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Abstract: Over the past few decades, polyetheretherketone (PEEK) artificial bone joint materials
faced problems of poor wear resistance and easy infection, which are not suitable for the growing
demand of bone joints. The tribological behavior and wear mechanism of polyetheretherketone
(PEEK)/polytetrafluoroethylene (PTFE) with black phosphorus (BP) nanosheets have been investi-
gated under dry sliding friction. Compared with pure PEEK, the COF of PEEK/10 wt% PTFE/0.5 wt%
BP was reduced by about 73% (from 0.369 to 0.097) and the wear rate decreased by approximately
95% (from 1.0 × 10−4 mm3/(N m) to 5.1 × 10−6 mm3/(N m)) owing to the lubrication of the BP
transfer film. Moreover, BP can endow the PEEK composites with excellent biological wettability
and antibacterial properties. The antibacterial rate of PEEK/PTFE/BP was assessed to be over 99.9%,
which might help to solve the problem of PEEK implant inflammation. After comprehensive eval-
uation in this research, 0.5 wt% BP nanosheet-filled PEEK/PTFE material displayed the optimum
lubrication and antibacterial properties, and thus could be considered as a potential candidate for its
application in biomedical materials.

Keywords: black phosphorus; polyetheretherketone; lubrication properties; antibacterial properties

1. Introduction

For decades, the demand for artificial joints has been growing dramatically [1–3],
while the research and development of new artificial bone joints has attracted extensive
attention [4–6]. However, secondary injury after implantation, which is mainly caused by
postoperative infection and wear of materials [7], is a key issue.

Polyetheretherketone (PEEK), a thermoplastic material with outstanding comprehen-
sive properties, has been widely used in the manufacturing of aerospace items, electronic
information products, automobile manufacturing, pharmaceutical and medical devices,
etc., owing to its excellent biocompatibility, self-lubricating properties, chemical resistance,
and good formability [8–10]. Since PEEK was first introduced into orthopedic joints in
1987 [11], it has been extensively used in the manufacture of artificial bone joints [12,13]
and has been recognized by many medical device manufacturers and orthopedic surgeons
owing to its biomechanical properties similar to those of human bones [14–16]. Even
though its bioinertness remains a limitation for bone graft applications [12,17], PEEK im-
plant modification by adding zirconia [18–20], cobalt alloy [21], titanium alloy [22], and
so on improves the mechanical properties, biological activity, treatment of postoperative
infection, and inflammation regulation of bone graft. Although PEEK possesses high raw
material cost and high molding energy consumption [23], it exhibits the advantages of high
strength, high temperature resistance, and chemical corrosion resistance [24], which are
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difficult to be matched by other polymers. PEEK can also be applied to manufacturing high
value-added products [25,26].

Polytetrafluoroethylene (PTFE), an excellent solid lubricating material [27–29], has
good self-lubricating performance when combined with PEEK [13,30,31]. Lin et al. [30] re-
ported that the tribological characteristics of PEEK were enhanced by using a PTFE compos-
ite as a sacrificial tribofilm-generating part in a dual pin-on-disk tribometer. Haidar et al. [31]
reported that the physical nature of transfer film adhesion by PEEK/PTFE could increase
its wear tolerance to changes in environmental moisture.

Black phosphorus (BP), a novel graphene-like two-dimensional material, has been
successfully applied in the solid lubrication technology field [32,33] because of its unique
fold structure and interlayer interaction by the van der Waals force [34–37]. Moreover, BP
has broad prospects in biomedicine in virtue of the effect of bacteriostatic/bactericidal
effects without cytotoxicity [38–41]. However, research results of the dual functions of the
tribological and antibacterial properties mainly focused on the modification of alloy and
ceramic materials [42–45], and only a few studies concentrated on the evaluation of the
dual functions of PEEK and other polymers [7,46]. The main objective of this work is to
develop a new type of PEEK composite material formulation with double functions of
wear-resistance and antibacterial properties and dedicated to providing a new reference for
solving the problem of secondary injury of artificial bone joints (see Figure 1). Therefore,
the PEEK/PTFE/BP composite is evaluated from tribological and antibacterial aspects in
this work.
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Figure 1. The schematic diagram and future applications of the PEEK/PTFE/BP artificial bone joint.

