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Abstract: In this work, the synthesis of a new polysiloxane, poly {dimethylsiloxane-co-[4-(2,3-difluoro-
4-hydroxyphenoxy) butyl] methylsiloxane} (dubbed PMFOS), is presented. This polymer exhibits
high hydrogen bond acidity and was designed to be used as a sensor layer in gas sensors. The
description of the synthetic route of the PMFOS has been divided into two main stages: the synthesis
of the functional substituent 4-(but-3-en-1-yloxy)-2,3-difluorophenol, and the post-polymerization
functionalization of the polysiloxane chain (methylhydrosiloxane-dimethylsiloxane copolymer) via
hydrosilylation. The synthesized material was subjected to instrumental analysis, which confirmed its
structure. The performed thermal analysis made it possible to determine some properties important
for the sensor application, such as glass transition temperature and decomposition temperature. The
results showed that PMFOS meets the requirements for materials intended for use in gas sensors
based on acoustoelectric transducers.

Keywords: hydrogen-bond acidic polysiloxane; sensor polymer; coatings for gravimetric sensors;
on-site detection of CWAs

1. Introduction

Nerve chemical warfare agents (CWAs) are a group of chemical substances classified
as weapons of mass destruction. Recently, these substances have been used several times,
reminding the public of their military importance. For this reason, it is very important
to provide the first responders with the appropriate tools for the fast detection of these
substances at the place of their use.

Currently, on-site detection of nerve CWAs is possible with the use of gas analyzers
that use various analytical techniques [1–4]. Among them, techniques allowing for the
construction of cheap and compact gas analyzers (e.g., that are possible to be used as
on-board equipment for unmanned aerial vehicles) are of particular interest. The above
requirements are well met by gravimetric gas sensors based on a variety of acoustoelectric
transducers, such as quartz crystal microbalances (QMB) [5], surface acoustic wave (SAW)
devices utilizing both Rayleigh and Love waves [6,7], or microcantilever transducers [8,9].

A common design feature of all the above-mentioned devices is the presence of a sensor
layer, which is the interface between the analyzed gas and the non-selective transducer
part of the sensor. The task of the sensor layer is to selectively interact with the analyte. As
a result of this interaction, the mass, elasticity, and electrical properties of the layer change.
Changing the layer parameters affects the acoustic wave and, as a result, generates the
analytical signal of the sensor. The type and properties of the layer used affect not only the
selectivity of the sensor but also its sensitivity and dynamic properties.

One of the most commonly used types of sensor layers is an absorption layer. In this
case, the dissolution of the analyte molecules present in the analyzed gas takes place in
the volume of the layer. The transport of the analyte continues until a thermodynamic
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equilibrium is reached. At equilibrium, the partitioning of the analyte between the gas and
liquid phases can be described by the value of the partition constant K [10]:

K =
CS

CV
(1)

where:

Cs: equilibrium analyte concentration in the sensor layer;
Cv: equilibrium analyte concentration in ambient gas.

In the process of designing and synthesizing materials for sensor layers, the aim is to
obtain the greatest possible partition constant while maintaining maximum selectivity.

Absorption-type sensor layers can be made of polymers which are in an elastomeric
(rubbery) state at the sensor operating temperature. In this case, the sorption of the analyte
to the volume of the sensor layer occurs many times faster than for polymers in the glassy
state. This translates into faster sensor operation. Taking into account the fact that the
sensor should work at a temperature close to room temperature (the K value usually drops
significantly with increasing temperature), and at the same time, that the sensor layer
should be in the elastomeric state (to ensure good dynamic properties), it is desirable to
use polymers with a low glass transition temperature Tg. In practice, the Tg should be
well below room temperature. Due to the natively low Tg, polysiloxane-based functional
materials are of particular interest [11]. In addition, polysiloxanes exhibit several other
features desirable in sensor applications, such as chemical and temperature stability or the
possibility of immobilization on a quartz substrate.

