous course of ozonation.
Interestingly, the HPx moieties formed on the metallocene polypropylene–ethylene copoly-
mer molecules decompose in the temperature range of approximately 80–120 ◦C with a
maximum at 105 ◦C, while more heat-resistant HPx are also present with a maximum
decomposition temperature at 144–146 ◦C.

Figure 2. Chemiluminescence intensity of Licocene PP 2602 activated by ozone at various ozona-
tion times.

The FTIR analysis of pristine LC- and AA-grafted LC (plot b) is illustrated in Figure 3.
The presence of grafted PAA in LC-g-AA was proven by FTIR analysis. The bands of
functional groups C-O and COC (1715 cm−1 and 1170 cm−1, respectively) indicate the
presence of PAA chains. The ratio of the FTIR absorbance intensities of acid carbonyl
compounds at 1715 cm−1 and the reference band at 1464 cm−1 was used to determine the
PAA concentration in the grafted copolymer.

Figure 3. FTIR spectra of Licocene PP 2602: virgin (a) and grafted with 11.4 wt.% of acrylic acid (b).
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3.2. Properties of Mixtures Containing Grafted Licocene 2602

The results of the surface property measurements of PAA-grafted LC are summarized
in Table 3. A decrease in the water contact angles was observed with an increase in
the concentration of LC grafted with 11.4 wt.% of PAA from 95.9O for reference virgin
nongrafted LC to 67.4◦ (27.3 wt.% for LC grafted with 11.4% of PAA), and the polar
component of the SFE increased four times from 1.2 to 4.8 mJ·m−2. On the other hand,
grafting AA onto LC did not lead to any change in the dispersive components. The polarity
of the polymers as well as the HMA expressed by a polar fraction is represented by the
ratio of the polar component of the free surface energy to the total surface energy, which is
given by the sum of the free surface energy of the polar and dispersion component. The
polar fraction (xs

p) of LC during grafting significantly increased from 0.04 (pristine sample)
to 0.14 (sample with 27.3 wt.% of PAA).

Table 3. Contact angles measured for water (WCA), glycerol (GCA) and dimethyl sulfoxide (DCA),
surface free energy (SFE) and its polar (PC SFE) and dispersion (DC SFE) components and polarity
(xs

p) of Licocene PP 2602 grafted with 11.4% acrylic acid.

PAA Grafted in LC
(wt.%)

WCA
(◦)

GCA
(◦)

DCA
(◦)

SFE
(mJ·m−2)

PC SFE
(mJ·m−2)

DC SFE
(mJ·m−2) xs

p

0 95.9
± 2.8◦

74.7
± 2.4◦

47.0
± 2.2◦ 31.8 1.2 30.6 0.04

4.5 88.4
± 2.6◦

72.4
± 2.6◦

48.2
± 1.9◦ 32.8 2.8 30.0 0.09

9.1 84.8
± 2.2◦

69.2
± 2.8◦

49.8
± 2.4◦ 33.4 3.6 29.8 0.11

11.4 74.8
± 2.6◦

65.2
± 3.2◦

51.2
± 2.1◦ 33.6 4.0 30.0 0.12

14.0 71.8
± 2.8◦

62.8
± 2.4◦

54.8
± 2.2◦ 34.8 4.4 30.4 0.13

27.3 67.4
± 2.2◦

60.2
± 2.1◦

55.6
± 2.6◦ 35.2 4.8 30.4 0.14

The impact of an aromatic-aliphatic resin-based tackifier Escorez 5600 was also tested
to determine its impact on the strength of the adhesive bond HMA paper. The tested
composition contained 79.5 wt.% LC, 0.5 wt.% Kinox 10 antioxidant, and various amounts
of the tested tackifier resin. The values of the resulting strength of the adhesive joints
with the tackifier resin Escorez 5600 are shown in Figure 4. The effect of the tackifier
consists in a decrease of viscosity and the increase of wettability; both effects contribute to
the adhesion strength increase. On the other hand, the cohesive strength of the tackifier
is lower, compared to the polymeric components of the HMA. The superposition of the
two counteracting effects may be responsible for maximal adhesive strength for HMA
containing 20 wt.% of the tackifier.