2. Materials and Methods
2.1. Materials

The PEEK purchased from Victrex (450P), Lancashire, UK was used as the matrix, and
the average particle diameter was 15 µm. The PTFE with a mean particle diameter of 12 µm
was supplied by DuPont (MP1300), Wilmington, DE, USA. Red phosphorus (RP) powder
(Aladdin, Shanghai, China, AR > 98.5%) with an average grain size of 15 µm was used
as the raw material to prepare the BP nanosheets. The materials used in the antibacterial
experiment were LB broth medium (Item No: A507002, Sangon, Shanghai, China), agar
powder (Item No: A505255-0250, Sangon, Shanghai, China), Staphylococcus aureus (control
No: ATCC29213, CGMCC), and phosphate buffered saline (Hopebio, Qingdao, China).
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2.2. Preparation of Black Phosphorus Nanosheets

BP nanosheets were prepared using the high-energy ball-milling technique with RP
as the raw material by using a planetary ball mill (Pulverisette 7, FRITSCH, Germany) at
a speed of 800 rpm for 36 h. The ball-milling process was carried out alternately in the
order of 25 min milling and 5 min suspension. The weight ratio of ball-to-powder was
20:1. Stainless steel balls with diameters of 4.5 mm, 6.5 mm, and 10.0 mm were employed
as the ball-milling medium, and the weight ratio of the ball grinding medium was 1:3:1.
After cooling down to room temperature naturally, the ball mill tank was unscrewed in a
nitrogen-filled glove box to collect BP and grind it for later use.

2.3. Preparation of PEEK/PTFE/BP Composite

Firstly, the powder mixtures of PEEK, PTFE, and BP were put into the ethanol (liquid-
solid mass ratio: 1:1), and the mixed solution was stirred for 0.5 h at room temperature.
After that, the mixed solution was poured into a ball mill tank and mechanically ground
at a speed of 300 rpm for 2 h. Then, the mixed powder was placed into a vacuum drying
oven at a temperature of 70 ◦C for 6 h. Afterwards, it was ground and filtered through an
800-mesh screen.

The mixed powder was pressed under a pressure of 100 MPa and sintered in a vacuum
muffle furnace at 360 ◦C. The sintering procedure is shown in Figure 2. Finally, the pre-
pared composite materials were pure PEEK (P1), PEEK/10 wt% PTFE (P2), PEEK/10 wt%
PTFE/0.5 wt% BP (P3).
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2.4. Frictional Tests and Characterizations
2.4.1. Characterizations of Red Phosphorous (RP) and Black Phosphorous (BP) Nanosheets

The use of X-ray diffraction (D/Max 2550, Rigaku, Akishima, Japan) and Raman
spectra (LabRAM HR Evolution, Horiba, Japan) with a laser of 532 nm and a power of
50 mW were adopted for the characterization of the RP and the prepared BP. The high
resolution transmission electron microscope (HR-TEM, FEI Tecnai G2-F20, Hillsboro, OR,
USA) was used to examine the morphology of the BP. Atomic force microscopy (AFM,
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Bruker Dimension ICON, Santa Barbara, CA, USA) was used to determine the thickness of
the BP.

2.4.2. Frictional Tests and Characterizations of PEEK Composite Materials

The tribotests of the composites were conducted with a universal mechanical tester
(UMT-5, CETR, Campbell, CA, USA) with a ball-on-disk configuration. GCr15 bearing steel
balls with a diameter of 4.68 mm and a surface roughness Sa of 50 nm were chosen as the
tribopair materials, and they were rinsed with alcohol prior to each experiment. Tests were
performed under normal loads of 3 N at a frequency of 5 Hz, and the reciprocating friction
stroke was 5.0 mm.

The morphologies of worn tribopair surfaces were investigated by using the scanning
electron microscopy (ZEISS, Jena, Germany, GeminiSEM 300, Signal A = SE2, Vac < 10−3 Pa,
beam current = 72.9 µA) and energy dispersive X-ray spectroscopy (Oxford Xplore30,
Oxford, UK). The wear volumes of the worn composite were measured using a 3D white
light interference surface topography device (Nexview NX2, Zygo, Middlefield, CT, USA).
The static contact angles of the composites were measured with 50 µL distilled water,
normal saline (AS-ONE, Osaka, Japan) and calf serum (Pingrui Biotechnology, Beijing,
China) by using a contact angle instrument (OCA-25, DataPhysics, Filderstadt, Germany).