The solvation properties of functional polymers result from the presence of specific
functional groups. Hydrogen-bond acidic (HBA) polysiloxanes usually contain alcoholic or
phenolic functional substituents. The positively charged hydrogen atom in the hydroxyl
group of such a substituent exhibits a high ability to form a hydrogen bond. This feature
is complementary to the relatively specific ability of the nerve CWA molecule to act as a
hydrogen acceptor in the hydrogen-bond formation process. Therefore, HBA polysiloxanes
are widely used in sensors for the detection of nerve CWA vapors.

A strongly acidic group found in the structure of many HBA polysiloxanes is hex-
afluoroisopropanol (HFIP) [12–16]. However, it shows a high affinity to water vapor that
is always present in the environment. Apart from HFIP-containing polysiloxanes, ma-
terials with phenolic substituents, which interact less with water vapor, have also been
developed [17–20]. The structures of selected HBA polysiloxanes used in acoustic wave
sensors are shown in Figure 1.

One of the most commonly used methods for the synthesis of functional polysiloxanes
is the post-polymerization functionalization of the existing polymethylhydrosiloxane chain
via hydrosilylation [13,15,21]. This method has been used many times for the synthe-
sis of the HBA polysiloxanes used in the detection of nerve CWAs and their simulants.
The greatest advantage of this method is the possibility of the one-step preparation of
functional polysiloxanes.

This work presents the synthesis of a new sensor polysiloxane that contains fluo-
rophenol groups: poly {dimethylsiloxane-co-[4-(2,3-difluoro-4-hydroxyphenoxy) butyl]
methylsiloxane}, dubbed PMFOS. The structure of PMFOS is presented in Figure 2.
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Figure 2. Structure of poly{dimethylsiloxane-co-[4-(2,3-difluoro-4-hydroxyphenoxy) butyl]
methylsiloxane}—PMFOS.

This material is structurally similar to PMDFPS (Figure 1e). An important differ-
ence between these materials is the position of the hydroxyl group in the aromatic ring.
In the case of PMDFPS, the hydroxyl group is in the ortho position, in relation to the
alkyl linker with the polysiloxane chain, which results from the adopted synthetic route
using the Claisen rearrangement [18]. In turn, in the case of PMFOS, the -OH group
is located in the para position to the alkoxy group, connecting the aromatic ring to the
polysiloxane backbone. The transfer of the hydroxyl group to a more exposed position was to
minimize steric hindrance during the formation of acidic hydrogen bonds with the analyte
molecule. The first step of the PMFOS synthesis was to obtain the functional substituent:
4-(but-3-en-1-yloxy)-2,3-difluorophenol. The functional polymer was then obtained by a post-
polymerization functionalization of existing polysiloxanes via Pt-catalyzed hydrosilylation.
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PMFOS has already been used in SAW sensors, as is described in our earlier work [22].
Additionally, its solvation properties were determined using inverse gas chromatography,
and its acidic nature was confirmed [23].

2. Materials and Methods
2.1. Materials

All chemicals used in this study were commercially available products. The reagents,
2,3-difluorophenol, but-3-en-1-ol, triphenylphosphine, diisopropyl azodicarboxylate (DIAD),
n-butyllithium (n-BuLi, a 2.5M solution in hexane), tripropylborate, and potassium peroxy-
monosulfate (Oxone R), as well as the solvents (tetrahydrofuran-THF, pentane, acetone,
toluene) were reagent-grade materials used as supplied by various vendors. As an initial
polymer material, a methylhydrosiloxane–dimethylsiloxane copolymer (PMHS) was used
(ABCR, Karlsruhe, Germany, 25–30% methylhydrosiloxane–dimethylsiloxane copolymer).
A catalyst used in the hydrosilylation reaction was a Karlstedt’s catalyst (ABCR, platinum–
divinyltetramethyldisiloxane complex 3–3.5% Pt in vinyl-terminated polysiloxane). The
catalyst was further diluted with dry toluene to a concentration of 0.2% Pt.