To find an optimal composition of the HMA suitable for the bonding of book backs,
the impact of the wax Licowax PE 520 on the properties of the HMA was investigated. The
effect of the wax addition to the composition on the HMA adhesion strength is shown
in Figure 5. Licowax PE 520 was chosen due to its suitable open time, setting time, and
good compatibility with LC, which is demonstrated by the high elasticity of the adhesive
film. However, as seen in Figure 5, the presence of Licowax PE 520 leads to a significant
reduction in the tensile strength of the adhesive joint of HMA paper. The tensile strength
of the adhesive joint of HMA paper, as shown in Figure 4, decreased significantly from
163.4 N/90 mm (0 wt.% wax, A) to 71.7 N/90 mm (5 wt.% wax, B) and to 51.4 N/90 mm
(8 wt.% wax, C). The reason may be seen in the decrease in the cohesive strength of the
HMA due to the addition of a low-molecular-weight additive.
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Figure 4. Effect of various contents of Escorez 5600 resin on the tensile strength of the adhesive joints
of HMA paper: A—15 wt.%, B—20 wt.%, C—25 wt.%, D—30 wt.%.

Figure 5. Effect of different Licowax PE 520 contents on the tensile strength of the adhesive joint of
HMA paper: A—0 wt.%, B—5 wt.%, C—8 wt.%.

3.3. Properties of the Hot-Melt Adhesive with Increased Adhesion

After testing several individual polymeric additives concerning the effect on the
adhesive strength of the HMA, the final composition was prepared according to Table 1.
The properties of this material are shown in Table 4, along with the results of surface
property measurements, i.e., contact angles of selected testing liquids, surface free energy,
including its polar and dispersion components. The water contact angle (WCA) decreased
with increasing polar component in the HMA (from 96.8 to 72.8◦), and the polar component
of the free surface energy increased from 1.8 to 3.3 mJ·m−2.

Figure 6 summarizes the effect of the polar additive on the strength of the adhesive
joint of HMA paper for various concentrations of added polar additive (L3 in Table 1) in the
HMA. The effect of polar content on the HMA adhesion strength is statistically significant
and technologically interesting for the sample with the highest content, 0.544 wt.% of
the polar additive (Figure 6), which reached a strength value of the adhesive joint of
142.3 N/90 mm compared with an adhesion of 117.9 N/90 mm for the pristine sample,
justifying the application of the AA-grafted polar modifier.
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Table 4. Contact angles for various testing liquids (redistilled water WCA, glycerol GCA, and
dimethyl sulfoxide DCA), surface free energy (SFE), and its polar (PC) and dispersion (DC) com-
ponents of the HMA modified with AA-grafted Licocene PP 2602 with an L3 polar component (by
Table 1).

Polar Component L3
(wt.%)

WCA
(◦)

GCA
(◦)

DCA
(◦)

SFE
(mJ·m−2)

PC SFE
(mJ·m−2)

DC SFE
(mJ·m−2)

0 96.8 ± 3.4◦ 69.1 ± 2.4◦ 60.4 ± 1.9◦ 31.2 1.8 29.4
0.068 84.2 ± 3.2◦ 58.5 ± 1.9◦ 63.2 ± 2.4◦ 31.6 2.3 29.3
0.136 88.7 ± 3.0◦ 61.5 ± 2.2◦ 62.8 ± 1.9◦ 31.9 2.2 29.7
0.272 76.2 ± 2.2◦ 54.5 ± 2.1◦ 52.3 ± 2.3◦ 32.2 2.9 29.3
0.544 72.8 ± 3.0◦ 51.6 ± 3.5◦ 49.3 ± 2.4◦ 32.7 3.3 29.4

Figure 6. Effect of the polar additive content (Table 1) on the tensile strength of the adhesive joint of
HMA paper: A—0 wt.%, B—0.068 wt.%, C—0.136 wt.%, D—0.272 wt.%, E—0.544 wt.%.

4. Conclusions

Ozonation of one of the main polymeric components of the hot-melt adhesive, namely
poly(ethylene–co-propylene) Licocene PP 2602, leads to the formation of peroxides attached
to the polymer chain which, in a subsequent decomposition, initiate the grafting of highly
polar acrylic acid on it. The addition of a small amount (0.544 wt.%) of such polymeric
additive grafted with highly polar functional groups results in a significant increase in the
adhesion of HMA to polar surfaces via an increased surface free energy of the HMA. This
appears to be beneficial compared to introducing other additives that might be incompatible
with the HMA components. Thus, the substantial changes of the processing parameters
and the ultimate properties of the HMA, such as melt viscosity, solidification time and
softening temperature, are reduced.
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