2.5. Antibacterial Experiment by Film Sticking Method

The sample of PEEK/10 wt% PTFE, PEEK/10 wt% PTFE/0.5 wt% BP, and polypropy-
lene covering film were sterilized in alcohol for 30 min and dried to reserve. After dropping
100 µL S. aureus suspension cultivated by LB medium with a concentration of 106 CFU/mL
to the sample (size: 20 mm × 20 mm × 2 mm), the sample was covered with PP film using
sterile forceps to ensure that the bacteria contacted the sample evenly, and then kept in
a 37 ◦C incubator (SLI-1200, Sanyo, Osaka, Japan) for 24 h. The sample and the covering
film were washed with 9.9 mL sterile PBS solution (diluted 100 times), and the collected
solution was continuously diluted 10 times with the PBS solution. Then, the appropriate
dilution ratio of 100 µL bacteria solution was applied to the surface of the medium and
kept in a 37 ◦C incubator for 24 h. After culture, photos were taken in order to count the
colony values of all the plates. The antibacterial experiments (the procedure as described
in Figure 3) were repeated 3 times to reduce the experimental error. According to HG/T
3950-2007, the bacterial inhibition rate (%) was represented in Equation (1):

R (%) = (C − E)/E × 100% (1)

R: Antibacterial rate, % (2)

C: Concentration of control group, CFU/mL (3)

E: Concentration of experimental group, CFU/mL (4)

C(E): CFU × dilution ratio × 10/mL, CFU/mL (5)
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3. Results and Discussion
3.1. Characterizations of RP and BP

According to the XRD analysis of Figure 4a, the XRD peaks of BP prepared by high-
energy ball milling were consistent with those of pure BP (JCPDS no.73-1358), with sharp
diffraction peaks and good crystallinity. Raman spectra confirmed the information about
the BP, as shown in Figure 4b. The characteristic peaks of BP appeared at 359.5 cm−1,
434.0 cm−1, and 462.3 cm−1, corresponding to three atomic vibration modes Ag

1, B2g, and
Ag

2 of the phosphorus atom, respectively [2]. Software digital micrograph analysis of the
HR-TEM image in Figure 4c showed that the lattice spacing of the prepared BP nanosheet
was 0.53 nm, which was attributed to d-spacing of (020) crystal lattices as reported in the
literature [32,47]. The lamella thickness of the BP nanosheet (see Figure 4d) was 5 nm,
which proved the ultra-thin morphological characteristics of the prepared nanosheets.
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3.2. Tribological Properties and Analysis of Composite Materials

The coefficients of friction (COFs) of the samples under 3 N at the sliding speed of
50.0 mm/s were summarized and shown in Figure 5. The COF of pure PEEK was relatively
low at first, and then it gradually increased to 0.369. After the incorporation of 10 wt%
PTFE, the COF reduced from 0.369 to 0.178. After 0.5 wt% BP nanosheets were added
into the PEEK/PTFE composite, the lubrication performance of the composite was greatly
improved, and the COF reduced significantly, with a minimum COF of 0.097. Figure 5c
presented the wear rates of three samples P1, P2, and P3. The wear marks of the polymers
were summarized by using a three-dimensional interference surface topography device,
and the wear rates were calculated using ZYGO MetroProX software. Compared with pure
PEEK, the wear rate of the composite after the addition of 10 wt% PTFE filler obviously
decreased from 1.0 × 10−4 mm3/(N m) to 4.3 × 10−5 mm3/(N m). Similarly, the incorpora-
tion of BP significantly reduced the wear rate of the composite to 5.1 × 10−6 mm3/(N m).
On the whole, compared with pure PEEK, the COF reduced by about 73%, and the wear
rate decreased by approximately 95% for PEEK/10 wt% PTFE/0.5 wt% BP.
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Figure 5. The friction coefficients and wear rates of the samples. (a) Variation curves in the COFs as
a function of time for three samples; (b) The average COFs of three samples; (c) The wear rates of
three samples.