2.2. Instrumentation

The purity and structures of the synthesized substances were confirmed by the use of
various analytical methods. The mass spectra were obtained using the gas chromatograph
Agilent, Santa Clara, CA, United States, model 6890 N, coupled with a mass spectrometer
(GC-MS). Nuclear magnetic resonance (NMR) experiments were conducted using a Bruker,
Billerica, MA, United States, model Avance III HD 500 MHz spectrometer (field 11.7 T).
The analyses were performed in DMSO with a concentration of 10 wt.%. The 1H and 13C
spectra were referenced to tetramethylsilane (TMS, δ 0.00 ppm) protons and carbons,
respectively. The 19F spectra were referenced to CCl3F (0.00 ppm). The carbon spectra are
protons decoupled with CPD sequence. Studies of infrared (IR) absorption characteristics
were carried out using the transmission technique. The Fourier transform infrared (FT-IR)
spectrometer used to record spectra was a NICOLETiS10, from Thermo Fisher Scientific,
Waltham, MA, United States. Liquid samples of polymers in CCl4 were analyzed. The
molecular weights and mass distributions of the initial polymer material and synthesized
functionalized polysiloxane were determined by gel permeation chromatography (GPC),
using the OMNISEC multi-detector GPC/SEC system from Malvern Panalytical, Malvern,
United Kingdom. The thermal properties of the synthesized polysiloxane were investigated
using a DSC 204F1 Phoenix differential scanning calorimeter (DSC) from Netzsch, Selb,
Germany and LabSys thermogravimetric analyzer (TGA), manufactured by the Setaram,
Caluire-et-Cuire, France.

2.3. Synthesis of Functional Polysiloxane

The synthetic route of PMFOS is presented in Figure 3.
The synthesis of the functional substituent 4-(but-3-en-1-yloxy)-2,3-difluorophenol (FS2)

was performed in several successive steps, illustrated in Figure 3a. The first step was to ob-
tain 2,3-difluorophenyl but-3-en-1-yl ether (FS1). FS1 was obtained from 2,3-difluoropheonol
and but-3-en-1-ol was obtained via a Mitsunobu reaction. After FS1 was purified by vac-
uum distillation, the preparation of FS2 was started. In this step, directed ortho metalation
(DoM) was used to obtain the arylmetal derivative of FS1. The intermediate product was
then trapped with tripropylborate ester. The following hydrolysis of the arylborate ester
yielded a boronic acid derivative. The last step was to convert the boronic acid derivative to
the target phenol (FS2) by oxidizing the acid with a strong oxidizing agent (Oxone R). FS2,
purified by vacuum distillation, was used for further steps in the preparation of PMFOS.
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Figure 3. Synthetic protocol of PMFOS.

The next step was introducing the functional substituent FS2 into the polysiloxane
backbone (PMHS) via a Pt-catalyzed hydrosilylation (Figure 3b). This step of the reaction
was carried out under N2 with the exclusion of moisture by use of the Schlenk technique.
The Pt catalyst used in this reaction was Karstedt’s catalyst (3–3.5% Pt). The progress of the
reaction was monitored by FT-IR to observe the disappearance of the Si–H stretching band
at 2157.6 cm−1 (Figure 4).
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After the complete conversion of the Si−H bonds indicated by FT-IR, the reaction was
stopped. The reaction mixture was then filtered and the solvent was removed by rotary
evaporation to yield the desired PMFOS as a dense, light grey oil. A detailed recipe for the
synthesis of the FS2 and PMFOS, as well as the results of the MS, FT-IR, and NMR analyses,
are included in Supplementary Material.

3. Results and Discussion

The synthesized PMFOS was subjected to FT-IR, NMR, GPC, DSC, and TG analysis.

3.1. FT-IR Analysis

The obtained PMFOS infrared spectrum is shown in Figure 5.
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Figure 5. FT-IR spectrum of PMFOS.

The absence of an absorption peak of about 2160 cm−1 indicates that the hydrosily-
lation was completed. The sharp, strong absorption band from free hydroxyl groups at
3590 cm−1 is noteworthy. In the range of 3500–3200 cm−1, a broad band of low intensity
is also observed, which can be attributed to the hydroxyl groups involved in hydrogen
bonding (even though the material was vacuum dried before the IR analysis).

3.2. NMR Analysis

PMFOS was analyzed by 1H-NMR, 13C-NMR, and 19F-NMR. The 1H-NMR spectrum
is shown in Figure 6.
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The NMR analysis confirmed the presence of the expected structural formations in
the PMFOS. In the above 1H-NMR spectrum, a small peak in the range of chemical shifts
corresponding to 1H in the Si−H bond (4.59–4.58 ppm) is observed. This is indicative of a
residual Si−H bond from the initial PMHS that was not converted. The Si−H band was
not visible in the IR spectrum, however. This is probably due to the differences in the
sensitivities of the two methods, or the particular conditions of the analyses. Based on the
1H-NMR PMFOS and PMHS spectra, as well as the knowledge of the initial content of the
Si−H bonds declared by the PMHS manufacturer, the conversion rate of the Si−H bond in
the PMFOS material was estimated. Thus, the determined conversion rate was 97.2% (see
Supplementary Material). The above spectrum also shows the peak corresponding to the
protons in Si−CH2 (0.48 ppm). The presence of this peak indicates the attachment of the
carbon chain of the functional substituent to the silicon atom.

3.3. GPC Analysis

The synthesized PMFOS and the initial PMHS were subjected to GPC analysis. Figure 7
shows GPC chromatograms of PMFOS and PMHS materials recorded with a refractive
index (RI) detector.
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Based on the determined molecular weight distributions of PMFOS and PMHS,
the number-average molecular weights (Mn), the mass-average molecular weights (Mw),
and the polydispersities (Ð) of both polymers were determined. In the case of PMFOS,
Mn = 9800 g/mol and Ð = 2.92 was obtained, while for PMHS, it was Mn = 3400 g/mol
and Ð = 2.25. Comparing the obtained Mn value, it can be said that, in the course of the
reaction, the average molecular weight of the PMHS substrate increased. The obtained
weight gain corresponds to the introduction of functional substituent molecules into the
polysiloxane backbone in an amount close to the content of the Si−H bonds declared by
the PMHS manufacturer.

3.4. Thermal Analysis

The phase transition analysis was performed under an inert gas atmosphere. The
polymer was first heated from −70 ◦C to 130 ◦C and then cooled back to −70 ◦C. The
obtained PMFOS thermograms are shown in Figure 8.
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Based on the performed DSC analysis, the glass transition temperature Tg of the
PMFOS material was determined. The Tg determined for the heating and cooling of the
sample have convergent values of −44.0 and −44.3 ◦C, respectively. A DSC analysis of the
initial PMHS was also performed. In this case, no phase transitions in the temperature range
−70 to 130 ◦C were observed. On this basis, the Tg for PMHS was found to be below −70 ◦C.
As expected, the introduction of the fluorophenol functional substituent increased the glass
transition temperature of PMFOS relative to the initial PMHS. Nevertheless, the Tg of
PMFOS is still relatively low. A comparison of the Tg values of selected HBA polymers is
presented in Table 1.

Table 1. Comparison of glass transition temperatures (Tg) of selected HBA polymers used in gas sensors.

Polymer Tg (◦C) Reference

PMFOS −44 This work
SXFA −44 [24]
PLF −17 [25]

BSP-3 1 6 [26]
DKAP 20 [27]

1 The acronym BSP-3 stands for a hybrid organic/inorganic polymer incorporating fluoroalkyl-substituted
bisphenol groups linked using oligosiloxane spacers, reported in work [26]. The structures of the remaining
polymers are shown in Figure 1.

By analyzing the values from Table 1, it can be concluded that the Tg of PMFOS is
much lower than for most materials of this type. In this comparison, only the SXFA material
has an equally low Tg.

A TG analysis of the PMFOS was also performed. The TG thermogram is shown in
Figure 9. The analysis was performed under an inert gas atmosphere (argon).

A 5% decrease in the sample mass was recorded at a temperature of about 131 ◦C,
and a 10% decrease was recorded at a temperature of about 232 ◦C. From about 280 ◦C,
the PMFOS began to rapidly degrade. Part of the weight loss in the initial part of the
thermogram (approx. 1.69%, up to approx. 75 ◦C) can be attributed to the loss of moisture
and residual organic solvents.