The SEM-EDX micrographs of the bearing steel ball surfaces after the dry friction
condition were presented in Figure 6. As can be seen from Figure 6a, the thick transfer film
formed on the spherical surface of the PEEK had so poor wear resistance that it easily fell off
and produced fragments during the reciprocating motion. The double formation of PEEK
and PTFE mixed transfer film (see Figure 6b) significantly reduced the COF. The transfer
film (see Figure 6c) formed on the spherical surface of the PEEK/PTFE/BP composite was
relatively smooth, thin, and uniform. The transfer film contained higher phosphorus (P)
and oxygen (O) elements (see Figure 6f), which proved that BP can form a stable transfer
film at the sliding interface. Because the BP layers were combined by van der Waals force,
the BP transfer film had good adhesion with the tribopairs, which can protect the tribopairs
from wear.
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The SEM micrographs of the worn surfaces of different composites were shown
in Figure 7. Rough furrows were parallelly distributed on the PEEK worn surface (see
Figure 7a), showing severe adhesive wear. This was due to the dimensional cutting of the
PEEK materials by the micro convex body on the surface of the steel ball, resulting in the
plastic deformation and furrow effect of PEEK. The addition of PTFE (see Figure 7b) reduced
the mechanical wear to a certain extent. However, the worn surface of the PEEK/PTFE/BP
(see Figure 7c) was relatively smooth with very slight furrows. Therefore, BP reduced the
COF and improved the wear resistance of the PEEK composites.

3.3. Biological Wettability and Antibacterial Property

The static contact angle values of different composites under distilled water, normal
saline, and calf serum were shown in Figure 8. It can be clearly seen that there was no
significant difference between the contact angle values of pure PEEK and PEEK/10 wt%
PTFE for the three liquids mentioned. The PEEK/10 wt% PTFE/0.5 wt% BP showed the
optimum wettability with contact angle values of 76.9◦, 69.3◦, and 53.1◦ under distilled
water, normal saline, and calf serum, respectively. The addition of BP could diminish the
surface tension of the liquid and improve the biological wettability of PEEK composites,
which might reduce the biological responses for the implant materials.
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The photographs of the agar plates of S. aureus after incubation with PEEK/10 wt%
PTFE and PEEK/10 wt% PTFE/0.5 wt% BP were presented in Figure 9. The group of com-
posites added to BP can effectively inhibit the reproduction of S. aureus. The antibacterial
rates of PEEK/PTFE/BP calculated by three repeated experiments were 99.9% (see Table 1),
which were evaluated as class I strong antibacterial material based on HG/T 3950-2007.
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Many studies on BP nanosheets as antibacterial materials have been conducted [48–51],
indicating that the surface of BP nanosheets could produce reactive oxygen species, destroy
bacterial cell membranes, and inhibit bacterial reproduction.
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Figure 9. Photographs of agar plates of S. aureus after incubation with PEEK/10 wt% PTFE and
PEEK/10 wt% PTFE/0.5 wt% BP.

Table 1. A summary of the antibacterial rates of three repeated antibacterial experiments.

Serial Number
Concentration of the Colon (CFU/mL) Antibacterial Rate

(%)Control Group Experimental Group

1 3.4 × 108 <104 99.9
2 5.8 × 109 <104 99.9
3 1.5 × 109 <104 99.9

4. Conclusions

In summary, this research investigated the tribological behavior and wear mechanism
of PEEK/PTFE with the addition of BP, and conducted biological wettability and the antibac-
terial experiments. Compared with pure PEEK, the COF of PEEK/10 wt% PTFE/0.5 wt%
BP was reduced by about 73% (from 0.369 to 0.097) and the wear rate decreased by ap-
proximately 95% (from 1.0 × 10−4 mm3/(N m) to 5.1 × 10−6 mm3/(N m)) owing to the
lubrication of the BP transfer film, making PEEK composite materials more wear-resisting
for use in artificial joint implants.

In addition, BP endowed the PEEK composites with excellent biological wettability
and antibacterial properties. It was measured that PEEK/PTFE/BP was considered as
class I antibacterial material owing to its antibacterial rate above 99.9%, which was helpful
to solve the problem of adverse infection reaction caused by PEEK materials implanted in
the body.

PEEK/PTFE/BP composites can realize blending and granulation, and are suitable for
3D printing and injection molding. Thus, it is expected that the research results will provide
a potential opportunity for an extensive range of applications for PEEK artificial joint
materials. The formulation is prior to commercial PEEK production, which still requires
improved mechanical properties and extensive clinical biological tests.
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