Summarizing the conducted thermal analysis, it can be stated that PMFOS is charac-
terized by a suitably low Tg for sensor applications. In addition, the material exhibits good
thermal stability, even at temperatures much higher than the typical operating conditions
of gas sensors with absorption layers.
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3.5. Application in SAW Sensors

PMFOS was used as a sensor layer for gas sensors based on 195 MHz dual-port SAW
resonators [28], as shown in our recent paper [22]. In the process of sensor preparation,
PMFOS layers ware applied onto SAW resonators using thermal evaporation. These studies
have shown that PMFOS sensors are highly selective to hydrogen-bond bases, which
include nerve CWAs and their simulants such as dimethyl methylphosphonate (DMMP) or
triethyl phosphate (TEP).

Selectivity and sensitivity are not the only parameters that characterize the suitability
of the sensor. For the detection of nerve CWAs, a short response time is also important. In
order to investigate the dynamic properties of PMFOS sensors, which are highly influenced
by the PMFOS Tg, additional measurements were made. The response time of PMFOS
sensors to DMMP vapor was investigated at 30 ◦C, which is well above the Tg of PMFOS
(−44 ◦C). The temperature of 30 ◦C is close to room temperature, and providing sensor
thermostating at such a temperature is not problematic, which is particularly important in
the case of miniature, portable devices. The real-time DMMP response curve of the PMFOS
sensor is presented in Figure 10.

As shown in the Figure 10, the sensor responds rapidly to the changes in the analyte
concentration. In the case of DMMP, the value of the response time constant is 14.6 +/− 0.9 s.
Such a low value of the response time constant results mainly from the high vapor diffusion
rate in the volume of the sensor layer. As the results show, the PMFOS sensor can be used
at temperatures close to room temperature while maintaining good dynamic properties.
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4. Conclusions

This paper presents the synthesis of a new sensor polysiloxane that can be used in
SAW sensors. The synthesized material was characterized by several instrumental methods
that confirmed its structure and made it possible to determine some thermal properties
important for sensor applications. Summarizing the research performed, we can say:

• the developed synthetic route was well established and verified with instrumental methods;
• the synthetic route allows for obtaining the product with high yield (functional sub-

stituent step yield: 74%, hydrosilylation step yield: 88%);
• the determined thermal properties of PMFOS (Tg and decomposition temperature)

meet the requirements for materials intended for use in gas sensors based on acousto-
electric transducers;

• the research on the dynamic properties of the PMFOS sensors has shown that they are
characterized by short response time to DMMP vapor (several seconds). The response
time at this level is appropriate for the detection of highly toxic substances.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14061147/s1. Figure S1: Synthetic protocol of PMFOS;
Figure S2: Mass spectrum of FS1; Figure S3: Mass spectrum of FS2; Figure S4: Mass spectrum of FS2;
Figure S5: 1H NMR spectrum of 4-(but-3-en-1-yloxy)-2,3-difluorophenol (FS2); Figure S6: 1H NMR
spectrum of 4-(but-3-en-1-yloxy)-2,3-difluorophenol (FS2); Figure S7: The section of FS2 13C-NMR
spectrum from 139.5 to 143.0 ppm; Figure S8: FT-IR spectrum of poly{dimethylsiloxane-
co-[4-(2,3-difluoro-4-hydroxyphenoxy) butyl] methylsiloxane} – PMFOS; Figure S9: 1H-NMR spec-
trum of PMFOS; Figure S10 : 13C-NMR spectrum of PMFOS; Figure S11: 19F-NMR spectrum of
PMFOS; Figure S12: 1H-NMR spectrum of PMHS with integrated peaks of Si-H (4.61–4.69 ppm)
and Si-CH3 (−0.10–0.05 ppm); Figure S13: 1H-NMR spectrum of PMFOS with integrated peaks
of Si-H (4.57–4.61 ppm) and Si-CH3 (−0.10–0.05 ppm); Supporting information for Fluorophenol-
containing hydrogen bond acidic polysiloxane for gas sensing—synthesis and characterization.
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